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Abstract. Let K be a p-adic field. We give an explicit characterization of
the abelian extensions of K of degree p by relating the coefficients of the

generating polynomials of extensions L/K of degree p to the exponents of

generators of the norm group NL/K(L∗). This is applied in an algorithm for
the construction of class fields of degree pm, which yields an algorithm for

the computation of class fields in general.

1. Introduction

Local class field theory gives a complete description of all abelian ex-
tensions of a p-adic field K by establishing a one to one correspondence
between the abelian extensions of K and the open subgroups of the unit
group K∗ of K. We describe a method that, given a subgroup of K∗ of
finite index, returns the corresponding abelian extension.

There are two classic approaches to the construction of abelian exten-
sions: Kummer extensions and Lubin Tate extensions. Kummer extensions
are used in the construction of class fields over global fields [Fie99, Coh99].
The theory of Lubin Tate extensions explicitely gives generating polyno-
mials of class fields over p-adic fields including the Artin map. Both ap-
proaches have the disadvantage that, given a subgroup G of K∗, one first
computes a class field LH corresponding to a subgroup H of G and then
determines the subfield of LH corresponding to G.

We construct classfields as towers of extensions from below thus avoiding
the computation of a larger class field and the determination of the right
subfield. The wildly ramified part of a class field is constructed as a tower
of extensions of degree p over the tamely ramified part of the class field.

Together with the approach to local class field theory in the article
The Isomorphism Theorem in the Local Class Field Theory by Yamamoto
[Yam58] our construction yields a proof of the existence, uniqueness, and
isomorphism theorems for class fields of finite degree.

We start with recalling the structure of the unit groups of p-adic fields
(section 2). In section 3 we state the main results of class field theory and
the explicit description of tamely ramified class fields. It follows that we
can restrict our investigation to cyclic class fields of degree pm. We begin
our investigation by constructing a minimal set of generating polynomials
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of all extensions of K of degree p (section 4). In section 5 we relate the
coefficients of the polynomials generating extensions of degree p to the
exponents of the generators of their norm groups. This yields an algorithm
for computing class fields of degree p. Section 6 contains an algorithm for
computing class fields of degree pm. In section 7 we give several examples
of class fields.

In the following Qp denotes a completion of Q with respect to the p-adic
valuation | · | = p−ν(·). K is a finite extension of Qp complete with respect
to the continuation of | · | on K, OK = {α ∈ K | |α| 6 1} is the valuation
ring of K with maximal ideal p = {α ∈ K | |α| < 1} = (π) and residue class
field K := OK/p. For γ ∈ OK the class γ + p is denoted by γ.

2. Units

It is well known that the group of units of a p-adic field K can be de-
composed into a direct product

K∗ = 〈π〉 × 〈ζ〉 × (1 + p) ∼= πZ ×K∗ × (1 + p)

where π = πK is a uniformiser of K, K its residue class field, ζK ∈ K
a (#K − 1)-th root of unity, and p = pK the maximal ideal of K. The
multiplicative group 1 + pK is called the group of principal units of K. If
η ∈ 1 + p is a principal unit with vp(η − 1) = λ we call λ the level of η.

Lemma 2.1 (p-th power rule). Let eK be the ramification index of pK and
let α be in OK . Let p = −πeK

K ε be the factorisation of p where ε is a unit.
Then the p–th power of 1 + απλ

K satisfies

(1 + απλ)p ≡


1 + αpπpλ

K mod p
pλ+1
K if λ < eK

p−1 ,

1 + (αp − εα)πpλ
K mod p

pλ+1
K if λ = eK

p−1 ,

1 − εαπλ+e
K mod pλ+e+1

K if λ > eK
p−1 .

The maps h1 : α + p 7−→ αp + pK and h3 : α + pK 7−→ −εα + pK are
automorphisms of K+, whereas h2 : α+ pK 7−→ αp − εα+ pK is in general
only a homomorphism. The kernel of h2 is of order 1 or p.

As (1+pλ
K)/(1+pλ+1

K ) ∼= pλ
K/p

λ+1
K

∼= K+, it follows that if ηλ,1, . . . , ηλ,fK

is a system of generators for the level λ < eK
p−1 (for the level λ > eK

p−1), then
ηp

λ,1, . . . , η
p
λ,f is a system of generators for the level pλ (for the level λ+ e).

If (p − 1) | eK the levels based on the level λ = eK
p−1 need to be discussed

separately.
We define the set of fundamental levels

FK :=
{
λ | 0 < λ < peK

p−1 , p - λ
}
.

All levels can be obtained from the fundamental levels via the substitutions
presented above. The cardinality of FK is eK . If K does not contain the
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p-th roots of unity then principal units of the fundamental levels generate
the group of principal units:

Theorem 2.2 (Basis of 1 + pK , µp 6⊂ K). Let ω1, . . . , ωf ∈ OK be a fixed
set of representatives of a Fp-basis of K. If p− 1 does not divide eK or h2

is an isomorphism, that is, K does not contain the p-th roots of unity, then
the elements

ηλ,i := 1 + ωiπ
λ where λ ∈ FK , 1 6 i 6 fK

are a basis of the group of principal units 1 + pK .

If K contains the p-th roots of unity we need one additional generator:

Theorem 2.3 (Generators of 1 + pK , µp ⊂ K). Assume that (p − 1) |
eK and h2 is not an isomorphism, that is, K contains the p-th roots of
unity. Choose e0 and µ0 such that p does not divide e0 and such that
eK = pµ0−1(p− 1)e0. Let ω1, . . . , ωf ∈ OK be a fixed set of representatives
of a Fp-basis of K subject to ωpµ0

1 − εωpµ0−1

1 ≡ 0 mod pK . Choose ω∗ ∈ OK

such that xp − ε ≡ ω∗mod pK has no solution. Then the group of principal
units 1 + pK is generated by

η∗ := 1 + ω∗π
pµ0e0

K and ηλ,i := 1 + ωiπ
λ
K where λ ∈ FK , 1 6 i 6 fK .

Algorithms for the computation of the multiplicative group of residue
class rings of global fields and the discrete logarithm therein are presented
in [Coh99] and [HPP03]. They can be easily modified for the computation
of the unit group of a p-adic field modulo a suitable power of the maximal
ideal p. See [Has63, chapter 15] for a comprehensive treatment of the results
presented above.

Norm Equations. Let L/K be a finite extension and let α ∈ K. We are
looking for a solution β ∈ L∗ of the norm equation

NL/K(β) = α ∈ K
provided it exists. Let L∗ = 〈πL〉× 〈ζL〉× 〈ηL,1, . . . , ηL,r〉 be the unit group
of L. Obviously NL/K(β) = α has a solution if α is in the subgroup

U := 〈NL/K(πL),NL/K(ζL),NL/K(ηL,1), . . . ,NL/K(ηL,r)〉
of K∗. We determine a solution β NL/K(β) = α by representing α by
the generators of U given above. The set of all solutions is {β · γ | γ ∈
ker(NL/K)}.

Similarly we find the preimage of a subgroup A of NL/K(L∗) ⊂ K∗.
We need to determine a subgroup B of L∗ such that NL/K(B) = A. As
A ⊂ NL/K(L∗) there exist aπ,l, aζ,l, ak,l ∈ N (1 6 k 6 r, 1 6 l 6 r + 2) such
that

A =
〈
NL/K(πL)aπ,lNL/K(ζL)aζL,l

∏r
k=1 NL/K(ηk)ak,l | 1 6 l 6 r + 2

〉
.
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Thus a solution of our problem is given by

B =
〈
π

aπ,l

L ζ
aζL,l

L

∏r
k=1 η

ak,l

k | 1 6 l 6 r + 2
〉
.

3. Class Fields

There are several approaches to local class field theory. In addition to
the original approach by Hasse, there is the cohomological approach (see
for example [Ser63]) and the approach via Lubin Tate extensions as it can
be found in [Iwa86].

We use the treatise by Yamamoto [Yam58] as a base for our investiga-
tions. He proofs the isomorphy and the ordering and uniqueness theorems
of local class field theory in a constructive way.

Theorem 3.1 (Isomorphy). Let L/K be an abelian extension then

K∗/NL/K(L∗) ∼= GalL/K .

Theorem 3.2 (Ordering and Uniqueness). Let L1/K and L2/K be abelian
extensions, then

N(L1∩L2)/K ((L1 ∩ L2)∗) = NL1/K(L∗1)NL2/K(L∗2)

and

N(L1L2)/K ((L1L2)∗) = NL1/K(L∗1) ∩NL2/K(L∗2).

Especially an abelian extension L/K is uniquely determined by its norm
group NL/K(L∗).

The latter result reduces the problem of constructing class fields to the
construction of cyclic extensions whose compositum then is the class field.
The construction of tamely ramified class fields, which is well known and
explicit, is given below. In order to proof the existence theorem of local
class field theory it remains to proof the existence of cyclic, totally ramified
class fields of degree pm (m ∈ N). We give this proof by constructing these
fields (algorithm 6.1). The existence theorem for class fields of finite degree
follows:

Theorem 3.3 (Existence). Let G ⊂ K∗ be a subgroup of finite index.
There exists a finite abelian extension L/K with

NL/K(L∗) = G.

Thus this article contains the part that is missing in Yamamoto’s ap-
proach to class field theory.
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Tamely Ramified Class Fields. An extension L/K is called tamely ram-
ified if p - eL/K . Tamely ramified extensions are very well understood. The
results of local class field theory can be formulated explicitly for this case
[Yam58].

Let q = #K. If G is a subgroup of K∗ with 1 + pK ⊂ G then

G = 〈πf
Kζ

s
K , ζ

e
K〉 × 1 + pK

for some integers 0 6 e 6 q − 1, f , and s. There exists a unique tamely
ramified extension L/K with NL/K(L∗) = G.

Denote by T the inertia field of L/K. There exists a primitive (qf−1)-th
root of unity ζL ∈ L, a prime element πL of L and automorphisms σ, τ in
GalL/K such that

• NT/K(ζL) = ζ and NL/T (πL) = ζt
KπK where 0 6 t 6 e− 1,

• ζσ
L = ζq

L and πσ−1
L ≡ ζ

q−1
e

t

L mod pL,

• ζτ
L = ζL and πτ−1

L = ζ
q−1

e
K .

The Galois group of L/K is generated by σ and τ :

GalL/K = 〈σ, τ〉 ∼= 〈S, T | ST = TS, Sf = T−t, T e = id〉.

The Galois group GalL/K is isomorphic to K∗/NL/K(L∗) by the map:

πK 7→ σ, ζK 7→ τ, η 7→ id for all η ∈ 1 + pK .

Wildly Ramified Class Fields. We have seen above that subgroups of
〈π〉 correspond to unramified extensions and that subgroups of 〈ζ〉 corre-
spond to tamely ramified extensions. Subgroups of K∗ that do not contain
all of 1 + pK correspond to wildly ramified extensions.

Lemma 3.4. Let L/K be an abelian and wildly ramified extension, that is,
[L/K] = pm for some m ∈ N. Then

K∗/NL/K(L∗) ∼= (1 + pK)/NL/K(1 + pL).

4. Generating Polynomials of Ramified Extensions of Degree p

Let K be an extension of Qp of degree ef with ramification index e,
prime ideal p, and inertia degree f . Set q := pf . For α, β ∈ OK we write
α ≡ β if νK(α− β) > νK(α).

In this section we present a canonical set of polynomials that generate
all extensions of K of degree p. These were first determined by Amano
[Ama71] using different methods. MacKenzie and Whaples [MW56, FV93]
use p-adic Artin Schreier polynomials in their description of extensions of
degree p.

There are formulas [Kra66, PR01] for the number of extensions of a
p-adic field of a given degree and discriminant are given:
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Theorem 4.1 (Krasner). Let K be a finite extension of Qp, let pK be its
prime ideal with ramification index eK , and let q be the number of elements
in the residue field of K. Let j = an + b, where 0 6 b < n, be an integer
satisfying Ore’s conditions:

min{vp(b)n, vp(n)n} 6 j 6 vp(n)n.

Then the number of totally ramified extensions of K of degree n and dis-
criminant p

n+j−1
K is

#Kn,j =

 n q

ba/ecP
i=1

en/pi

if b = 0,

n (q − 1) q

ba/ecP
i=1

en/pi+b(j−ba/ecen−1)/pba/ec+1c
if b > 0

Let j = ap+ b as above. The number of extensions of K of degree p and
discriminant pp+j−1 is

#Kp,j =
{
pqe if b = 0
p(q − 1)qa if b 6= 0.

We give a set of canonical generating polynomials for all extensions in Kp,j

for every possible value of j = ap + b. Let ζ be a (q − 1)-th root of unity,
and set R = (ρ0, . . . , ρq−1) = (0, 1, ζ, ζ2, . . . , ζq−2). R is a multiplicative
system of representatives of K = OK/p in K.

First we recall Panayi’s root finding algorithm [Pan95, PR01] which we
apply in the proofs in this section. Secondly we determine a set of canonical
generating polynomials for pure extensions of degree p of a p-adic field
that is, for the case b = 0. Thirdly we give a set of canonical generating
polynomials for extensions of degree p of discriminant pp+ap+b−1 where
b 6= 0 of a p-adic field.

Root finding. We use the notation from [PR01]. Let ϕ(x) = cnx
n +

· · · + c0 ∈ OK [x]. Denote the minimum of the valuations of the coeffi-
cients of ϕ(x) by νK(ϕ) := min

{
νK(c0), . . . , νK(cn)

}
and define ϕ#(x) :=

ϕ(x)/πνK(ϕ). For α ∈ OK , denote its representative in the residue class
field K by α, and for β ∈ K, denote a lift of β to OK by β̂

In order to find a root of ϕ(x) we define two sequences (ϕi(x))i and (δi)i

in the following way:
• ϕ0(x) := ϕ#(x),
• δ0 := 0.

If ϕ#
i

(x) has a root βi then

• ϕi+1(x) := ϕ#
i (xπ + β̂i) where βi is a root of ϕ#

i (x),

• δi+1 := β̂iπ
i+1 + δi where βi is a zero of ϕ#

i (x) if there are any.
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If indeed ϕ(x) has a root (in OK) congruent to β modulo p then δi is
congruent to this root modulo increasing powers of p. At some point, one
of the following cases must occur:

(a) deg(ϕ#
i ) = 1 then δi−1 is an approximation of one root of ϕ(x).

(b) deg(ϕ#
i ) = 0 then δi−1 is not an approximation of a root of ϕ(x).

(c) ϕ#
i has no roots and thus δi−1 is not an approximation of a root of

the polynomial ϕ(x).
While constructing this sequence it may happen that ϕi(x) has more

than one root. In this case we split the sequence and consider one sequence
for each root. One shows that the algorithm terminates with either (a),
(b), or (c) after at most νK(discϕ) iterations.

Extensions of p-adic fields of discriminant pp+pe−1.

Theorem 4.2. Let J :=
{
r ∈ Z | 1 6 r < pe/(p− 1), p - r

}
. Each

extension of degree p of K of discriminant pp+ep−1 is generated by a root
of exactly one of the polynomials of the form

ϕ(x) =


xp + π +

∑
i∈J

ρciπ
i+1 + kδπpe/(p−1)+1 if


(p− 1) | e and
xp−1 + (p/πe)
is reducible,

xp + π +
∑
i∈J

ρciπ
i+1 otherwise,

where δ is chosen such that xp−x+ δ is irreducible over K and 0 6 k < p.
These extensions are Galois if and only if (p − 1) | e and xp−1 + p/πe is
reducible, i.e., if K contains the p-th roots of unity.

It is obvious that a pure extension can be Galois only if K contains the
p-th roots of unity. We prepare for the proof with some auxiliary results.

Lemma 4.3. Assume that ϕ(x) := xp−1 + c ∈ Fq[x] has p − 1 roots in
Fq. Then there exists d ∈ Fq such that ψk(x) := xp + cx − kd ∈ Fq[x] is
irreducible for all 1 6 k < p.

Proof. Let h(x) = xp + cx ∈ Fq[x]. As ϕ(x) splits completely over Fq, there
exists d ∈ Fq \ h(Fq). Now ψ1(x) = xp + cx − d is irreducible. It follows
that

kψ1(x) = kxp + ckx− kd = (kx)p + c(kx)− kd

is irreducible. Replacing kx by y we find that ψk(y) = yp + cy − kd is
irreducible over Fq. �

Lemma 4.4. Let

ϕt(x) = xp + π +
∑
r∈J

ρct,rπ
r+1 + ktδπ

v+1 ∈ OK [x] (t ∈ {1, 2})
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where ρct,r ∈ R, v > pe/(p− 1), and δ ∈ OK . Let α1 be a zero of ϕ1 and
α2 be a zero of ϕ2 in an algebraic closure of K.

(a) If c1,r 6= c2,r for some r ∈ J then K(α1) � K(α2).
(b) If c1,r = c2,r for all r ∈ J and K contains the p-th roots of unity and

δ is chosen such that xp − x + δ is irreducible and v = pe/(p− 1)
and k1 6= k2 then K(α1) � K(α2).

Proof. Let L1 := K(α1).
(a) We use Panayi’s root-finding algorithm to show that ϕ2(x) does not
have any roots over K(α1). As ϕ2(x) ≡ xp mod (π) we set ϕ2,1(x) :=
ϕ2(α1x). Then

ϕ2,1(x) = αp
1x

p + π +
∑
r∈J

ρc2,rπ
r+1 + k2δπ

v+1

=
(
−π −

∑
r∈J

ρc1,rπ
r+1 − k1δπ

v+1
)
xp + π +

∑
r∈J

ρc2,rπ
r+1 + k2δπ

v+1

≡ π(−xp + 1)

Hence ϕ#
2,1(x) = ϕ2,1(x)/π ≡ −xp + 1 and we set

ϕ2,2(x) := ϕ#
2,1(α1x+ 1)

=
(
−1−

∑
r∈J

ρc1,rπ
r − k1δπ

v
)
(α1x+ 1)p + 1 +

∑
r∈J

ρc2,rπ
r + k2δπ

v

≡
(
−1−

∑
r∈J

ρc1,rπ
r − k1δπ

v
)
αp

1x
p + 1 +

∑
r∈J

ρc2,rπ
r + k2δπ

v.

Let βi be a root of ϕ#
2,i+2. Let m be minimal with c1,m = c2,m. Then

βm 6= 0. Let m < u < pe/(p− 1). Assume that the root-finding algorithm
does not terminate with degϕ#

2,w = 0 for some m 6 w 6 u. After u
iterations of the root-finding algorithm we have

ϕ2,u+1(x) =
(
−1−

∑
r∈J

ρc1,i+1π
i − ρc1,a+2π

a+1
)

· (αu
1x+ βu−1α

u−1
1 + · · ·+ βmα

m
1 + 1)p

+ 1 +
∑
r∈J

ρc2,r+1π
i + ρc2,a+1π

a+1 + k2δπ
v−1

≡ −αpuxp − pαu
1x− pβmα

m
1 +

∑
r∈J,r>m

(ρc2,r+1− ρc1,r+1)π
r.

The minimal valuation of the coefficients of ϕ2,u+1(x) is either νL1(α
pu
1 ) =

pu or νL1(pβmα
m
1 ) = pe +m. As gcd(p,m) = 1 and m < pe/(p− 1) there
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exists u ∈ N such that the polynomial ϕ#
2,u+1(x) is constant. Thus the root-

finding algorithm terminates with the conclusion that ϕ2(x) is irreducible
over K(α1).
(b) We set ϕ2,1(x) := ϕ2(α1x) and ϕ2,2(x) := ϕ#

1 (α1x + 1). After v + 1
iterations of the root-finding algorithm we obtain ϕ2,v+2(x) ≡ −αvp

1 x
p −

pαv
1x + (k2 − k1)δπv. By lemma 4.3 ϕ#

2+v(x) is irreducible for k1 6= k2.
Therefore ϕ2(x) has no root in K(α1) and ϕ1(x) and ϕ2(x) generate non-
isomorphic extensions over K. �

Proof of theorem 4.2. We will show that the number of extensions given by
the polynomials ϕ(x) is greater or equal to the number of extensions given
by theorem 4.1. The number of elements in J is

#J =
⌊

pe
p−1

⌋
−
⌊

pe
p(p−1)

⌋
= e+

⌊
e

p−1

⌋
−
⌊

e
p−1

⌋
= e.

By lemma 4.4 (a) the roots of two polynomials generate non-isomorphic
extensions if the coefficients ρci differ for at least one i ∈ J . For every i
we have the choice among pf = q values for ρci . This gives qe polynomials
generating non-isomorphic extensions.

If K does not contain the p-th roots of unity then an extension generated
by a root α of a polynomial ϕ(x) does not contain any of the other roots
of ϕ(x). Hence the roots of each polynomial give p distinct extensions of
K. Thus our set of polynomials generates all pqe extensions.

If K contains the p-th roots of unity then lemma 4.4 (b) gives us p − 1
additional extensions for each of the polynomials from lemma 4.4 (a). Thus
our set of polynomials generates all pqe extensions. �

Extensions of p-adic fields of discriminant pp+ap+b−1, b 6= 0.

Theorem 4.5. Let J :=
{
r ∈ Z | 1 6 r < (ap+ b)/(p− 1), p - (b + r)

}
and if (p− 1) | (a+ b) set v = (ap+ b)/(p− 1). Each extension of degree p
of K of discriminant pp+ap+b−1 with b 6= 0 is generated by a root of exactly
one of the polynomials of the form

ϕ(x) =


xp+ζsπa+1xb+π+

∑
i∈J

ρciπ
i+1+kδπv+1 if


(p− 1) | (a+ b) and
xp−1 + (−1)ap+1ζsb
has p− 1 roots ,

xp+ζsπa+1xb+π+
∑
i∈J

ρciπ
i+1 otherwise,

where ρ ∈ R and δ is chosen such that xp+(−1)ap+1ζsbx+δ is irreducible in
K and 0 6 k < p. These extensions are Galois if and only if (p−1) | (a+b)
and xp−1 − ζsb ∈ K[x] is reducible.
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Lemma 4.6. Let

xp + ζstπa+1xb + π +
∑
r∈J

ρct,rπ
r+1 + ktδtπ

v+1 ∈ OK [x] (t ∈ {1, 2})

where ρt,r ∈ R, v > ap+b
p−1 , and δt ∈ OK . γ, δ ∈ OK . Let α1 be a zero of ϕ1

and α2 be a zero of ϕ2 in an algebraic closure of K.
(a) If s1 6= s2 then K(α1) � K(α2).
(b) If s1 = s2 and c1,r 6= c2,r for some r ∈ J then K(α1) � K(α2).
(c) K(α1)/K is Galois if and only if a+ b ≡ 0 mod (p− 1) and xp−1 +

(−1)ap+1ζs1b is reducible over K.
(d) Assume s1 = s2 and c1,r = c2,r for all r ∈ J . If (p − 1) | (ap + b)

then for v = ap+b
p−a there exists δ ∈ OK such that K(α1) � K(α2) if

k1 6= k2.

Proof. Let L1 := K(α1).
(a) For t ∈ {1, 2} let γt =

∑
r∈J ρct,rπ

r +ktδtπ
v. Then αp

1/π = −ζs1πaαb−
1− γ1. We use Panayi’s root-finding algorithm to show that ϕ2(x) has no
root over L1 = K(α1). As before we get ϕ2,1(x) := ϕ2(α1x) ≡ π(−xp + 1).
Therefore we set

ϕ2,2(x) := ϕ#
2,1(α1x+ 1)

= (−ζs1πaαb − 1− γ1)(α1x+ 1)p + ζs2πaαb(α1x+ 1)b + 1 + γ2.

Let 2 6 u 6 pe/(p− 1). Let βi ∈ R be a root of ϕ#
2,i(x). Assume that

the root-finding algorithm does not terminate with degϕ#
2,w = 0 for some

2 6 w 6 u and let m be minimal with m < u < pe/(p− 1) and βm 6≡
0 mod (α). After u iterations of the root-finding algorithm we have

ϕ2,u+1(x) = (−ζs1πaαb
1 − 1− γ1)(αu

1x+ βu−1α
u−1
1 + · · ·+ βmα

m
1 + 1)p

+ ζs2tπaαb(αu
1x+ βu−1α

u−1
1 + · · ·+ βmα

m
1 + 1)b + 1 + γ2π.

Because u 6 e, νL1(p) = pe, and a < e, the minimal valuation of the
coefficients of ϕ2,u+1(x) is either νL1(−α

pu
1 ) = pu or νL1(π

aαb
1) = pa +

b. Hence the root-finding algorithm terminates with ϕ2,u+1(x) ≡ (ζs2 −
ζs1)πaαb for some u in the range 2 6 u 6 e.
(b) We show that ϕ2(x) does not have any roots over L1. As ϕ2(x) ≡
xp mod (π), we get ϕ2,1(x) := ϕ2(αx). Now ϕ#

2,1(x) ≡ −xp + 1 and we set
ϕ2,2(x) := ϕ#

2,1(α1x+ 1).
Denote by βr a root of ϕ#

2,r+1(x). Let m be minimal with m < u <

pe/(p− 1) and βm 6≡ 0 mod (α). Assume that the root-finding algorithm
does not terminate earlier with degϕ#

2,w = 0 for some w 6 u. After u
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iterations we have

ϕ2,u+1(x) =
(
−ζs1πaαb

1 − 1−
∑
r∈J

ρc1,r+1π
i − ρc1,a+2π

a+1
)

· (αu
1x+ βu−1α

u−1
1 + · · ·+ βmα

m
1 + 1)p

+ ζs1πaαb
1(α

ux+ βu−1α
u−1
1 + · · ·+ βmα

m
1 + 1)b + 1

+
∑
r∈J

ρc2,r+1π
r + ρc2,a+1π

a+1

≡ −αpuxp − pαu
1x− pβmα

m
1 −

∑
r∈J

ρc1,r+1π
r(βmα

m
1 )p − (βmα

m
1 )p

+ ζs1πaαb
1bα

u
1x+ ζs1πaαb

1bβmα
m +

∑
r∈J

(ρc2,r+1− ρc1,r+1)π
r

with βm 6≡ 0 mod (α1). The minimal valuation of the terms of ϕ2,u+1(x) is

νL1(ζ
s1πaαb

1bβmα
m
1 ) = pa+ b+m

or νL1(α
pr
1 ) = pr. By the choice of J we have p - (pa+b+m). Therefore the

root-finding algorithm terminates with ϕ2,u(x) ≡ ζsπaαb
1bβmα

m for some
u ∈ N.
(c) We show that ϕ1(x) splits completely over L1 if and only if the con-
ditions above are fulfilled. We set ϕ1,1(x) := ϕ1(α1x) and ϕ1,2(x) :=
ϕ#

1,1(αx+ 1). Thus

ϕ1,2(x) =
(
−ζs1πaαb

1 − 1−
∑

r∈J ρc1,rπ
r
)
(α1x+ 1)p

+ ζs1πaαb(α1x+ 1)b + 1 +
∑

r∈J ρc1,rπ
r

≡ x(−αp
1x

p−1 + ζs1πaαb+1
1 b).

After u+ 1 iterations we get

ϕ1,u+1(x) ≡


−αup

1 xp if up < pa+ b+ u,

x(−αup
1 xp−1 + ζs1πaαb+u

1 b) if up = pa+ b+ u,

ζs1πaαb+1
1 bx if

{
up > pa+ b+ u and
(p− 1) - (a+ b).

In the third case ϕ#
1,u+1(x) is linear and therefore ϕ1(x) has only one root

over L1. In the second case

ϕu+1(x) ≡ −αup
1 xp + ζs1πaαb+u

1 bx ≡ −αup
1 xp + ζs1(−α1)apαb+ux.

thus ϕ#
1,u+1(x) ≡ −xp + (−1)apζs1bx mod (α1). If ϕ#

u+1(x) has p roots over

K for every root β of ϕ#
1,u+1(x) we get

ϕ1,u+2(x) = ϕ1,u+1(α1x+ β)

≡ −α(u+1)p
1 xp + (−1)apαu+1

1 βζs1πaαb
1 + (−1)apαu+1

1 bβbζs1πaαb
1x.
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But up+p > u+1+pa+ b; thus ϕ#
1,u+2(x) is linear and ϕ1(x) has as many

distinct roots as ϕ#
1,u+1(x).

(d) We set ϕ2,1(x) := ϕ(αx) and ϕ2,2(x) := ϕ#
2,1(αx + 1). We obtain

ϕ2,v+1(x) ≡ −αvp
1 x

p + ζs1πaαb+v
1 bx + (k1 − k2)δπv hence ϕ#

v+1(x) = xp +
(−1)ap+1ζs1bx + (k1 − k2)δ. By lemma 4.3 there exists δ ∈ OK such that
ϕ#

2,v+1(x) is irreducible. �

Proof of theorem 4.5. If (p− 1) - (a+ b) then

#J = a+
⌊

a+b
p−1

⌋
−
⌊

a+b
p + a+b

p(p−1)

⌋
−
⌊

b
p

⌋
= a+

⌊
a+b−1
p−1

⌋
−
⌊

a(p−1)+a+b(p−1)+b
p(p−1)

⌋
= a.

If (p− 1) | (a+ b) then

#J = a+ a+b
p−1 − 1−

⌊
a+b
p + a+b

p(p−1) − 1
⌋
−
⌊

b
p

⌋
= a+ a+b−1

p−1 −
⌊

a+b−1
p−1

⌋
= a.

Using lemma 4.6 (a) we get pf − 1 sets of generating polynomials. By
lemma 4.6 (b) each of these sets contains pfa polynomials that generate non-
isomorphic fields. Now either the roots of one of the polynomials generate p
distinct extensions or the extension generated by any root is cyclic. In the
latter case we have p − 1 additional polynomials generating one extension
each by lemma 4.6 (d). Thus we obtain (pf − 1)paf+1 distinct extensions.

�

Corollary 4.7. Let K be an extension of Qp of degree n. The number of
ramified Galois extensions of K of degree p is p · pn−1

p−1 .

Proof. Let ϕ(x) as in theorem 4.5. We denote the inertia degree and the
ramification index of K by f and e respectively. The number of values of
s for which xp−1 − ζs is reducible is (pf − 1)/(p− 1). By Ore’s Conditions
0 6 a < e. For every a there is exactly one b with 1 6 b < p such that
(p − 1) | (a + b). For every a the set J contains a elements. This gives
pfa combinations of values of ci, i ∈ J . We have p choices for k. Thus the
number of polynomials ϕ(x) generating Galois extensions is

p · p
f − 1
p− 1

·
e−1∑
a=0

pfa = p · p
f − 1
p− 1

· p
fe − 1
pf − 1

= p · p
n − 1
p− 1

.

�

5. Ramified Abelian Extensions of Degree p

Let L/K be an abelian ramified extension of degree p. The ramification
number (Verzweigungszahl) of L/K is defined as v = vL/K = νL(πσ−1

L − 1)
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where σ ∈ GalL/K \ {id}. The ramification number v is independent of the
choice of σ. Let ϕ be the minimal polynomial of πL then

νL(disc(ϕ)) =
∑
i6=j

νL

(
σi(πL)− σj(πL)

)
=

p(p−1)∑
i=1

νL

(
σ(πL)− πL

)
= p(p− 1)(v + 1).

Hence νK(discL/K) = (p − 1)(v + 1) and diffL/K = p
(p−1)(v+1)
L . It follows

from Ore’s conditions (see Theorem 4.1) that either v = p eK
p−1 or v = ap+b

p−1 ∈
FK where j = ap+ b satisfies Ore’s conditions.

Lemma 5.1. Let d := νL(diffL/K).

TL/K(pm
L ) ⊂ p

⌊
m+d
eL/K

⌋
K

Equality holds if eL/K | (m+ d).

Proof. By the definition of the different OK = TL/K(p−d
L ). Thus

ps
K = TL/K(p−d

L ps
K) = TL/K

(
p

seL/K−d

L

)
.

The claim follows with m := seL/K − d. �

In the following we use Newton’s relations to investigate the norm group
of abelian extensions of degree p.

Proposition 5.2 (Newton’s relations). Let ϑ = ϑ(1), . . . , ϑ(n) be the roots
of a monic polynomial ϕ =

∑
06i6n γix

i. Then γi = (−1)(n−i)Rn−i(ϑ)
where Rn−i(ϑ) is the (n − i)-th symmetric function in ϑ(1), . . . , ϑ(n). Set
Sk(ϑ) =

∑n
i=1

(
ϑ(i)
)k. Then

Sk(ϑ) =

{
−kγn−k −

∑k−1
i=1 γn−iSk−i(ϑ) for k 6 n

−
∑n

i=1 γn−iSk−i(ϑ) for k > n

Yamamoto [Yam58] describes explicitly where and how the jump in the
norm group takes place.

Theorem 5.3. Let L/K be ramified abelian of degree p and let v be the
ramification number of L/K. Let 〈σ〉 = GalL/K . Assume that NL/K(πL) =
πK . Let ε ∈ K such that πσ−1

L ≡ 1 + επv
L mod pv+1. Then

NL/K(1 + απi
L) ≡ 1 + αpπi

K mod pi+1
K if i < v

NL/K(1 + απv
L) ≡ 1 + (αp − εp−1α)πv

K mod pv+1
K

NL/K(1 + απ
v+p(i−v)
L ) ≡ 1− εp−1απi

K mod pi+1
K if i > v.

The kernel of the endomorphism K+ → K+, α 7→ αp − εp−1α has order p.
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Proof. We have

NL/K(1 + ωπi
L) = 1 + ωR1(πi

L) + ω2R2(πi
L) + · · ·+ ωpRp(πi

L)

where Rk(πi
L) denotes the k-th symmetric polynomial in πi

L, π
σi
L , . . . , π

σp−1i
L .

Especially R1(πi
L) = TL/K(πi

L) and Rp(πi
L) = NL/K(πL)i. With lemma 5.1

and νL(diffL/K) = (v + 1)(p− 1) we get

Sk(πi
L) = TL/K(πki

L ) ∈ TL/K(pki
L ) ⊂ pλki

K

where

λki =
⌊ (p−1)(v+1)+ki

p

⌋
= v + 1 +

⌊−v−1+ki
p

⌋
= v +

⌈
ki−v

p

⌉
= v −

⌊
v−ki

p

⌋
.

(i) If i < v then i < λ1 = v −
⌊

v−i
p

⌋
and νK(Sk(πi

L)) > λk > λ1 > i.
With Newton’s relations we get νK(Rk(πi

L)) > i for 1 6 k 6 p − 1 and as
Rp(πi

L) = NL/K(πL)i = πi
K we obtain

NL/K(1 + απi
L) ≡ 1 + αpπi

K mod pi+1
K .

(ii) Assume i = v. As by lemma 5.1 TL/K(pv
L) = pλv

K we get TL/K(πv
L) ≡

βπv
K mod pv+1

K for some β ∈ OK
∗. We have λk = v +

⌈ (k−1)v
p

⌉
> v. If

k > 2 then νK(Sk(πi
L)) > λk > v + 1. Hence with Newton’s relations

νK(Rk(πi
L)) > min(kv, v + 1) > v + 1 for 2 6 k 6 p − 1. Thus NL/K(1 +

απv
L) ≡ 1 + αβπv

K + αpπv
K mod pv+1

K and NL/K(1 + πv
L) ⊂ (1 + pK)v By

the definition of ε and as NL/K(πσ−1
L ) = 1 we have NL/K(1 + επv

L) ≡ 1
mod pv+1

K . Therefore β ≡ −εp−1 mod pK and we conclude

NL/K(1 + απv
L) ≡ 1 + (αp − εp−1α)πv

K mod pv+1
K .

(iii) Let i > v. We have λv+p(i−v) = i and λk(v+p(i−v)) > i. With the
considerations in (ii) we obtain

NL/K(1 + απ
v+p(i−v)
L ) ≡ 1− εp−1απi

K mod pi+1
K .

�

Next we investigate the relationship between the minimal polynomial of
πL, a uniformiser of the extension L/K, and the norm group NL/K(L∗).
We start by choosing a suitable representation for subgroups of K∗ of index
p. We begin with extensions with discriminant pp+eL/K−1.

If K contains the p-th roots of unity then

K∗ = 〈ζK〉 × 〈πK〉 × 〈ηλ,i | λ ∈ FK , 1 6 i 6 fK ; η∗〉
Let G be a subgroup of K∗ of index p with ηp

∗ ∈ G. Let (g1, ..., geKfK+3)
be generators of G. Let B ∈ ZeKfK+3×eKfK+3 such that

(g1, ..., geKfK+3)T = B(ζK , πK , ηλ,i | λ ∈ FK , 1 6 i 6 fK , η∗)
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be a representation Matrix of G. Let A be the row Hermite Normal Form
of B. Then

A =



1 0 · · · · · · · · · 0 aπ

0 1 0 0 0
... 0 1 0 · · · 0 a1,1
...

. . . . . . . . .
...

...
...

. . . . . . 0
...

...
. . . 1 av−1,f

0 · · · · · · · · · · · · 0 p


.

Thus

G =
〈
πKη

at,π
∗ ; ζK ; ηλ,iη

at,λ,i
∗

∣∣ λ ∈ FK , 1 6 i 6 fK ; ηp
∗
〉

(t ∈ {1, 2}).
Theorem 5.4. Assume that K contains the p-th roots of unity. Let

ϕt(x) = xp + π +
∑
r∈J

ρct,rπ
r+1 + ktδπ

v+1 ∈ OK [x] (t ∈ {1, 2})

be polynomials as in theorem 4.2. Let L1 := K[x]/(ϕ1) and L2 := K[x]/(ϕ2)
then v = vL1/K = vL2/K = peK/(p− 1). Hence

N(L∗t ) =
〈
πKη

at,π
∗ ; ζK ; ηλ,iη

at,λ,i
∗

∣∣ λ ∈ FK , 1 6 i 6 fK ; ηp
∗
〉

(t ∈ {1, 2}).
(a) Let w ∈ J = {1 6 r 6 pe/(p − 1) | p - r}. We have c1,r = c2,r for
1 6 r < w, r ∈ J if and only if a1,v−r,i = a2,v−r,i for all 1 6 r < w, r ∈ J
and all 1 6 i 6 fK

(b) If c1,r = c2,r for all r ∈ J then k1 = k2 if and only if a1,π = a2,π.

Proof. (a) We show one implication directly. The other implication follows
by a counting argument.
(i) As p | (v−λ) if and only if p | λ we have v− r ∈ FK if and only if r ∈ J .
(ii) Let πt be a root of ϕt. We write ϕt = xp−γt. The minimal polynomial
of πλ

t over K is xp − γλ
t . The characteristic polynomial of ωπλ

t is xp +
ωpγλ

t . The characteristic polynomial of 1 + ωπλ
t is (x − 1)p − αpωλ. Thus

NLt/K(1 + ωπλ
t ) = (−1)p − ωpγλ

t . If γ1 = γ2 + απw+1
K for some α ∈ OK

∗

then for r 6 w we obtain

γv−r
1 = (γ2 + πw+1

K α)v−r ≡ γv−r
2 + (v − r)γv−r−1

2 απw+1
K mod pv+1

K .

(iii) Assume that c1,r = c2,r for all 1 6 r < w. For all r 6 w − 1 we obtain

NL1/K(1 + ωπv−r
L1

) = (−1)p + ωpγv−r
1 ≡ NL2/K(1 + ωπv−r

L1
) mod pv+1

K

which implies a1,v−r,i = a2,v−r,i for all 1 6 r < w and 1 6 i 6 fK .
(iv) If c1,w 6= c2,w for r = w we have

NL2/K(1 + ωπv−w
L2

) = (−1)p + ωpγv−w
2
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and

NL1/K(1+ωπv−w
L1

) ≡ (−1)p +ωp(γv−w
2 +(v−w)γv−w−1

2 πw+1
K α) mod pv+1

K .

As by (i) p - (v − w) and as ν(γ2) = 1 it follows that a1,w,i 6= a2,w,i.
(v) There are pf choices for each ρct,r . On the corresponding level λ = v−r
there are f generating principal units ηλ,1, . . . , ηλ,1 with in total pf choices
for the exponents at,λ,1, . . . , at,λ,f . This shows the equivalence.
(b) We have

NLt/K(πLt) ≡ πK+
∑
r∈J

ρct,rπ
r+1
K +ktδπ

v+1
K ≡ πK

(∏
λ,i

η
at,λ,i

λ,i ·ηat,π
∗

)
mod pv+2

K .

Since c1,r = c2,r for all r ∈ J also a1,λ,i = a2,λ,i for all λ ∈ FLt , 1 6 i 6 f .
Thus k1 = k2 is equivalent to a1,π = a2,π. �

Assume that K does not contain the p-th roots of unity then

K∗ = 〈πK〉 × 〈ζK〉 ×
∏

λ∈FK

∏
16i6fK

〈ηλ,i〉.

Let G be a subgroup of K∗ of index p and let A be the row Hermite
Normal Form of the representation matrix of G. There exist λ0 ∈ FK and
1 6 i0 6 fK and aπ ∈ {0, . . . , p − 1} aλ,i ∈ {0, . . . , p − 1} for (λ, i) ∈
FK × {1, . . . , fK} \ {(λ0, i0)} with λ 6 λ0, i 6 i0 and aλ0,i0 = p such that

A =



1 0 · · · · · · · · · 0 aπ 0 · · · 0

0 1 0 0 0 0
...

... 0 1 0 · · · 0 a1,1 0
...

...
. . . . . . . . .

...
...

...
...

...
. . . . . . 0

...
...

...
...

. . . 1
...

...
...

... 0 aλ0,i0 0
...

... 0 1
. . .

...
...

. . . . . . 0
0 · · · · · · · · · · · · · · · · · · · · · 0 1


Thus G can be generated as follows

G =
〈
πKη

aπ
λ0,i0

; ζK ; ηλ,iη
aλ,i

λ0,i0

∣∣ λ ∈ FK , λ < λ0, 1 6 i 6 fK ;

ηλ0,iη
aλ0,i

λ0,i0

∣∣ 1 6 i < i0; η
p
λ0,i0

; ηλ0,i

∣∣ i0 < i 6 fK ;

ηλ,i

∣∣ λ ∈ FK , λ0 < λ, 1 6 i 6 fK

〉
.

By theorem 5.3 we have λ0 = vL/K if G = NL/K(L∗).
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Theorem 5.5. Let

ϕt(x) = xp + ζstπa+1xb + π +
∑
r∈J

ρct,rπ
i+1 + ktδπ

v+1

be polynomials as in theorem 4.5. such that L1 := K[x]/(ϕ1) and L2 :=
K[x]/(ϕ2) are Galois. Then v = vL1/K = vL2/K = (ap + b)/(p − 1). If K
does not contain the p-th roots of unity,

N(L∗t ) =
〈
πKη

at,π

v,it
; ζK ; ηλ,iη

at,λ,i

v,it

∣∣ λ ∈ FK , λ < v, 1 6 i 6 fK ;

ηv,iη
at,v,i

v,it

∣∣ 1 6 i < it; η
p
v,it

; ηv,i

∣∣ it < i 6 fK ;

ηλ,i

∣∣ λ ∈ FK , v < λ, 1 6 i 6 fK

〉
.

If K contains the p-th roots of unity then η∗ is an additional generator of
N(L∗t ).
(a) s1 6= s2 if and only if there exists 1 6 i < it with a1,v,i 6= a2,v,i.
(b) Let w ∈ J then c1,r = c2,r for 1 6 r < w, r ∈ J and if and only if
a1,v−r,i = a2,v−r,i for 1 6 r < w, r ∈ J and all 1 6 i 6 fK .
(c) If c1,r = c2,r for all r ∈ J then k1 = k2 if and only if a1,π = a2,π.

Proof. We have seen that there exists v in FK and 1 6 it 6 fK such that
at,v,it = p for t = 1, 2.
(a) (i) Let εt ∈ O∗

Lt
such that πσ−1

Lt
≡ 1 + εtπ

v
L mod pv+1

Lt
then πσ

Lt
=

πLt + εtπ
v+1
Lt

mod pv+2
Lt

. By theorem 5.3

NLt/K(1 + απLt) ≡ 1 + (αp − εp−1
t αp−1)πv

K mod pK .

It follows from the proof of lemma 4.6(c) that modulo pK the unit εt is
congruent to one of the roots of ϕ#

t,v ≡ −xp + (−1)apζst
K bx mod pK . Thus

εp−1
t ≡ (−1)ap+1ζst

K b mod pK . As the kernel of ψ
t

: K+ → K+, α 7→
αp − εp−1

t α has order p the intersection of the kernels of ψ
1

and ψ
2

is {0}.
Therefore there exists 1 6 i < fK such that a1,v,i 6= a2,v,i.
(ii) By corollary 4.7 there are pf−1

p−1 possible values for st. For any given
1 6 it < fK there are pfK−it combinations of 0 6 at,v,i < p where 1 6 i < it.
In total this gives

∑f
it=1 p

fK−it = pfK−1
p−1 combinations, the same number

of choices as for the exponent st.
(b) (i) As p divides

(
(ap+ b)/(p− 1) + b− λ

)
=
(
(ap+ bp)/(p− 1)− λ

)
if

and only if p | λ. Thus v − r ∈ FK if and only if r ∈ J .
(ii) Assume that ϕt = xp + βxb + γt with γ1 = γ2 + πw

Kα for some α ∈ O∗
K

with νL(R) = 0. We have

NLt/K(1 + ωπλ
Lt

) = 1 + ωR1(πλ
Lt

) + ω2R2(πλ
Lt

) + · · ·+ ωpRp(πλ
Lt

)

whereRi(πλ
Lt

) denotes the i-th symmetric polynomial in πλ
Lt
, πσλ

Lt
, . . . , πσp−1λ

Lt
.

Especially R1(πλ
Lt

) = TLt/K(πλ
Lt

) and Rp(πλ
Lt

) = γλ
t . We have seen in the
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proof of theorem 5.4 (a)(ii) that γv−r
1 ≡ γv−r

2 mod pv
K for r 6 w−1. With

Newton’s relations (proposition 5.2) we get

Si(πLt) =


(p− b)βt for i = p− b
(p− b)βk

t for i = k(p− b) < p
pγt for i = p
−βtSi−(p−b)(πLt)− γtSi−p(πLt) for i > p
0 otherwise

.

We have νK(Sp(πLt)) = νK(pγt) = e+1 > v. By Newton’s relations Ri(πλ
Lt

)
is a sum of the Si(πLt), hence νK(Ri(πλ

Lt
)) > min(a+ 1, e+ 1) = a+ 1 > v

for i < p. Thus for all r 6 w − 1

NL1/K(1 + ωπv−r
L1

) ≡ NL2/K(1 + ωπv−r
L2

) mod pv
K .

(iii) See the proof of theorem 5.4 (a) (iv).
(c) See the proof of theorem 5.4 (b). �

Theorems 5.4 and 5.5 yield an algorithm for computing the class field L
over an extension K of Qp corresponding to a subgroup G of K∗ of index
p. The discriminant pap+b−1 of the extension can directly be read of the
Hermite normal form of the transformation matrix from the generators of
K∗ to generators of G. After determining the exponent for ζ one has a first
approximation of a generating polynomial of L:

xp + ζsπa+1xb + π.

Now the constant term can be determined by computing the coefficients
of π, π2, . . . in its π-adic expansion step by step up to the coefficient of
πv+1 = π(ap+b)/(p−1)+1.

The existence theorem for ramified for extensions of degree p follows from
the two theorems above. The existence theorem for unramified extensions
of degree p is a special case of the existence theorem for tamely ramified
extensions.

Corollary 5.6. Let G be a subgroup of K∗ of index p. Then there exists a
unique abelian extension L/K with NL/K(L∗) = G.

6. Cyclic Totally Ramified Extensions of Degree pm

Let G be a subgroup of K∗ with K∗/G ∼= (1 + pK)/(G ∩ (1 + pK) cyclic
and [K∗ : G] = pm. We construct the class field corresponding to G as a
tower extensions of degree p.

Let η1 ∈ K∗ such that 〈η1G〉 = K∗/G. Set H1 = 〈ηp
1 , G〉 then [K∗ :

H1] = p. H1 is the unique subgroup of K∗ of index p with H1 ⊃ G. We
determine the class field L1/K corresponding to H1 using the results of
the previous section. Let G1 = N−1

L1/K(G) ⊂ L∗1. As H1 = NL1/K(L∗1)
we have [L∗1 : G1] = pm−1. Now we determine L∗1 ⊃ H2 ⊃ G1 with
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[L∗1 : H2] = p and compute the class field L2/L1 corresponding to H2.
By the construction of H1 and H2 the extension L2/K is the class field
corresponding to NL2/K(L∗2) =

〈
ηp2

1 , G
〉
. Next we set G2 = N−1

L2/L1
(G1) =

N−1
L2/K(G) ⊂ L∗1 and continue as above until we obtain Lm/K the class field

corresponding to G.

Algorithm 6.1 (Cyclic Class Fields of Degree pm).
Input: K/Qp, G subgroup of K∗ such that

K∗/G ∼= (1 + pK)/(G ∩ (1 + pK)) cyclic with [K∗ : G] = pm.
Output: Lm/K cyclic of degree pm with NLm/K(Lm) = G.

• Set G1 := G and L0 := K.
• For i from 1 to m:

a. Let ηi ∈ L∗i−1. Set H1 = 〈ηp
i , Gi〉 then [K∗ : Hi] = p.

b. Determine Li/K class field corresponding to Hi.
c. Set Gi+1 = N−1

Li/Li−1
(Gi) ⊂ L∗i then [L∗i : Gi+1] = pm−i.

This yields the existence theorem for cyclic class fields of degree pm.

Corollary 6.2. For every subgroup G of K∗ with K∗/G ∼= (1 + pK)/(G ∩
(1 + pK) cyclic of degree pm there exists a normal extension L/K of degree
pm with NL/K = G.

The existence theorem of local class field theory for finite extensions
(theorem 3.3) follows.

Example 6.3. Let G1 = 〈3〉 × 〈−1〉 ×
〈
(1 + 3)9

〉
⊂ Q∗

3. We compute the
class field corresponding to G1 as follows (from bottom to top):

Q3

Q∗
3 = 〈3〉 × 〈−1〉 × 〈1 + 3〉

G1 = 〈3〉 × 〈−1〉 ×
〈
(1 + 3)9

〉a. H1 = 〈3〉 × 〈−1〉 ×
〈
(1 + 3)3

〉
, such that [Q∗

3 : H1] = 3

b. Q3(π1)with π3
1 + 6π2

1 + 3 = 0

Q3(π1)∗ = 〈π1〉 × 〈−1〉 ×
〈
1 + π1, 1 + π2

1, 1 + π4
1

〉
c. G2 = N−1

Q3(π1)/Q3
(G1)

=
〈
π1,−1, (1 + π1)(1 + π4

1)
2, (1 + π2

1)(1 + π4
1), (1 + π4

1)
3
〉a. H2 = G2, da [Q3(π1)∗ : G2] = 3

b. Q3(π2)with π3
2 + (−12π2

1 − 6)π2
2 − 372π2

1 + 31π1 − 183=0

7. Examples

The methods presented above are implemented in the computer algebra
system Magma [BC95] and have been released with Magma 2.12. In several
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tables we give cyclic class fields over Qp and some of their extensions for
p ∈ 2, 3, 5, 7, 11, 13 of degree up to 343.

Let K be a finite extension of Qp with unit group

K∗ = 〈π〉 × 〈ζ〉 × 〈ηλ,i | λ ∈ FK , 1 6 i 6 f〉.
A cyclic class field L of degree d over a field K is denoted by

L
(aπ ,aζ ,a1,1...,av−1,f )

d,ν(disc(L/K)) /K

where aπ, aζ , a1,1 . . . , av−1,f are the entries in the relevant column of the
Hermite normal form of the transformation matrix mapping the basis of
K∗ to generators of the norm group NL/K(L∗) (compare the exposition
before theorem 5.5). It is obvious that 0 6 aπ < d, 0 6 aζ < d, and
0 6 aλ,i < d for λ ∈ FK and 1 6 i 6 fK/Qp

. If d is a multiple of p we leave
out aζ = 0.

In some tables the class fields are parameterised by the ai,j . The ai,j

in the naming scheme are always to be seen modulo d. Throughout this
section we use {0, . . . , p − 1} as a set of representatives of Zp/(p). As
we compute class fields as towers of extensions and in order to facilitate
representation we give their generating polynomials over a suitable subfield
that can be found in one of the other tables. By π we denote a uniformizer
of that ground field.

If K contains the p-the roots of unity we have the additional generator
η∗ for K∗ and an additional entry a∗ in the transformation matrix.

Class Fields over Q2. There are six totally ramified class fields of degree
2 over Q2. The parameter k is 0 or 1.

L/K NL/K(L∗) over generated by

K
(k)
2,2 /Q2 〈2 · 3k, 32, 5〉 Q2 x2 + 2x+ 2 + k4

K
(k,0)
2,3 /Q2 〈2 · 5k, 3, 52〉 Q2 x2 + 2 + k8

K
(k+1,1)
2,3 /Q2 〈2 · 5k+1, 3 · 5, 52〉 Q2 x2 + 2 + 4 + k8

The following table contains 2 of the class fields of degree 64 over Q2 and
its abelian subfields. The parameter k is 0 or 1.

L/K NL/K(L∗) over generated by

K
(1,2)
4,11/Q2 〈2·5, 3·5, 54〉 K

(1,1)
2,3 x2 + π + π2 + π4

K
(5,2)
8,31/Q2 〈2·52, 3·55, 58〉 K

(1,2)
4,11 x2 + π + π4

K
(13,10)
16,79 /Q2 〈2·510, 3·513, 516〉 K

(5,2)
8,31 x2 + π + π8 + π16 + π17

K
(29,10)
32,191/Q2 〈2·510, 3·529, 532〉 K

(13,10)
16,79 x2+π+π16+π24+π26+π33

K
(29,10+32k)
64,447 /Q2 〈2·510+32k, 3·529, 564〉 K

(29,10)
32,191

x2+π+π32+π40+π42+π50+π52+π56+π58+π62+kπ65
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Ramified Class Fields of Degree p over Qp for p odd. Let p be an odd
prime then Q∗

p = 〈p, ζ, (1+p)〉 where ζ is a (p−1)-th root of unity. Theorem
4.5 yields generating polynomials of totally ramified normal extensions of
degree p over Qp:

ϕ = xp + (p− 1)pxp−1 + p+ kp2

where 0 6 k < p. Let K be the extension defined by ϕ. The exponents of
the generators of the norm groups follow immediately from the coefficients
of the polynomial. We obtain

NK/Qp
(K∗) = 〈p(1 + p)k, ζ, (1 + p)p〉.

Class Fields over Q3. We start with the class fields of degree 2 and 3
over Q3.

L/K NL/K(L∗) over generated by
K2,0/Q3 〈32,−1, 4〉 Q3 x2 + 1
K

(0)
2,1/Q3 〈3, 1, 4〉 Q3 x2 + 3

K
(1)
2,1/Q3 〈−3, 1, 4〉 Q3 x2 − 3

K3,0/Q3 〈33,−1, 4〉 Q3 x3 + 2x+ 1
K

(k)
3,4 〈3·4k,−1, 43〉 Q3 x3 + 2·3x2 + 3 + k32

There are 12 ramified class fields of degree 3 over K(1)
2,1/Q3. The fields

L
(6)
3,6, L

(7)
3,6, and L

(8)
3,6 are normal over Q3. In addition to their norm groups

in K(1)
2,1 we give their norm groups in Q3. The parameter k runs from 0 to

2.

L/K NL/K(L∗) over generated by

L
(k)
3,4/K

(1)
2,1 〈π(1 + π)k,−1, (1 + π)3, 4〉 K

(1)
2,1 x3+2πx2+π+kπ2

L
(k)
3,6/K

(1)
2,1 〈π ·4k,−1, (1 + π), 43〉 K

(1)
2,1 x3+2π2x+π + π2+kπ3

L
(3+k)
3,6 /K

(1)
2,1 〈π ·4k,−1, (1 + π)4, 43〉 K

(1)
2,1 x3+2π2x+π+2π2+kπ3

L
(6+k)
3,6 /K

(1)
2,1 〈π ·4k,−1, (1 + π)42, 43〉

/Q3 〈−3·4(3−k), 1, 43〉 K
(1)
2,1 x3+2π2x+π+kπ3

Over K(1)
3,4/Q3 there are 39 ramified cyclic extensions of degree 3 with 3

different discriminants. The parameter l and k run from 0 to 2.
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L/K NL/K(L∗) over generated by

L
(k)
3,4/K

(0)
3,4 〈31ηk

1 , η
3
1, η2, η

1
3〉 K

(0)
3,4 x3+2π1x2+π+kπ2

L
(k,l)
3,6 /K

(0)
3,4 〈31ηk

2 , η
2
2, η

3
2, η3〉 K

(0)
3,4 x3+lπ2x+π+kπ3

L
(k+l+2,l,0)
3,10 /K

(0)
3,4 〈3ηk+l+2

3 , η1η
l
3, η2, η

3
3〉 K

(0)
3,4

x3 + 2π3x2 + π + π3 + lπ4 + kπ5

L
(k+l+2,l,1)
3,10 /K

(0)
3,4 〈3η2+k+l

3 , η1η
l
3, η2η3, η

3
3〉K

(0)
3,4

x3 + 2π3x2 + π + π3 + lπ4 + kπ5

L
(k+l,l,2)
3,10 /K

(0)
3,4 〈3ηk+l

3 , η1η
l
3, η2η

2
3, η

3
3〉 K

(0)
3,4

x3 + 2π3x2 + π + lπ4 + kπ5

The fields L(k+1,2,0)
3,10 /K

(0)
3,4 are cyclic over Q3. They appear as K(3(2−k))

9,22 /Q3

in the following table of all cyclic extensions of Q3 of degree 9. By ρ we
denote a root of x3 + 2x+ 1,i.e., K3,0 = Q3(ρ).

L/K NL/K(L∗) over generated by
K9,0/Q3 〈39,−1, 4〉 K3,0

x3 + (2ρ+ 2)x2 + (2ρ2 + 2ρ+ 2)x+ 2ρ
K

(3(2−k))
9,22 /Q3 〈3·43(2−k),−1, 49〉 K

(0)
3,4 x3+2π3x2+π+π3+2π4+kπ5

K
(3(k−1)+1)
9,22 /Q3 〈3·43(k−1)+1,−1, 49〉 K

(1)
3,4 x3+2π3x2+π+π3+π4+ kπ5

K
(3(k−1)+2)
9,22 /Q3 〈3·43(k−1)+2,−1, 49〉 K

(2)
3,4 x3+2π3x2+π+π3 + kπ5

K
(1)
9,48/Q3 〈334,−1, 43〉 K3,0 x3 + 2·3x2 + 3 + 2ρ232

K
(2)
9,48/Q3 〈3342,−1, 43〉 K3,0 x3 + 2·3x2 + 3 + ρ232

The following table contains all cyclic extensions of Q3 of degree 27 contain-
ing K(0)

9,22/Q3, all cyclic extensions of Q3 of degree 81 containing K(0)
27,94/Q3,

and all cyclic extensions of Q3 of degree 243 containing K(0)
81,364/Q3. The

parameter k runs from 0 to 2.

L/K NL/K(L∗) over generated by

K
(9(k+1))
27,94 /Q3 〈3·49(k+2),−1, 427〉 K

(0)
9,22

x3+2π9x2+π+π7+π9+π10+2π12+π13+kπ14

K
(27(k+2))
81,364 /Q3 〈3·427(k+2), ζ, 481〉 K

(0)
27,94

x3 + 2π27x2 + π + π19 + π27 + 2π28 + π30 + 2π31

+ 2π33 + 2π34 + 2π36 + 2π37 + kπ41

K
(81(k+?))
243,29728/Q3 〈3·481(k+?), ζ, 4343〉 K

(0)
81,364

x3+2π81x2+π+π55+π81+π82+2π84+2π85+2π87+π88+π90+ π96

+2π97+2π99+π102+2π103+π105+2π108+π109+2π112

+π114+2π115+2π120+π121+kπ122
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Class Fields over Q5. There are 5 cyclic extensions of degree 25 over Q5

containingK(0)
5,8/Q5 and 5 cyclic extensions of degree 125 over Q5 containing

K
(0)
25,68/K

(0)
5,8/Q5,

L/K NL/K(L∗) over generated by

K
(k)
5,8 /Q5 〈5·6k, ζ, 65〉 Q5 x5 + 4·5x4 + 5 + k52

K
(5(1−k))
25,68 /Q5 〈5·65(1−k), ζ, 625〉 K

(0)
5,8 x5+4π5x4+π+π5+4π6+kπ7

K
(25(k+4))
125,468 /Q5 〈5·625(k+4), ζ, 6125〉 K

(0)
25,68

x5+4π25x4+π+π21+π25+π26+4π28+3π29+4π30+π31+kπ32

Class Fields over Q7. Over Q7 there are 7 cyclic extensions of degree
49 containing K

(0)
7,12/Q7 and 7 cyclic extensions of degree 343 containing

K
(0)
49,138.

L/K NL/K(L∗) over generated by

K
(k)
7,12/Q7 〈7·8k, ζ, 87〉 Q7 x5 + 6·7x6 + 7 + k72

K
(7(1−k))
49,138 /Q7 〈7·87(1−k), ζ, 849〉 K

(0)
7,12 x7+6π7x6+π+π7+6π8+kπ9

K
(49k)
343,488/Q7 〈7·849k, ζ, 8343〉 K

(0)
49,138

x7+6π49x6+π+π43+π49+π50+6π52+6π53+6π54+5π55+6π56+3π57+kπ58

Class Fields over Q11. There are 11 cyclic extensions of degree 121 over
Q11 containing K(4)

11,20/Q11:

L/K NL/K(L∗) over generated by

K
(k)
11,20/Q11 〈11·12k, ζ, 1211〉 Q11 x11 + 10·11x10 + 11 + k112

K
(11(1−k))
121,350 /Q11 〈11·1211(1−k), ζ, 12121〉 K(4)

11,20

x11 + 10π11x10 + π + π11 + 10π12 + kπ13

Class Fields over Q13. There are 13 cyclic extensions of degree 169 over
Q13 containing K(9)

13,24/Q13:

L/K NL/K(L∗) over generated by

K
(k)
13,24/Q13 〈13·14k, ζ, 1413〉 Q13 x13 + 12·13x12 + 13 + k132

K
(−13k+9)
169,492 /Q13 〈13·14−13k+9, ζ, 14169〉 K

(9)
13,24

x13 + 12π13x12 + π + π13 + 3π14 + kπ15

References
[Ama71] S. Amano, Eisenstein equations of degree p in a p-adic field, J. Fac. Sci. Univ. Tokyo

Sect. IA Math. 18 (1971).
[BC95] W. Bosma and J.J. Cannon, Handbook of Magma functions, School of Mathematics,

University of Sydney, Sydney, 1995.

[Coh99] H. Cohen, Advanced topics in computational number theory, Springer Verlag, New
York, 1999.



24 Sebastian Pauli

[Fie99] C. Fieker, Computing class fields via the Artin map, Math. Comp. 70 (2001), 1293-

1303.
[FV93] I. B. Fesenko and S. V. Vostokov, Local fields and their extensions, Translations of

Mathematical Monographs, vol. 121, American Mathematical Society, 1993.

[Has63] H. Hasse, Zahlentheorie, Akademie Verlag, Berlin, 1963.
[HPP03] F. Hess, S. Pauli, and M. E. Pohst, Computing the multiplicative group of residue class

rings, Math. Comp. 72 (2003), no. 243.

[Iwa86] K. Iwasawa, Local class field theory, Oxford University Press, New York, 1986.
[Kra66] M. Krasner, Nombre des extensions d’un degré donné d’un corps p-adique, Les Ten-
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