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ABSTRACT. Let K be a p-adic field. We give an explicit characterization of
the abelian extensions of K of degree p by relating the coefficients of the
generating polynomials of extensions L/K of degree p to the exponents of
generators of the norm group NL/K(L*). This is applied in an algorithm for
the construction of class fields of degree p™, which yields an algorithm for
the computation of class fields in general.

1. Introduction

Local class field theory gives a complete description of all abelian ex-
tensions of a p-adic field K by establishing a one to one correspondence
between the abelian extensions of K and the open subgroups of the unit
group K* of K. We describe a method that, given a subgroup of K* of
finite index, returns the corresponding abelian extension.

There are two classic approaches to the construction of abelian exten-
sions: Kummer extensions and Lubin Tate extensions. Kummer extensions
are used in the construction of class fields over global fields [Fie99, Coh99).
The theory of Lubin Tate extensions explicitely gives generating polyno-
mials of class fields over p-adic fields including the Artin map. Both ap-
proaches have the disadvantage that, given a subgroup G of K*, one first
computes a class field Ly corresponding to a subgroup H of G and then
determines the subfield of Ly corresponding to G.

We construct classfields as towers of extensions from below thus avoiding
the computation of a larger class field and the determination of the right
subfield. The wildly ramified part of a class field is constructed as a tower
of extensions of degree p over the tamely ramified part of the class field.

Together with the approach to local class field theory in the article
The Isomorphism Theorem in the Local Class Field Theory by Yamamoto
[Yam58] our construction yields a proof of the existence, uniqueness, and
isomorphism theorems for class fields of finite degree.

We start with recalling the structure of the unit groups of p-adic fields
(section 2). In section 3 we state the main results of class field theory and
the explicit description of tamely ramified class fields. It follows that we
can restrict our investigation to cyclic class fields of degree p. We begin
our investigation by constructing a minimal set of generating polynomials
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of all extensions of K of degree p (section 4). In section 5 we relate the
coefficients of the polynomials generating extensions of degree p to the
exponents of the generators of their norm groups. This yields an algorithm
for computing class fields of degree p. Section 6 contains an algorithm for
computing class fields of degree p™. In section 7 we give several examples
of class fields.

In the following Q, denotes a completion of Q with respect to the p-adic
valuation |- | =p~" (). K is a finite extension of Qp complete with respect
to the continuation of |- | on K, O = {a € K | |a| < 1} is the valuation
ring of K with maximal ideal p = {a € K | |o| < 1} = (7) and residue class
field K := Og/p. For v € Ok the class v + p is denoted by ~.

2. Units

It is well known that the group of units of a p-adic field K can be de-
composed into a direct product

K* = () x (() x (1+p) = 7" x K* x (1+p)

where m = mwg is a uniformiser of K, K its residue class field, (xy € K
a (#K — 1)-th root of unity, and p = px the maximal ideal of K. The
multiplicative group 1 + pg is called the group of principal units of K. If
n € 1+ p is a principal unit with vy(n — 1) = A we call A the level of 7.

Lemma 2.1 (p-th power rule). Let ex be the ramification index of px and
let o be in O. Let p = —n3Xe be the factorisation of p where € is a unit.
Then the p—th power of 1 + oz7r§‘< satisfies

1+ aPa mod PPN if A< S
I+am™?P=¢ 1 + (aP — 504)7#;{)‘ mod pII){/\H if A= ;fl )
1 - Eonr}\;re mod p}\(+6+1 if > pefl .

The maps hy : a+p — o + px and hs : a + pg — —ea + px are
automorphisms of K, whereas hy : a+pg — of —ca+py is in general
only a homomorphism. The kernel of ho is of order 1 or p.

As (1+py)/(1 —I—p;‘(“) = p}‘{/p;‘(“ =~ K, it follows that if my 1, ..., 75 fx
is a system of generators for the level A < 25 (for the level A > <£-) then

p—1 p—1
My 1o T ; is a system of generators for the level pA (for the level A +e).
If (p — 1) | ex the levels based on the level A = 5 need to be discussed
separately.

We define the set of fundamental levels

Fio:={X[0< A< BB pi AL

All levels can be obtained from the fundamental levels via the substitutions
presented above. The cardinality of F is ex. If K does not contain the



Constructing Class Fields over Local Fields 3

p-th roots of unity then principal units of the fundamental levels generate
the group of principal units:

Theorem 2.2 (Basis of 1+ px, pp ¢ K). Let wy,...,ws € O be a fived
set of representatives of a IFp-basis of K. If p—1 does not divide ex or ho
s an isomorphism, that is, K does not contain the p-th roots of unity, then
the elements

My =1 + w;m™ where A € Fi,1 <i < fr
are a basis of the group of principal units 1 + pg.

If K contains the p-th roots of unity we need one additional generator:

Theorem 2.3 (Generators of 1 + pg, p, C K). Assume that (p — 1) |
ex and hy is not an isomorphism, that is, K contains the p-th roots of
unity. Choose ey and pg such that p does not divide ey and such that

ex = p"o 1 (p —1)eg. Let wy,... yw € Ok be a fized set of representatives
of a IFp-basis of K subject to wfuo — a,u]fuo_l = 0 mod pr. Choose wy € Ok

such that 2P — e = w, mod px has no solution. Then the group of principal
units 1 + px is generated by

Ny =1 _i_w*W%“o@O and ny; =1 —l—wm}\( where A € F, 1 <1i < fk.

Algorithms for the computation of the multiplicative group of residue
class rings of global fields and the discrete logarithm therein are presented
in [Coh99] and [HPPO03]. They can be easily modified for the computation
of the unit group of a p-adic field modulo a suitable power of the maximal
ideal p. See [Has63, chapter 15] for a comprehensive treatment of the results
presented above.

Norm Equations. Let L/K be a finite extension and let a« € K. We are
looking for a solution 8 € L* of the norm equation

Npk(B)=a€e K

provided it exists. Let L* = (7r) X (Cr) X (Mr1,--.,ML,r) be the unit group
of L. Obviously N /() = a has a solution if a is in the subgroup

U= (Np/r(m0),Np/x(CL)s Noyx(mea)s - - Noyr(ner))
of K*. We determine a solution 8 Ny k() = a by representing a by
the generators of U given above. The set of all solutions is {3 -7 | v €
ker(Np i)}

Similarly we find the preimage of a subgroup A of Ny g (L*) C K*.
We need to determine a subgroup B of L* such that Ny g (B) = A. As
A CNp g (L") there exist ar,aci,ap) €N (1 <k <7, 1 <1< r+2)such
that

A= (Npg(mp)* Ny (Co)* et [Ty Nojg ()™ |1 <1< r+2).
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Thus a solution of our problem is given by

Qr,1 2y 1 ag,
B={(r"" Y ey my™ |1 <E<r+2).

3. Class Fields

There are several approaches to local class field theory. In addition to
the original approach by Hasse, there is the cohomological approach (see
for example [Ser63]) and the approach via Lubin Tate extensions as it can
be found in [Iwa86].

We use the treatise by Yamamoto [Yamb8| as a base for our investiga-
tions. He proofs the isomorphy and the ordering and uniqueness theorems
of local class field theory in a constructive way.

Theorem 3.1 (Isomorphy). Let L/K be an abelian extension then
K*/NL/K(L*) = GalL/K-

Theorem 3.2 (Ordering and Uniqueness). Let L1/K and Lo/ K be abelian
extensions, then

N(rinLo)/x (L1 N L2)*) = Np, /e (L1)Np, /x (L3)
and
Ny 12)/x (L1L2)*) = Np, /5 (LT) NNz, 5 (L3).

Especially an abelian extension L/K is uniquely determined by its norm
group Np g (L*).

The latter result reduces the problem of constructing class fields to the
construction of cyclic extensions whose compositum then is the class field.
The construction of tamely ramified class fields, which is well known and
explicit, is given below. In order to proof the existence theorem of local
class field theory it remains to proof the existence of cyclic, totally ramified
class fields of degree p™ (m € N). We give this proof by constructing these
fields (algorithm 6.1). The existence theorem for class fields of finite degree
follows:

Theorem 3.3 (Existence). Let G C K* be a subgroup of finite indez.
There exists a finite abelian extension L/K with

Np/k(L*) =G.

Thus this article contains the part that is missing in Yamamoto’s ap-
proach to class field theory.
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Tamely Ramified Class Fields. An extension L/K is called tamely ram-
ified if p { ey /. Tamely ramified extensions are very well understood. The
results of local class field theory can be formulated explicitly for this case
[Yamb8].

Let g = #K. If G is a subgroup of K* with 1+ px C G then

G = (mfCic, Cie) x 1+ px
for some integers 0 < e < ¢ — 1, f, and s. There exists a unique tamely
ramified extension L/K with Ny /g (L") = G.

Denote by T the inertia field of L/K. There exists a primitive (¢ —1)-th
root of unity (;, € L, a prime element 7;, of L and automorphisms o, 7 in
Galy,/k such that

® Nyyg(Cr) = ¢ and Ny p(m) = (emr where 0 <t <e—1,
g-1
e (7=} and Trffl =(° " mod pr,
q—1
e (J =(r and Wz_l =(g°
The Galois group of L/K is generated by o and 7:

GalL/K = <O',T> = <S,T | ST = T’S7 Sf = T'_t7 T¢ = 1d>

The Galois group Galyx is isomorphic to K*/Np g (L*) by the map:
T +— 0, (k — T, n—id for allp € 1 + pg.

Wildly Ramified Class Fields. We have seen above that subgroups of
(m) correspond to unramified extensions and that subgroups of (¢) corre-
spond to tamely ramified extensions. Subgroups of K* that do not contain
all of 1+ px correspond to wildly ramified extensions.

Lemma 3.4. Let L/K be an abelian and wildly ramified extension, that is,
[L/K] = p™ for some m € N. Then

K*/Npyg(L%) = (14 px)/Nrjx(1+pL).-

4. Generating Polynomials of Ramified Extensions of Degree p

Let K be an extension of Q, of degree ef with ramification index e,
prime ideal p, and inertia degree f. Set ¢ := p/. For o, 3 € Ok we write
a=pifvg(a—p) > vi(a).

In this section we present a canonical set of polynomials that generate
all extensions of K of degree p. These were first determined by Amano
[Ama71] using different methods. MacKenzie and Whaples [MW56, FV93]
use p-adic Artin Schreier polynomials in their description of extensions of
degree p.

There are formulas [Kra66, PRO1] for the number of extensions of a
p-adic field of a given degree and discriminant are given:
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Theorem 4.1 (Krasner). Let K be a finite extension of Qp, let px be its
prime ideal with ramification index ex, and let q be the number of elements
in the residue field of K. Let j = an + b, where 0 < b < n, be an integer
satisfying Ore’s conditions:

min{vy(b)n, vp(n)n} < j < vp(n)n.

Then the number of totally ramified extensions of K of degree n and dis-
n+j—1

criminant p is
\_az:/el 1ot
en/p
nq =1 —
#Kaj = lafel
> en/pi+|(j—lafelen—1)/plaleltr|
n(g—1)q= ifb>0

Let j = ap+b as above. The number of extensions of K of degree p and
discriminant pP*7-1 is

| pg° ifb=20
#Kpj = { p(g —1)q* if b #£ 0.

We give a set of canonical generating polynomials for all extensions in K, ;
for every possible value of j = ap + b. Let ¢ be a (¢ — 1)-th root of unity,
and set R = (po,---,pq-1) = (0,1,(,¢2,...,¢77%). R is a multiplicative
system of representatives of K = Ok /p in K.

First we recall Panayi’s root finding algorithm [Pan95, PR0O1] which we
apply in the proofs in this section. Secondly we determine a set of canonical
generating polynomials for pure extensions of degree p of a p-adic field
that is, for the case b = 0. Thirdly we give a set of canonical generating
polynomials for extensions of degree p of discriminant pPT®+b=1 where
b # 0 of a p-adic field.

Root finding. We use the notation from [PRO1]. Let ¢(z) = c,z™ +
<+ o € Oglx]. Denote the minimum of the valuations of the coeffi-
cients of p(z) by vi(¢) := min {vk(co),...,vk(cn)} and define ¥ (z) :=
o(x) /¥ For a € Of, denote its representative in the residue class

field K by a, and for § € K, denote a lift of § to Ok by B
In order to find a root of p(z) we define two sequences (p;(x)); and (6;);
in the following way:

o wo(x) = ¥ (x),
e 4y :=0.

If fz%(x) has a root (3; then
o pii1(x):= @fﬁ(:mr + Bl) where 3; is a root of gol#(:v),

® 011 := Bm”l + 8; where 3; is a zero of gp?(x) if there are any.
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If indeed ¢(z) has a root (in Og) congruent to # modulo p then §; is
congruent to this root modulo increasing powers of p. At some point, one
of the following cases must occur:

(a) deg(cpfﬁ) = 1 then d;_; is an approximation of one root of ¢(z).
(b) deg(cpfﬁ) = 0 then d;_; is not an approximation of a root of ¢(z).
(c) gol# has no roots and thus d;,_; is not an approximation of a root of
the polynomial ¢(z).
While constructing this sequence it may happen that ¢;(z) has more
than one root. In this case we split the sequence and consider one sequence

for each root. One shows that the algorithm terminates with either (a),
(b), or (c) after at most vi (discy) iterations.

Extensions of p-adic fields of discriminant pP+Pe—1,

Theorem 4.2. Let J := {r € Z | 1 < r < pe/(p—1), ptr}. FEach
extension of degree p of K of discriminant pPTP~1 is generated by a root
of exactly one of the polynomials of the form

(p—1) | e and
P 4+ 7+ Z pe, T 4 komPe/ (=D e L gLy (p/7e)
o(r) = icJ is reducible,
P + 7+ Z pe,m otherwise,

ieJ
where § is chosen such that xP — x + 0 is irreducible over K and 0 < k < p.
These extensions are Galois if and only if (p — 1) | e and 2P~! + p/7® is
reducible, i.e., if K contains the p-th roots of unity.

It is obvious that a pure extension can be Galois only if K contains the
p-th roots of unity. We prepare for the proof with some auxiliary results.

Lemma 4.3. Assume that o(z) := 2P~1 + ¢ € Fylz] has p — 1 roots in
Fy. Then there exists d € Fq such that Yp(x) = P + cx — kd € Fylx] is
irreducible for all 1 < k < p.

Proof. Let h(x) = 2P 4+ cx € Fy[z]. As p(z) splits completely over F,, there
exists d € Fy \ h(Fy). Now 91 (z) = aP + cx — d is irreducible. It follows
that

ki (z) = ka? 4 ckx — kd = (kx)? + c(kz) — kd
is irreducible. Replacing kx by y we find that ¢x(y) = y? + cy — kd is
irreducible over IF,. U
Lemma 4.4. Let

pr(@)=aP + 7+ pe,, 7T+ kdr T € Okla] (te€{1,2})
reJ
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where pe,, € R, v = pe/(p—1), and § € O. Let oy be a zero of p1 and
g be a zero of o in an algebraic closure of K.
(a) If c1p # cop for somer € J then K(aq) 2 K(ag).
(b) Ifciy = cop forallr € J and K contains the p-th roots of unity and
d is chosen such that P — x + 0 is irreducible and v = pe/(p — 1)

and ki # ko then K(ay) 2 K(ag).

Proof. Let L; := K(aq).

(a) We use Panayi’s root-finding algorithm to show that ¢s(z) does not
have any roots over K(a1). As ¢a(xz) = 2P mod (1) we set pg1(z) =
p2(a1x). Then

wo1(z) = ofa? + 7+ Z Pey, T+ kot
red

= (_W - Z pc1,r7rr+1 - k157TU+1)$p + 7+ Z pcz,ﬂrr—H + k’257"v+1
red reJ

= (-2 +1)

Hence ¢f 1(37) pa1(x)/m = —2P + 1 and we set

p22(2) = ¥ (arz +1)
< ZPCLTWT - k157"v> (all' + 1)p + 1+ Z pCQ,Tﬂ-T + kodm®

red red
( 1-— chl k167r”>a7fxp 4+ 1+ Z Py, T+ k2dT".
reJ reJ

Let 3; be a root of QOZ%HQ. Let m be minimal with ¢1,, = c2,,. Then

Bm # 0. Let m < u < pe/(p —1). Assume that the root-finding algorithm
#

2w
iterations of the root-finding algorithm we have

Prut1(z) = ( qu i1~ Per a+27Ta+1>

red
(afx + Bu—1a¥ T+ 4 Bal + 1)P
+ 1+ chhﬂﬁi + pCQYaHWaH + kodm?™ !

reJ

J— U u m
= —aP"2P —pajr — pBnai’ + § <p02,r+1 - /7<:1,r+1)7r
red,r>m

does not terminate with degl = 0 for some m < w < u. After u

r

The minimal valuation of the coefficients of (g ,41(z) is either vz, (of") =
pu or vr, (pBmal’) = pe +m. As ged(p,m) =1 and m < pe/(p — 1) there



Constructing Class Fields over Local Fields 9

exists u € N such that the polynomial @ﬁu +1(7) is constant. Thus the root-

finding algorithm terminates with the conclusion that ¢o(x) is irreducible
over K(aq).

(b) We set @2 1(x) := (1) and oa(x) := cp?ﬁ(alx +1). After v+ 1
iterations of the root-finding algorithm we obtain g ,12(z) = —aj’z? —
palz + (ke — k1)d7". By lemma 4.3 cpff;v(:c) is irreducible for ki # ks.
Therefore yo(x) has no root in K (1) and ¢1(z) and p2(x) generate non-
isomorphic extensions over K. O

Proof of theorem 4.2. We will show that the number of extensions given by
the polynomials ¢(z) is greater or equal to the number of extensions given
by theorem 4.1. The number of elements in J is

#7 = |3 =[] = e+ [75] - [ = =

By lemma 4.4 (a) the roots of two polynomials generate non-isomorphic
extensions if the coefficients p., differ for at least one ¢ € J. For every ¢
we have the choice among pf = ¢ values for Pe;- This gives ¢¢ polynomials
generating non-isomorphic extensions.

If K does not contain the p-th roots of unity then an extension generated
by a root « of a polynomial p(x) does not contain any of the other roots
of ¢(x). Hence the roots of each polynomial give p distinct extensions of
K. Thus our set of polynomials generates all pg® extensions.

If K contains the p-th roots of unity then lemma 4.4 (b) gives us p — 1
additional extensions for each of the polynomials from lemma 4.4 (a). Thus
our set of polynomials generates all pg¢ extensions. O

Extensions of p-adic fields of discriminant pPter+b—1 p £ 0,

Theorem 4.5. Let J :={r € Z|1<r < (ap+b)/(p—1),pt (b+r)}
and if (p—1) | (a+b) set v= (ap+0b)/(p—1). Each extension of degree p
of K of discriminant pPT®T0=1 with b # 0 is generated by a root of exactly
one of the polynomials of the form

' (p—1) | (a+0b) and
:Cp—l—CSﬂ“be—i-ﬂ—i-Z pe,m T kO T gf$ a4 (=) 9P

o(z) = icJ has p — 1 roots ,
xp+CS7T“+1xb+7T+Z e, otherwise,
icJ

where p € R and § is chosen such that 2P+ (—1)"PT1(*bx+§ is irreducible in
K and 0 < k < p. These extensions are Galois if and only if (p—1) | (a+Db)
and 2P~ — (b € K|z] is reducible.
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Lemma 4.6. Let

aP 4 CStrotlab 4o 4 chwﬂwrl + k0T € Ok[a] (t € {1,2})
reJ

where pryr € R, v > ‘;pjlb, and 6; € Ok. 7,0 € Ok. Let ay be a zero of o1

and ag be a zero of pa in an algebraic closure of K.

(a) If s1 # so then K(a1) 2 K(az2).

(b) If s1 = s2 and c1, # ca, for some r € J then K(oq) 2 K(as).

(c) K(a)/K is Galois if and only if a+b=0mod (p—1) and 2P~ +
(—1)9PFL¢s1p s reducible over K.

(d) Assume s1 = sy and c1, = ¢, for allr € J. If (p—1) | (ap + b)
then for v = Z}pf—;b there exists 6 € Ok such that K(ay) 2 K(ag) if
k1 # ko.

Proof. Let L; := K(aq).

(a) Forte {1,2}let v =, c)pe., 7" +kidem?. Then of /m = —(*1m%ab —
1 —71. We use Panayi’s root-finding algorithm to show that ¢a(z) has no
root over L1 = K (aq). As before we get 21(z) = p2(ai1z) = w(—2P + 1).
Therefore we set

po2(x) = @f(arw+1)
= (=¢n% — 1 —y)(oqx + 1P + ¢27% 0 (g + 1) 4+ 1 + 0.
Let 2 < u < pe/(p—1). Let B; € R be a root of gofl(:c) Assume that

#o_
5 = 0 for some

the root-finding algorithm does not terminate with deg ¢

2 < w < w and let m be minimal with m < u < pe/(p—1) and B, #
0 mod («). After u iterations of the root-finding algorithm we have

pout1(x) = (=¢7%] —1—y)(afz + Bu1al™ + -+ Bpaf + 1)P
+ ¢2trab (@ 4 Bu1a¥ T 4 - Bl + 1)+ 1+ o

Because u < e, vr,(p) = pe, and a < e, the minimal valuation of the
coefficients of s ,+1(z) is either vy, (—af™) = pu or v, (7%8) = pa +
b. Hence the root-finding algorithm terminates with @9 ,41(z) = ({** —
¢*1)m%a® for some v in the range 2 < u < e.
(b) We show that o2(x) does not have any roots over Li. As gpo(x) =
P mod (7), we get p2,1(z) := @a(ax). Now go%%l(a:) = —aP + 1 and we set
p22(2) = @3 (nz +1).

Denote by f3, a root of gojrﬂ(a:). Let m be minimal with m < u <

pe/(p—1) and B, #Z 0 mod (). Assume that the root-finding algorithm
does not terminate earlier with deg gojf w = 0 for some w < u. After u
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iterations we have

_ s1..a_ b 7 a+1
P2,u+1 (CC) - (_C tm Qg — 1- chl,r-HTr — Per,a2T )
reJ

(w4 By Bt + 1)P
+ el (ate + 10y T+ Bad +1) 41
+ chz,m-ﬂrT + pcz,a+17ra+1

reJ
— pU,.p u m T m\p m\p
= —0 T —poT _pﬁmal _ZPC17T+17T (5ma1 ) - (ﬂmal )
red
+ CSl ﬂ—aal{ba%x + C$1 Waal{b/@mam + Z(IOC2,T+1 — Pei 1 )Wr

reJ
with 5, # 0 mod (o). The minimal valuation of the terms of @3 ,41(z) is

VL, (Cslﬂ“a?bﬂmo/l”) =pa+b+m

or vz, (af") = pr. By the choice of J we have p { (pa+b+m). Therefore the
root-finding algorithm terminates with ¢, (z) = ¢l bBna™ for some
u € N.

(c) We show that ¢1(x) splits completely over L; if and only if the con-
ditions above are fulfilled. We set ¢11(z) = ¢1(a1z) and ¢12(z) =
@ﬁl(azv +1). Thus

pr2(r) = (—Qslﬁaalf —1-> ,OCLJTT)(qu + 1)
+ %Pz + 1)+ 1+ > orey Per T
= z(—afaP™l 4 ¢trtal ).
After u + 1 iterations we get

—ayPxP if up < pa+ b+ u,
z(—atPeP~t 4 ¢nealUb)  if up = pa + b+ u,
. +b+u and
s1pagbtlpy > { up > pa
rmer (p— 1)} (a+b).

In the third case cpffuﬂ(a:) is linear and therefore ¢1(x) has only one root

Prut1(r) =

over Li. In the second case

ur1(z) = —a{PaP + (1%l br = —aPaP + ¢ (—ap)Pab T
thus gpﬁuﬂ(:n) = —aP 4+ (—-1)(* bz mod (7). If gpirl(a:) has p roots over
K for every root 3 of cpffuﬂ(a:) we get
Prut2(z) = ruti(oaz + )

= —agu“)pwp + (—1)‘“’0#“6(8%“0/{ + (—1)“p0zf+1bﬂb{‘917r“a1{x.
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But up+p > u+ 1+ pa+0b; thus gpfuﬂ(x) is linear and ¢1(x) has as many
distinct roots as goﬁuﬂ(;v).

(d) We set p21(z) = p(az) and p2(z) = gpffl(ozm +1). We obtain

©2011() = —aPa? + ¢ 7%l Tbr + (kg — k2)dm hence cpfﬂ(x) _
(—1)9PFTL¢s1hy + (k1 — ko)d. By lemma 4.3 there exists § € O such that
‘P;fvﬂ(:r:) is irreducible. -

Proof of theorem 4.5. If (p — 1)1 (a + b) then
_ atb a+b a+b b
#7 = o+ [g] - [get| - []

a;ﬁIlJ _ [a(pfl);r(t;:bl()pfl)%J —

= a+[
If (p—1) | (a+b) then

- atb 1 _ |atb atb 1| _|b| — atb—1 _ |at+b-1| _
#J—a—i—p_l 1 LP +p(p71) 1J LPJ =a-+ pr) Lp_lJ—a.

Using lemma 4.6 (a) we get p/ — 1 sets of generating polynomials. By
lemma 4.6 (b) each of these sets contains p/® polynomials that generate non-
isomorphic fields. Now either the roots of one of the polynomials generate p
distinct extensions or the extension generated by any root is cyclic. In the
latter case we have p — 1 additional polynomials generating one extension
each by lemma 4.6 (d). Thus we obtain (pf — 1)p®/*! distinct extensions.

O
Corollary 4.7. Let K be an extension of Q, of degree n. The number of
ramified Galois extensions of K of degree p is p - p;%ll.

Proof. Let ¢(x) as in theorem 4.5. We denote the inertia degree and the
ramification index of K by f and e respectively. The number of values of
s for which zP~! — ¢* is reducible is (p/ — 1)/(p — 1). By Ore’s Conditions
0 < a < e. For every a there is exactly one b with 1 < b < p such that
(p—1) | (a+0b). For every a the set J contains a elements. This gives
pf® combinations of values of ¢;, i € J. We have p choices for k. Thus the
number of polynomials ¢(x) generating Galois extensions is

fo1 &4 F—1 ple—1 n_1
p 3 p p p
a=0

b p—1 p—1 pf—l_p p—1"

5. Ramified Abelian Extensions of Degree p

Let L/K be an abelian ramified extension of degree p. The ramification
number ( Verzweigungszahl) of L/K is defined as v = vy g = vr(rg 1 = 1)
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where o € Galy, /i \ {id}. The ramification number v is independent of the
choice of 0. Let ¢ be the minimal polynomial of 77, then

vp(disc(p)) = Z VL (Ui(WL) - Uj(WL))
i#]
p(p—1)
= Z vi(o(r) —m) = pp—1)(v+1).
i=1

Hence vk (discr i) = (p — 1)(v + 1) and diff /i = p%fl)(vﬂ). It follows

ap+b e

from Ore’s conditions (see Theorem 4.1) that either v = p. 55 or v = 75

Fi where j = ap + b satisfies Ore’s conditions.

Lemma 5.1. Let d := v (diff; k).

m—+d J
eL/K

Tr/ k(L) Crg
Equality holds if er i | (m + d).

Proof. By the definition of the different Ox = TL/K(pZd). Thus

seL/de

pic =Trx %) = T/ (pr )-
The claim follows with m := sey /i — d. O

In the following we use Newton’s relations to investigate the norm group
of abelian extensions of degree p.

Proposition 5.2 (Newton’s relations). Let 9 = 91, ... 9™ be the roots
of @ monic polynomial v = 3 i, vix'. Then ~; = (=1) IR, ()
where Ry,_;(0¥) is the (n — i)-th symmetric function in 9, ... 9. Set
Sp(9) = S (9E. Then

S (29) —kn—k — Z?:_ll 'YnfiSk:—i(??) fork <n
k p—
— Yo Yn—iSk—i(0)  fork>n

Yamamoto [Yamb8| describes explicitly where and how the jump in the
norm group takes place.

Theorem 5.3. Let L/K be ramified abelian of degree p and let v be the
ramification number of L/ K. Let (o) = Galy, k. Assume that Np g (71) =
mr. Let € € K such that ﬂ'Z_l =1+ en¥ mod p*TL. Then

NL/K(1+a7ri) = 1+ aPrl mod p?l ifi<w
Nz k(1 +ary) = 1+ (a? —ePla)ry% mod p}’{ﬂ
Np/g(1+ omfrp(z*v)) = 1- ap_lom}{ mod p?l if i > .

The kernel of the endomorphism Kt — K', a— of —eP~'a has order p.
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Proof. We have
Np/x(l4+wrl) =1+ wRi(r]) + w?Ra(n]) + -+ + WP Ry(n7)

where Rk(ﬂiL) denotes the k-th symmetric polynomial in ﬂi, ﬂ'zi, .. ﬂzp K

Especially Ry (n}) = Tp, k(7)) and Ry(n}) = Ny (m)". With lemma 5.1
and v, (diff 7/ x) = (v +1)(p — 1) we get

Sk(mh) = TL/K(ﬂJzi) € TL/K(P]Z) C P;}l“
where
Api = L(p—l)(1;+1)+kiJ — 41+ L—v—pl—i—kiJ — v+ [kz v'| — LU—T@J

(i) Ifi < vtheni < A\ = v — L%J and vi(Sp(ms)) = M = A1 > i
With Newton’s relations we get VK(Rk(wiL)) >ifor1<k<p-—1andas
Ry(m}) = Ny k()" = 7 we obtain

Nz k(1 + an) =1+ aPrl mod pitt.

(ii) Assume 7 = v. As by lemma 5.1 T/ x(p7) = p;‘g we get Tp p(n7) =
Bry mod p”Jrl for some 8 € Og*. We have A\, = v + [(k L ] > v If

k > 2 then vg(Sk(rh)) > A\ > v+ 1. Hence with Newtons relations
vk (Rp(7y)) 2 min(kv,o +1) > v+ 1for 2 <k < p—1. Thus Np /g (1 +
ar?) = 1 + afry + oPry mod pit! and Npg(l+73) C (1+pk)' B

the definition of ¢ and as N g (77~ 1Y = 1 we have Np /(1 +emy) = 1
mod ]:1”Jrl Therefore 3 = —eP~! mod px and we conclude

Np/k(l+arp) =1+ (af - P La)ry  mod pytt.
(iii) Let i > v. We have A\, pi—v) = @ and Ay(pap(i—y)) > - With the
considerations in (ii) we obtain

Nz r(1+ a7rv+p(l U)) 1— el larl mod pift.

g

Next we investigate the relationship between the minimal polynomial of
71, a uniformiser of the extension L/K, and the norm group Ny, g (L*).
We start by choosing a suitable representation for subgroups of K* of index
p. We begin with extensions with discriminant pP+er/x=1,

If K contains the p-th roots of unity then

= (Cr) x (TK) x (mi | A € Fg,1 <@ < frins)
Let G be a subgroup of K* of index p with ¥ € G. Let (g1, .-, Ge fxc+3)
be generators of G. Let B € Zexfx3xexfx+3 quch that

(gla"'v.gEKfK+3)T = B(CK,WK, TINi | A€ FK71 <1< fKﬂ?*)
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be a representation Matrix of G. Let A be the row Hermite Normal Form
of B. Then

1 0 B ar
0 1 0 0 0
0 1 0 - 0 ai.1
A— . .
0
. o1 Ay—1,f
0O --- - .. .0 P

Thus

G = (mrne™™s Cres mume ™ | A€ Fr, 1 <i < fs b)) (t € {1,2}).
Theorem 5.4. Assume that K contains the p-th roots of unity. Let

pi(z) =2 + 7+ cht,ﬂrH + k6"t € Okla] (t € {1,2})
reJ
be polynomials as in theorem 4.2. Let Ly := K|[z]/(p1) and Ly := K[x]/(p2)
then v = v, )k = v,k = pex/(p—1). Hence
N(L;) = (mens™; Cs mme ™ | A € Fr, 1 <i < fres ) (¢ € {1,2}).

(@) Letwe J={1<r<pef/(p—1) | ptr}. We have ci, = ca, for
1<r<w,reJifand only if a1, p—r; = a2p—r; foralll <r <w,reJ
and all 1 <1 < fg
(b) If c1, = cay for all v € J then ki = ko if and only if a1 » = ag x.

Proof. (a) We show one implication directly. The other implication follows
by a counting argument.

(i) As p | (v—=2A) if and only if p | A we have v—r € F if and only if r € J.
(ii) Let m; be a root of ¢;. We write ¢ = 2P — ;. The minimal polynomial
of m} over K is zP — 4. The characteristic polynomial of wn} is 2P +
wP7;). The characteristic polynomial of 1 + w7} is (x — 1)? — aPw?. Thus
Np, k(1 +wm) = (=1)P —wPy. If 41 =72 + am for some a € Ok*
then for r < w we obtain

i

W= (T a) T =45+ (0 )y hart mod pig
(iii) Assume that ¢1, = ¢, for all 1 <r < w. For all r < w — 1 we obtain
Np,/r(1+ wﬂ'}:’") = (1P + Py =Np,g(1+ u)ﬂ'}};r) mod qu(ﬂ

which implies a1 y—r; = a2py—r; for all 1 <r <w and 1 <@ < fgk.
(iv) If €1, # 2.4 for 7 = w we have

N,/ k(1 +w7r}gw) =(—1)P + Py~
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and
Npx(I4wr) ™) = (1P +wP (s "+ (v—w)ys " agtla) mod pit.

As by (i) pt (v —w) and as v(y2) = 1 it follows that a1,,; # a2,w,-
(v) There are p/ choices for each Pe,.- On the corresponding level A = v —r

there are f generating principal units ) 1,...,n)1 with in total p! choices
for the exponents as )1, .., a4 r. This shows the equivalence.
(b) We have

Np k(L) = 7TK+Z Per, Tr kST = my (H niff‘“nﬁ”) mod pF2.
red At

Since c¢1, = cor for all r € J also ajy; = ag; for all A € Fp,, 1 <1< f.
Thus k1 = k3 is equivalent to a1 = az . O

Assume that K does not contain the p-th roots of unity then

K*=(mi) x ey < [T T (mna)-
NEFy 1<i< S
Let G be a subgroup of K* of index p and let A be the row Hermite
Normal Form of the representation matrix of G. There exist \g € F and
1 <ip < frg and ar € {0,...,p— 1} an; € {0,...,p — 1} for (\,4) €
Fr x {1, .. ,f[(} \ {()\o,ig)} with A < Ag, 7 < ig and Argip = P such that

1 0 v v v 0 an 0O --- 0
0 1 0 0 0 0 :
0 1 0 -+ 0 a1 O
Ao 0
1
0 ax, O
0 1
: 0
Thus G can be generated as follows
G = (TN Sk Ml | A € Fre, A < o, 1 < i < fx;
Modans | 1< <oy 105 Mo | o < i < fi;

i | A€ Fr, do < A\ 1<i < f).

By theorem 5.3 we have \g = vy /k if G = N /g (L*).
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Theorem 5.5. Let
oi(x) = P + e 41+ Z Pey, ™ T+ kot
reJ

be polynomials as in theorem 4.5. such that Ly := K[z]/(p1) and Ly =
K[z]/(w2) are Galois. Then v = v, /i = v,k = (ap+b)/(p —1). If K
does not contain the p-th roots of unity,

at,m, . At i . .

N(L;fk) = <7TKT]U’tit, CKa nA,inUer’t AGFKa)\<Ua1<Z<fKa
a v, . ., . . . .
Mo,illogy | 1 <0 <ids 055 Mo | e <0 < fis

M | A€ Fre,v <\ 1<i < fk).
If K contains the p-th roots of unity then n. is an additional generator of
N(L}).
(a) s1 # s2 if and only if there exists 1 < i < iy with a4 7# a2,
(b) Let w € J then c1, = cap for 1 < v < w, r € J and if and only if
Ap—ri = Q20p—r; for 1 <r<w,re€Jand alll <i< fk.
(c) If c1p = cop for all T € J then ki = ko if and only if a1 - = az 5.

Proof. We have seen that there exists v in Fx and 1 < i; < fx such that
At i, =p fort =1,2.
(a) (i) Let & € OF, such that ﬂ'z:l = 1+ gm} mod p%‘:l then 77 =

TL, + Etﬂ'zjl mod pf{Q. By theorem 5.3

Np, k(I +ar,) =14+ (of - 21PNt mod pk.

It follows from the proof of lemma 4.6(c) that modulo px the unit &; is
congruent to one of the roots of cpfv = —aP + (—1)P(ptbe mod pi. Thus
Pl = (—1)®H1¢5th mod p. As the kernel of Y, Kt — K" aw
aP — &b 14 has order p the intersection of the kernels of ¥, and g2 is {0}.
Therefore there exists 1 <@ < fx such that aj,; # a2,0,-

(ii) By corollary 4.7 there are IZ—_II possible values for s;. For any given

1 <4 < fi there are p/& =i combinations of 0 < At v, < pwhere 1l <@ < ;.
In total this gives th -1 plE—it = ”;K% combinations, the same number
of choices as for the exponent s;.
(b) (i) As p divides ((ap+0b)/(p—1)+b—X) = ((ap+bp)/(p— 1) — A) if
and only if p | A. Thus v —r € Fi if and only if r € J.
(ii) Assume that @; = 2P 4 Bab + ~; with v = vo + o for some a € O
with v (R) = 0. We have

Npyx(l+wrg,) =1+wRi(r},) + W’ Ra(ny,) + - + w’Ry(n7,)
where Ri(wét) denotes the i-th symmetric polynomial in wét , 771({;\, cel 71'%1771)\.
Especially Ry (Wét) = TLt/K(Wit) and Rp(ﬂét) = 7. We have seen in the
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proof of theorem 5.4 (a)(ii) that v/~ =~5 " mod pj for r < w—1. With
Newton’s relations (proposition 5.2) we get

(p — b)6, for i = p—b

(p = b)5f for i = k(p —b) <p
Si(rr,) = P for i =p

_ﬁtsif(pfb) (ﬂ-Lt) - fYtSi—p<7TLt) for ¢ > p

0 otherwise

We have v (Sy(7r,)) = vk (pye) = e+1 > v. By Newton’s relations Ri(wét)
is a sum of the S;(7r,), hence I/K(Ri(ﬂ‘%t)) >min(a+l,e+1)=a+1>v
for ¢ < p. Thus for all r <w —1

Npyk(l+wrp ") =Np, (1 +wrp)”) mod pi.

(iii) See the proof of theorem 5.4 (a) (iv).
(c) See the proof of theorem 5.4 (b). O

Theorems 5.4 and 5.5 yield an algorithm for computing the class field L
over an extension K of QQ, corresponding to a subgroup G of K* of index
p. The discriminant p®+*~1 of the extension can directly be read of the
Hermite normal form of the transformation matrix from the generators of
K™ to generators of G. After determining the exponent for ¢ one has a first
approximation of a generating polynomial of L:

zP + Cro b + 7
Now the constant term can be determined by computing the coefficients
of w, 7%,... in its m-adic expansion step by step up to the coefficient of
qvtl — r(ap+b)/(p—1)+1

The existence theorem for ramified for extensions of degree p follows from
the two theorems above. The existence theorem for unramified extensions
of degree p is a special case of the existence theorem for tamely ramified
extensions.

Corollary 5.6. Let G be a subgroup of K* of index p. Then there exists a
unique abelian extension L/K with Np g (L*) = G.

6. Cyclic Totally Ramified Extensions of Degree p™

Let G be a subgroup of K* with K*/G = (1+pr)/(GN(1+pk) cyclic
and [K* : G] = p™. We construct the class field corresponding to G as a
tower extensions of degree p.

Let 1 € K* such that (mG) = K*/G. Set Hy = (n},G) then [K* :
H,] = p. H; is the unique subgroup of K* of index p with H; D G. We
determine the class field L;/K corresponding to H; using the results of

the previous section. Let G; = NZII/K(G) C L. As Hy = Ny /g(L7)

we have [L} : Gi] = p™!. Now we determine L} D Hy D Gj with
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[L} : H2] = p and compute the class field La/L; corresponding to Hs.
By the construction of H; and Hs the extension Ly/K is the class field
corresponding to Ny, /i (L3) = <171192,G>. Next we set Go = NZJ/Ll (Gy) =
szl / x(G) C L7 and continue as above until we obtain L,,/K the class field
corresponding to G.

Algorithm 6.1 (Cyclic Class Fields of Degree p™).
Input: K/Qy, G subgroup of K* such that
K*/G= (1+4+pk)/(GN(1+pk)) cyclic with [K* : G] = p™.
Output:  Ly,/K cyclic of degree p™ with N,/ (Ly,) = G.
e Set G1 :=G and Ly := K.
e For ¢ from 1 to m:
a. Let n; € L |. Set Hy = (n!,G;) then [K* : H;] = p.
b. Determine L;/K class field corresponding to H;.
c. Set Gip1 =N} (Gi) C Lf then [L} : Gipi] = p™ ",
This yields the existence theorem for cyclic class fields of degree p™.
Corollary 6.2. For every subgroup G of K* with K*/G = (1+ypk)/(G N
(14 px) cyclic of degree p™ there exists a normal extension L/K of degree

The existence theorem of local class field theory for finite extensions
(theorem 3.3) follows.

Example 6.3. Let G1 = (3) x (—1) x ((1+3)?) C Q5. We compute the
class field corresponding to G as follows (from bottom to top):

b. Qs(mo)with 73 + (—=127% — 6)73 — 37275 + 31m; — 183=0
a. H2 = Gg,lda [Qg(ﬂ'l)* . GQ] =3
C. G2 = NQS(Wl)/QS (Gl)

= <7Tl’ -1, (1 + 771)(1 + 77%)2? (1 + 77%)(1 + 77[11)? (1 + 77411)3>
Qg(ﬂ'l)* = <7’['1> X <—1> X <1 +m, 1 +7T%,1 +Wil>
b. Qs(m)with 71'i3 + 67r% +3=0
a. Hy = (3) x (1) x ((1+3)?), such that [Q}: H;] =3
G1 = (3) x (1) x {(1+3)°)
X (~1) x (1+3)

7. Examples

The methods presented above are implemented in the computer algebra
system Magma [BC95] and have been released with Magma 2.12. In several
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tables we give cyclic class fields over Q, and some of their extensions for
p€2,3,5 7, 11,13 of degree up to 343.
Let K be a finite extension of Q, with unit group
K* = (m) x(C) x (i | A € Fr, 1 <i<f).

A cyclic class field L of degree d over a field K is denoted by

Ay Q¢ AT ] eeeyOgy—_ 1,

Ez,u(dfsc(lil/K)) 1'f)/K
where ar,ac,a11...,a,-1,f are the entries in the relevant column of the
Hermite normal form of the transformation matrix mapping the basis of
K* to generators of the norm group Ny x(L*) (compare the exposition
before theorem 5.5). It is obvious that 0 < a, < d, 0 < ac < d, and
0<ay; <dfor A € Fx and 1 <i < fg/q,- If d is a multiple of p we leave
out ac = 0.

In some tables the class fields are parameterised by the a; ;. The a;;
in the naming scheme are always to be seen modulo d. Throughout this
section we use {0,...,p — 1} as a set of representatives of Z,/(p). As
we compute class fields as towers of extensions and in order to facilitate
representation we give their generating polynomials over a suitable subfield
that can be found in one of the other tables. By m we denote a uniformizer
of that ground field.

If K contains the p-the roots of unity we have the additional generator
1« for K* and an additional entry a, in the transformation matrix.

Class Fields over Qs. There are six totally ramified class fields of degree
2 over Q. The parameter k is 0 or 1.

L/K | Nk (L¥) over generated by

Kgg/@ (2-3%,3%,5) Q 2*+20+24k4

KE/Q (259355 Q o +2448
(k+1 1) JQo | (2-55+13.5,52) Qy a2+ 2+4+kS

The followmg table contains 2 of the class fields of degree 64 over Q5 and
its abelian subfields. The parameter & is 0 or 1.

L/X ‘ Np/x (L") over  generated by
Kilﬁ)/QQ (2:5,3-5,5%) Ky3Y 2?4 mta? 4t
K51/ Qo (2-5%3-5°5%) KyiY o +mt
1(1537330/(22 (2-510,3.513 516) Kg’ﬁ) R TR
K101/ Qo (2:51,3-5%, 5%2) K" @t m+ 64 n24y 264758
K642194111[;+32k/ Qo | (2-510+32k 3.529 564) K?(’%glé(l))
22+ 2 40 42 04 524 564 584 624 6D
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Ramified Class Fields of Degree p over Q, for p odd. Let p be an odd
prime then Q5 = (p, ¢, (1+p)) where ( is a (p—1)-th root of unity. Theorem
4.5 yields generating polynomials of totally ramified normal extensions of
degree p over Q):

p=2a"+ (p—1)pa" ' +p+kp®

where 0 < k < p. Let K be the extension defined by ¢. The exponents of
the generators of the norm groups follow immediately from the coefficients
of the polynomial. We obtain

NK/QP<K*) = (p(1 +p)ka ¢ (1+p)P).

Class Fields over Q3. We start with the class fields of degree 2 and 3
over Q3.

L/K ‘ Np/x(L¥) over generated by
KQ,O/Q?) <327_1a4> QS :LQ +1

Ké(,)l)/QS (3,1,4) Q3 22+3

Kéll)/QB <_3> 1> 4> @3 1'2 -3

Ks0/Qs | (3%,—1,4) Q3 #+2r+1

K:)(,IZ) (3-4F,—1,4%) Q3 2%+42-32% 4+ 3 + k32

There are 12 ramified class fields of degree 3 over Kéll) /Qs. The fields
ng), Lg();, and L:(f% are normal over Q3. In addition to their norm groups

in Kéll) we give their norm groups in Q3. The parameter k runs from 0 to
2.

L/K ‘ /K (L) over generated by
LEUES) [+ mf, =1, 0+ 1% 4) K o+ 2matmtk
3k6/K211 (r-4%, —1,(1+7),4%) Kz(ll) 2+ + w4k
LYK | (rak, 1, (1 + m)4,4) KY) ot 2n’etn2ntkn®
6+/f) ©) k 42
;g;l EW;Z;B k 511;37;) 4 Kélf 342w+ 4k’

Over Kéli /Qs there are 39 ramified cyclic extensions of degree 3 with 3
different discriminants. The parameter [ and k run from 0 to 2.
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L/K ‘ Ny g (L¥) over generated by
LY/ KY) (3t n,m2,m3) Ky abron'a®t vk
70 (0 0
Ly /KS) (305,15, m3, 1) KO S+irlotm+kr
5 172.0,0), (0 0
Lé,m )/Kzg,i (3052 ik, o, "73> Kéi
23+ 27322 + 7 + 73 + I + ke
k142,01 0
LGP ES) | (3034 gy 2, ) Kg(,i
23 4 2m32% + 7+ w3 + Int 4 knd
k+1,0,2 0 0
Lg,w )/K?EA) (305 mnky nand n3) K§4)
3 + 2322 + 1+ Int + knd

The fields Lg’ffal’zo)/ Ké are cyclic over Q3. They appear as KQ 22

Qs

in the following table of all cyclic extensions of Q3 of degree 9. By p we
denote a root of z® 4 2z + 1,i.e., K30 = Q3(p).

L/K ‘ Ny x(L¥) over generated by
K9,0/Q3 <39a _174> KS,O

23+ (20 +2)22 + (202 +2p+ 2)x + 2p
K& Qs [ (3:430°0, 1,49 K] adomdatrmitonit ke
Ké32(§_1)+1)/@ (3.43(=1)F1 _1 49) K?()li w34 2m3 2 S+t 4 knd
Kéf”Z(;ﬂ—l)H)/@ (3-43(1) +2 1,49 K§24) JRC T Y P P U .
Kélis/@?’ (3%4,-1,4%) Kso a3 +2-32% 4+ 3 +2p%32

Ky, 48/Q3 <3342 —1,4%) Kso %4 2-32% 4+ 34 p?3?

The following table contains all cyclic extensions of Q3 of degree 27 contain-

ing Ké?Q)Q /Qs, all cyclic extensions of Q3 of degree 81 containing Kég?% /Qs,

and all cyclic extensions of Q3 of degree 243 containing Ké(1)3364 /Qs. The
parameter k£ runs from 0 to 2.

L/K ‘ Ny i (L¥) over generated by
(==Y
K27 )/Q (3'49(k+2) -1 427> ng 2)2
3+27T T —|—7r—|—7r7—|—7r9+7r10—|—27712+7r13—|—k7r14
27(k+2 0
K3e /s | (370,04 KD,
+ 2733 4 234 4 2736 4 23T 4 fpdd
81 (7))

243 29728/@3

<3'481(k+?)7 Ca 4343> Ké(l)?364
232780 22 O S 82 084 985y 98T 88, 90 196
427974 27994 102 9103 105 9 108, 1094 9 112
ity o115, 9120 1121 g 122
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Class Fields over Q5. There are 5 cyclic extensions of degree 25 over Qs
containing K 5(]?8) /Qs5 and 5 cyclic extensions of degree 125 over Q5 containing

0 0
K§5?68/Ké,8)/(@57
L/K | Nk (L) over generated by
K9/Qs | (5:6".6,6) Qs 2+ 4520+ 5+ k5

K5'os Qs | (5:6500 ¢6%) K aPtdndettntrranSyka
25 (k4 0

K§25,(468 ))/Q5 <5.625(k+4)’ ¢, 6125) K§5?68

IL‘5—|—47T25.’IZ4+7T—|—7T21+7['25—|—7r26—|—47T28+37F29+47T30+7T31+kﬂ'32

Class Fields over Q7. Over Q7 there are 7 cyclic extensions of degree

49 containing K%)Q /Qr7 and 7 cyclic extensions of degree 343 containing

0
Kig 138
L/K | Np/k (L) over generated by
K{0/Qr | (7:8%,¢,87) Q 25 46725 + 7+ k7

T(1—k _ 0

KAEQ(IS)S D/Q? (7-870-K) ¢, 8%9) Kéliz 26717 2541+ 746784 kn?
(49K 49k 343 0

K3y3488/Qr | (T-8%7,(,87%)  Kjg'isg

2 H6m% S 1+ 1 Y Y 6 60 60 5O 610 370 T k08

Class Fields over Q1;. There are 11 cyclic extensions of degree 121 over
Q11 containing K{Z&O/QH:
L/K ‘ Ny g (L¥) over generated by
KW /Qu | a2k ¢ 12t Q2+ 1011210 + 11 + k112
K100 /Qui| (111211079, ¢ 12721) KD
o+ 107120 4 7+ 7t 4 10712 + k!B

Class Fields over Q13. There are 13 cyclic extensions of degree 169 over
Q13 containing K{g?24/(@13:

L/K ‘ Np k(L") over generated by

K%’)M/ng (13-14%, ¢, 1413) Q3 '3 +12-132'2 + 13 + k132

—I3E19 — :
K§69,492 )/Qug| (13-14718k49 ¢ 14169) g
wt? + 127133«"12 + 74 w18 4 3 4 krld
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