GIANT: GRAPHICAL ALGEBRAIC NUMBER THEORY

ANEESH KARVE AND SEBASTIAN PAULI

Dedicated to Michael Pohst on his 60th Birthday

ABSTRACT. While most algebra is done by writing text and formulas, diagrams
have always been used to present structural information clearly and concisely.
Text shells are the de facto interface for computational algebraic number the-
ory, but they are incapable of presenting structural information graphically.
We present GIANT, a newly developed graphical interface for working with
number fields. GiANT offers interactive diagrams, drag-and-drop functional-
ity, and typeset formulas.

1. INTRODUCTION

Software for number theoretical computations has evolved from stand-alone pro-
grams, to Fortran and C libraries, to shells. Shells have opened these systems to a
much larger user community. Computer algebra systems are now widely used by
number theorists for calculations and experimentation.

At the same time, the tasks that can be solved in computational number the-
ory have become more complex. The focus has changed from the computation of
invariants such as integral basis, unit groups, class groups, and Galois groups, to
computations in areas such as class field theory, where more than one number field
is considered at a time. Diagrams offer a useful overview of the relations between
fields, but these are typically done on paper since most systems specialized for num-
ber theory cannot visually display such relations. A graphical interface to display
and manipulate diagrams, drag and drop elements, and perform common opera-
tions could be of great benefit to the user. In addition, mathematical typesetting
could improve the representation of formulas.

Several general computer algebra systems, such as Maple |] and Mathemat-
ica | |, provide graphical interfaces. They offer typesetting and plotting, but
they do not allow graphical manipulation of algebraic objects. For group theory the
XGAP |] package for GAP | | offers a tool for viewing and manipulating
subgroup lattices and other structural information on UNIX systems running X
Windows. It allows bidirectional communication between the interface and GAP,
though this is not automatic. Working with elements of groups is not supported.

We present GiIANT, a platform independent graphical interface to the KANT
shell KASH |], a computer algebra system for number theory. Number fields
are displayed and related to each other on the GIANT desktop. GIANT allows the
user to work with the invariants of the number fields and with polynomials, ideals,
and elements. Many operations between these can be conducted in GiIANT, and
mathematical typesetting is used for clarity of representation.

2. GIANT
In the following sections we highlight key features of GIANT.

Aneesh Karve was generously supported by the German Academic Exchange Service
(http://www.daad.org) during the creation of GiIANT..

1

http://www.daad.org

2 ANEESH KARVE AND SEBASTIAN PAULI

606 GIANT

FicURE 1. GiANT’s interactive desktop displays towers of number fields.

The Tower of Fields. GiANT opens with a blank desktop. Above the desktop
is a menu system to create and manipulate number fields. As the user creates
number fields, they appear on the desktop as icons, and are arranged into towers
(FIGURE 1). Hovering over a field icon with the mouse displays the field’s generating
polynomial. Subfield relationships within a tower are indicated with solid lines, and
in neighboring towers with dotted lines. For visual clarity a different line color is
used for each tower.

8606 Fg:x* + 65
(e ts | Polynomials Ideals |
Name Power Basis Representation Integral Unit
faeltg o ™ B
faelty o ¥ =
faelt —o? ™ H
fyelty o? /65 =]
(CNew), &)
» Current Selection k P
* Number Field
¥Unit Group
Rank 1
Structure EX M
Torsion Unit (g) -1 fator
Torsion Rank 2
Fundamental Unit(s}) () 8 - 4o + o f8funit
Regulator |6.24608798608946158151649685... f8reg
¥Class Group
Class Number 128
Structure Cox Cax Cax Gy facl
Cyclic Factor(s) (R) {30, 690 + 41E + BBS5E? + 2E%) x... f8clf
TNotes
Regulator 6.246087986089461581516496859849041353841492306382 Ix
f8r 84
[m Y<Tr
P
T ——

F1GURE 2. The Inspector Window displays information for a par-
ticular number field.

GIANT: GRAPHICAL ALGEBRAIC NUMBER THEORY 3

Working with Fields: The Inspector Window. Clicking on a field icon opens
its Inspector Window (FIGURE 2). The window title bar displays the name and
generating polynomial of the field. The upper half of the window consists of three
tabs: Elements, Polynomials, and Ideals. Under each tab is a table containing
variables of the same type. Columns in the table include the variable name, its
power basis representation, and other key properties.

Below each table are the New button, which is used to create new variables by en-
tering expressions, and four buttons for arithmetic operations. The operations can
be applied by selecting operands from the table. The result appears automatically
as a new variable in the table.

The lower half of the Inspector Window contains four sections: Current Selection,
Number Field, Unit Group, Class Group, and Notes. Each section can be collapsed
or expanded as needed.

Current Selection displays invariants for one or more variables. Taking field
elements as an example, Current Selection displays the norm, trace, minimal poly-
nomial, and integral basis representation for any elements currently selected in the
Elements table. Number Field displays invariants for the entire field. Unit Group
displays the rank, structure, torsion unit, fundamental units, and regulator. Class
Group displays the class number, the structure of the class group, and the genera-
tors of its cyclic factors. Notes is a freely editable text box.

Computations which may take more than a few seconds to complete, such as
determining the class group, execute only when the user requests them. This avoids
unnecessary latency.

Automatic Variable Naming and Abbreviations. For elements, polynomials,
and ideals, GIANT generates automatic names by combining the field name, vari-
able type, and variable index into a single string. For example, the first element
the user creates in the field named f0 is automatically named £0eltO. This makes
it easy to identify variables generated by GiANT, and to use them in the corre-
sponding KASH session. Though GiANT always offers automatic variable names,
the user can provide custom names. In addition to user-created variables, most
auto-computed invariants are also named by GiANT.

GiANT allows the use of single-letter abbreviations for commonly used values,
such as primitive elements, to facilitate the input of expressions. For simplicity,
abbreviations are consistent across number fields. GIANT translates abbreviations
into globally bound variable names which the underlying shell understands. Such
abbreviations are not possible in a shell-only environment, since a shell has no
notion of which number field the user is working with.

Drag-And-Drop Convenience. GiIANT employs drag-and-drop for convenient
moving of elements between algebraic structures and for the execution of other
operations. When working with an element in a number field, for example, we may
wish to study its minimal polynomial. The GIANT user simply drags the element
from its table and drops it onto the Polynomials tab. The Polynomials tab then
opens, adds the minimal polynomial to its table and highlights it. Similarly, the
user can drop one or two elements onto the Ideals tab to generate a new ideal. It is
even possible to create relative field extensions by dropping irreducible polynomials
from a ground field onto the desktop. The user is then free to move elements
between the ground field and the extension by dragging and dropping.

The Global Inspector. The Inspector Window discussed above organizes all of
the variables in a single number field. Nevertheless, users may wish to simultane-
ously view all variables they have created, irrespective of type or parent field, in a
single window.

4 ANEESH KARVE AND SEBASTIAN PAULI

8606 Clobal Inspector
 Ox+16
®x-2
@ foelty: o
® feely: -a
® foeltz: 2
® fielty: o
@ fipoly: x* + 16
® fidly: (0
® fidl: ()
® fidl;: (@)

Select an item to view open its field window { Refresh |

Show

B All ! Fields 1 Elements ! Polynomials l/ Ideals

Field Criteria (incomplete feature)
[Degree F] '\ is greater than m + | -

FicUrE 3. The global inspector displays all variables the user has created.

The Global Inspector (FIGURE 3) makes this possible. Number fields, elements,
polynomials, and ideals — or any subset of these four variable types — are displayed
in a single list. Selecting a variable from the list brings forward the Inspector
Window where this variable resides; the user can then manipulate it. In addition
the Global Inspector allows the user to specify filtering criteria which variables must
meet in order to be displayed in the list.

The Shell Behind GiANT. GiANT uses the KANT shell KASH to perform
computations. The user can work directly with the shell by selecting Show KASH
from the View menu. This displays a standard KASH console. Any variables
created with the graphical interface are also available in the console. The user may
use the console to access features of KASH which are not graphically available.
Alternatively, GIANT can be used as a scripting tool for KASH since all graphically-
driven activities generate KASH code.

3. CONCLUSION

The motivation behind GIANT was to provide intuitive access to the function-
ality of KASH. To be sure, we have not completely succeeded in this regard, but
nevertheless hope to have offered some ideas in the right direction. In its present
state of development GiANT can be used for teaching and presentations. To use
GiANT for research in algebraic number theory the following issues should be ad-
dressed. A bidirectional integration of graphical manipulation and a classic text-
based shell should be achieved such that objects, and structural information about
them, are displayed graphically as these objects are created in the shell. In GIANT
the objects that are generated in the graphical user interface are available in the
shell, but objects generated in the shell do not appear in the graphical interface.

A more open software architecture would make it possible to use GIANT for
other computer algebra systems and for algebraic structures other than number
fields. Said architecture should be designed in such a way that the same methods
that are used to display lattices of subfields are used, for example, to display lattices
of subgroups.

Because algebra is mostly represented in formulas, a system that graphically
displays structural information and allows graphical as well as command line driven
manipulation of structures and elements would be the ideal solution. This would
take the best from both worlds. On the one hand complex tasks are more easily

GIANT: GRAPHICAL ALGEBRAIC NUMBER THEORY 5

done on the command line. On the other hand routine tasks, structural information,
and an overview of defined objects are best done graphically.

GiANT is written in Java 1.4. For further research and development the Gi-
ANT source code is made available under the GNU General Public License (GPL).
GiANT can be found on the worldwide web at

http://giantsystem.sourceforge.net.

4. ACKNOWLEDGEMENTS

The authors would like to wish Michael Pohst a happy 60" birthday. We have
had the pleasure of working with him at Technische Universitdt Berlin. Herr Pohst
is not only an extraordinary mathematician, but a kind human being as well.

Special thanks to Claus Fieker, Sebastian Freundt, Jiirgen Kliiners, Mike Lache,
and Osmanbey Uzunkol for valuable feedback on the development and use of Gi-
ANT. Mike also critiqued an early draft of this manuscript; Frances Clerk helped
bring it into its final form.

REFERENCES

[DFt97] M. Daberkow, C. Fieker, J. Kliiners, M. Pohst, K. Roegner, M. Schérnig,
and K. Wildanger, KANT V4, J. Symb. Comp. 11 (1997), 267-283,
http://www.math.tu-berlin.de/ kant/.

[CN04] F. Celler, M. Neunhoffer, GAP package XGAP — a graphical user interface for GAP,
2004, http://www-gap.mcs.st-and.ac.uk/Packages/xgap.html

[GAP] GAP - Groups, Algorithms, Programming - a System for Computational Discrete Al-
gebra, 2005, http://www.gap-system.org

[Ma05] Maplesoft, Maple, 2005, http://www.maplesoft.com

[Wo05] Wolfram Research, Mathematica, 2005, http://www.wolfram.com

ANEESH KARVE, DEPARTMENT OF COMPUTER SCIENCES, UNIVERSITY OF WISCONSIN-MADISON,
1210 WEST DAYTON STREET, MADISON, WI 53706-1685, USA
E-mail address: karve@cs.wisc.edu

SEBASTIAN PAULI, INSTITUT FUR MATHEMATIK, MA 8-1, TECHNISCHE UNIVERSITAT BERLIN,
STRASSE DES 17. JUNI 136, 10623 BERLIN, GERMANY
E-mail address: pauli@math.tu-berlin.de

http://giantsystem.sourceforge.net
http://www.math.tu-berlin.de/%7Ekant
http://www-gap.mcs.st-and.ac.uk/Packages/xgap.html
http://www.gap-system.org
http://www.maplesoft.com
http://www.wolfram.com

	1. Introduction
	2. GiANT
	The Tower of Fields
	Working with Fields: The Inspector Window
	Automatic Variable Naming and Abbreviations
	Drag-And-Drop Convenience
	The Global Inspector
	The Shell Behind GiANT

	3. Conclusion
	4. Acknowledgements
	References

