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Abstract We present an algorithm that finds the splitting field of a polynomial over a local field. Our algorithm is an
OM algorithm modified for this task.

1 Introduction

Let K be a local field. We present an algorithm that given a polynomial Φ ∈OK[x] computes the splitting field L of Φ ,
that is K(θ1, . . . ,θN) where θ1, . . . ,θN are the roots of Φ .

Our algorithm is a variation of an OM algorithm [2], that is specialized to the computation of splitting fields. OM
algorithms are named after Ore-MacLane or Okutsu-Montes and are algorithms that compute the OM invariants of a
polynomial Φ [15, 9] which can be used to compute the factorization of Φ , an integral basis of the fields generated
by the irreducible factors of Φ , their inertia degree and ramification index, and the decomposition of primes in the
maximal order of the global field generated by Φ . Several algorithms have been developed for these tasks, for example
by MacLane [12] (prime decomposition), Ford and Zassenhaus [5] (integral bases), Okutsu [15] (integral bases), and
Montes [14] (prime decomposition). All of them compute the OM invariants more or less explicitly. Our algorithm is
based on Montes’ algorithm [14, 8, 18].

Our method for computing splitting fields uses the information about the extension generated by the roots of Φ

computed in each iteration of the OM algorithm to construct subfields of L of Φ until the splitting field is obtained.
In particular we extend our approximation L to the splitting field as soon as we find inertia or that the splitting field
contains a certain tamely ramified subextension. We generate wildly ramified subfields of L as soon as we have found
an irreducible factor of Φ generating such an extension. In our representation of the algorithm we follow the approach
in [19]. An application of our algorithm can be found in [1]. It can also be modified into an root separation algorithm.

A method, similar to ours, is available in Magma [3]. It makes multiple calls to a variant of the Round 4 algorithm,
but does not make use of all the information computed internally. The Round 4 algorithm is an OM algorithm that is
less efficient than the algorithms based on Montes’ methods [14]. The implementation of the Round 4 algorithm (a
combination of the algorithms described in [6] and [17]) in Magma returns the factorization of a polynomial over a
local field and in addition the extensions generated by the irreducible factors of the polynomial. In the computation of
splitting fields, an initial call to Round 4 is used to generate the unramified extension whose degree is the least common
multiple of the inertia degrees of the extensions generated by the irreducible factors of Φ . Then Φ is considered over
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the extended field. After each subsequent call to Round 4, the field is extended using one of the irreducible factors of
Φ over the current approximation to the splitting field until Φ splits into linear factors.

1.1 Overview

Section 2 contains a description of situations when factorizations of polynomials can be derived. Although we do not
use these methods directly (they are used in the Round 4 algorithm), they make understanding the algorithm easier. In
Section 3 we give some results about tamely ramified extensions and composites of tamely ramified extensions. The
general strategy of the splitting field algorithm is outlined in section 4 with technical details provided in section 5 and
6. We present the splitting field algorithm and some auxiliary algorithms in section 7.

1.2 Notation

Let K be a local field, that is a field complete with respect to a non-archimedian exponential valuation v with finite
residue class field K∼= Fq of characteristic p. We denote the multiplicative group of K by K×. Let OK be the valuation
ring of K and let Φ(x) ∈ OK[x]. For our purposes, v = vK is normalized such that νK(πK) = 1 where π = πK is a
uniformizing element in OK. For γ ∈ OK we denote by γ the class γ + (π) in K. The unique extension of v to an
algebraic closure K of K (or to any intermediate field) is also denoted v. If L/K is a finite extension then vL denotes
the valuation that is normalized such that vL(πL) = 1 where πL is a uniformizing element of L.

Definition 1. For γ ∈ K
×

and δ ∈ K
×

we write γ ∼ δ if

v(γ−δ )> v(γ)

and impose the supplementary condition 0∼ 0. For ϕ(x) = ∑
n
i=0 cixi and ψ(x) = ∑

n
i=0 bixi in K[x] we write ϕ ∼ ψ if

min0≤i≤n v(ci−di) > min0≤i≤n v(ci).

It follows immediately that the relation ∼ is symmetric, transitive, and reflexive. Let L be a finite extension of K with
uniformizing element πL. Two elements γ = γ0πL

u ∈ L and δ = δ0πL
w ∈ L with v(γ0) = v(δ0) = 0 are equivalent with

respect to ∼ if and only if u = w and γ0 ≡ δ0 mod (πL).

2 Hensel Lifting and Newton Polygons

Hensel lifting yields a factorization of polynomials over local fields in certain cases and Newton polygons give valuable
information about the roots of polynomials. We show how these two tools can be used to obtain proper factorizations
in more general cases.

Theorem 1 (Hensel’s Lemma). Let Φ ∈OK[x] be monic. If Φ ≡ ϕ1ϕ2 mod (π) where ϕ1 and ϕ2 are coprime modulo
π , then there is a factorization Φ = Φ1Φ2 with Φ1 ≡ ϕ1 mod (π) and Φ2 ≡ ϕ2 mod (π).

For an example of an efficient Hensel lifting algorithm that lifts a factorization modulo (π) to a factorization modulo
(π)s for any given s, see [20]. We can also obtain an approximation to a factorization of Φ if Hensel lifting can be
applied to the characteristic polynomial of an element ϕ +(Φ) in OK[x]/(Φ).

Definition 2. Let Φ(x) = ∏
N
j=1(x−θ j) ∈ OK[x]. For ϕ ∈ K[x] we define

χϕ(y) :=
N

∏
i=1

(y−ϕ(θi)) = resx(Φ(x),y−ϕ(x)) ∈ K[y].
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Proposition 1. Let γ ∈ K[x] with χγ ∈ OK[y]. If χ
γ

has at least two distinct irreducible factors then Φ is reducible in
OK[x].

Proof. Suppose χ
γ

has at least two irreducible factors. Then, Hensel’s lemma gives relatively prime monic polynomi-
als χ1 ∈ OK[y] and χ2 ∈ OK[y] with χ1χ2 = χγ . Reordering the roots θ1, . . . ,θN of Φ if necessary, we may write

χ1(y) = (y− γ(θ1)) · · ·(y− γ(θr)) and χ2(y) = (y− γ(θr+1)) · · ·(y− γ(θN)),

where 1≤ r < N. It follows that
Φ = gcd(Φ ,χ1(γ)) ·gcd(Φ ,χ2(γ))

is a proper factorization of Φ .

Definition 3 (Newton Polygon). Let Φ(x) = ∑
N
i=0 cixi. The lower convex hull of {(i,v(ci)) | 0≤ i≤ N} is the Newton

polygon of Φ .

The negatives of the slopes of the segments of the Newton polygon of Φ are the valuations of the roots of Φ . The
length of the segment (in x-direction) is the number of roots with this valuation. The negatives of the slopes of the
Newton polygon of the characteristic polynomial χϕ of ϕ + (Φ) are the valuations v(ϕ(θ)) for the roots θ of Φ .
Proposition 1 yields a constructive method for finding a factorization of Φ if χϕ has more than one segment:

Corollary 1. Let ϕ ∈ K[x] with χϕ ∈ OK[y]. If there are roots θ and θ ′ of Φ such that v(ϕ(θ)) 6= v(ϕ(θ ′)) then we
can find two proper factors of Φ(x) over OK[x].

Proof. Let Θ be the set of roots of Φ and let h/e = min{v(ϕ(θ)) | θ ∈Θ}. Setting γ := ϕe/πh we get

max{v(γ(θ)) | θ ∈Θ and γ(θ) = 0}> min{v(γ(θ)) | θ ∈Θ and γ(θ) = 0}= 0.

Thus Proposition 1 yields a factorization of Φ .

3 Tamely Ramified Extensions

For all f ∈ N there is, up to isomorphism, a unique unramified extension of K of degree f . Such an extension can be
generated by any monic polynomial of degree f that is irreducible over K.

Each totally and tamely ramified extension of degree e can be generated by a polynomial of the form xe− γπK

where v(γ) = 0. In certain cases we can obtain a generating polynomial of a tamely ramified subextension from a
polynomial generating a totally ramified extension.

Proposition 2 ([7, Proposition 2.1]). Let n = e0 pm with p - e0 and let

ϕ(x) = xn +
n−1

∑
i=1

ϕixi +ϕ0 ∈ OK[x]

be a polynomial whose Newton polygon is a line of slope −h/n, where gcd(h,n) = 1. Let α be a root of ϕ . The
maximum tamely ramified subextension M of L = K(α) of degree e0 can be generated by the Eisenstein polynomial
xe0 − (−ψ0)

bπe0a where a and b are integers such that ae0 +bh = 1 and ψ0 ∈ OK[x] with ψ0 ≡ ϕ0 mod (πh+1).

This proposition also yields the standard form for generating polynomials of tamely ramified extensions mentioned
above.

Corollary 2. Let ϕ(x) = ∑
e
i=0 ϕixi ∈ OK[x] be an Eisenstein polynomial and assume p - e. If ψ(x) = xe +ψ0 with

ψ0 ≡ ϕ0 mod (π2), then the extensions generated by ϕ(x) and ψ(x) are isomorphic.
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In our algorithm we need to find the composite of several tamely ramified extension of the same degree.

Proposition 3. Let ϕ1(x) = xe− γ1π ∈ OK[y] and ϕ2(x) = xe− γ2π ∈ OK[x] with p - e and v(γ1) = v(γ2) = 0. Let θ1
and θ2 be a roots of ϕ1 and ϕ2 respectively. Then the composite of K(θ1) and K(θ2) is the unramified extension of
K(θ1) whose degree is the least common multiple f of the degrees of the irreducible factors of ze− γ2

γ1
∈ K[z].

Proof. We have
ϕ2(θ1x) = (θ1x)e− γ2π = θ

e
1 xe− γ2π = (γ1π)xe− γ2π.

Dividing by γ1π gives xe− γ2
γ1
= 0. So the composite of K(θ1) and K(θ2) is the extension of K(θ1) that contains the roots

of τ(x) = xe− γ2
γ1

. Since gcd(xe− γ2
γ1
, d

dx (x
e− γ2

γ1
)) = gcd(xe− γ2

γ1
,exe−1) = 1 the polynomial τ(z) = ze− γ2

γ1
∈ K(θ1)[z]

is squarefree. Denote by f the least common multiple of the degrees of the irreducible factors of τ . Then τ splits into
linear factors in the unramified extension of K(θ1) of degree f , which is the composite of K(θ1) and K(θ2).

4 Partitions of Zeros and Types

Let Φ(x) = xN +∑
N−1
i=0 cixi ∈ OK[x] be separable and squarefree and let Θ0 = {θ1, . . . ,θN} be the set of zeros of Φ in

K. We want to find the splitting field of Φ , that is the smallest extension L/K over which Φ splits into linear factors.
We successively generate a tower of subfields of L until we have found L.

In this process we partition the set of the zeros of Φ until all partitions contain exactly one zero of Φ . We obtain a
tree with root node Θ0 whose leaves consist of the sets containing exactly one zero of Φ . Every time we find sufficient
information about a subfield of L we continue over the corresponding extension.

In our description of the algorithm, we focus on one path from the root node Θ0 to a leaf. We indicate where
branching occurs, thus describing the construction of all root paths in the tree. The nodes of such a root path are
subsets of Θ0, where, if Θu+1 is a child of Θu then Θu+1 ⊆Θu. To each node Θu we attach a subfield Ku of the splitting
field such that

K⊂ K1 ⊂ ·· · ⊂ Ku ⊂ ·· · ⊂ L.

In our algorithm, we construct these extensions as soon as we find that L has a certain subfield. When we find a
divisor f of the inertia degree of L/K, we continue over the unramified extension of degree f . Similarly we construct
an unramified extension of degree e when we find ϕ ∈ OKi with v(ϕ(θ)) = h

epµ where gcd(h,e) = gcd(e, p) = 1 and
e 6= 1. To find generating polynomials of wildly ramified extensions, in addition to the field Ku, we attach a polynomial
ϕu to the node Θu that is an approximation to a polynomial that generates the wildly ramified part of Ku(θ)/Ku for
θ ∈Θu. When the degree of ϕu is the ramification index of Ku(θ)/Ku then ϕu is an approximation to a unique factor
of Φ that can be lifted to a factor ϕ̂u of Φ over Ku. We continue working over Ku[x]/(ϕ̂u).

We start the first iteration with a linear monic polynomial ϕ1 = x+β ∈ OK[x]. The negatives of the slopes of the
segments of the Newton polygon of Φ(x−β ) are the valuations of the roots of Φ . Then

L1 = {v(ϕ1(θ)) | θ ∈Θ0}

is the set of negatives of the slopes of the segments of the Newton polygon of Φ(x−β ). We obtain a partition of Θ0
into the sets {θ ∈Θ0 | v(ϕ1(θ)) = λ} for λ ∈ L1. By Corollary 1 each of these sets corresponds to a factor of Φ . For
some λ1 ∈ L1 we set

Θ
∗
1 = {θ ∈Θ0 | v(ϕ1(θ)) = λ1}. (1)

Without computing Θ ∗1 explicitly we investigate the extensions generated by the factor ∏θ∈Θ∗1
(x−θ) of Φ further.

Let λ1 = h1/d1 in lowest terms. Then v(ϕd1
1 (θ)/πh1) = 0 for all θ ∈Θ ∗1 . We set

R1 =
{

ρ ∈ K[z]
∣∣ ρ irreducible and ρ

(
ϕ

d1
1 (θ)/π

h1
)
= 0 for θ ∈Θ

∗
1

}
.
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Let f1 = lcm{degρ | ρ ∈ R1} and let K∗1 be the unramified extension of K of degree f1. Then K∗1 ⊂ L. Over K∗1 the
polynomials in R1 split into linear factors. Let

Γ1 = {ϕd1
1 (θ)/π

h1 ∈ K∗1 | θ ∈Θ
∗
1 }

be the set of zeros of the polynomials in R1. By Proposition 1 each γ ∈ Γ1 corresponds to a factor of Φ over K∗1. We
continue to construct the splitting field of this factor. For some γ

1
∈ Γ1 let

Θ1 =
{

θ ∈Θ
∗
1 | ϕ

d1
1 (θ)/π

h1 = γ
1

}
. (2)

If |Θ1|= 1 then we have reached a leaf of the tree of partitions. Otherwise we write d1 = pµ1e1 with p 6 |e1. If e1 = 1
we set K1 = K∗1.

If e1 > 1, for each γ ∈ Γ1 we obtain a tamely ramified extension of K∗1 that is a subfield of L and let K1 be the
composite of these extensions and the unramified extension of K∗1 that contains the e1-th roots of unity.

Over K1 we have ϕ
pµ1
1 (θ)∼ δ for some δ ∈ K1 for all θ ∈Θ1. The ramification index of K1(θ)/K1 is divisible by

pµ1 and we use ϕ2 = ϕ
pµ1
1 (θ)−δ as a first approximation to an irreducible factor of Φ that generates a wildly ramified

extension of K1. All relevant information from the considerations above can be recovered from the tuple

(ϕ1,λ1,π
h,y− γ

1
) ∈ OK[x]×Q×K[x]×K1[y].

In the second iteration of the algorithm we use ϕ2 to investigate the subfield of L that contains the roots in Θ1
further. The set L2 = {v(ϕ2(θ)) | θ ∈Θ1} contains the slopes of the Newton polygon of the characteristic polynomial
ϕ2 +Φ over K1. Each λ ∈ L2 corresponds to a proper factor of Φ (compare Corollary 1). Let λ2 ∈ L2 be the slope of
a segment of the Newton polygon and Θ ∗2 = {θ ∈Θ1 | v(ϕ2(θ)) = λ2} be the corresponding subset of zeros of Φ . We
write λ2 = h2/d2 in lowest terms and d2 = pµ∗2 e2 with p - e2 and set µ2 = min{µ∗2 −µ1,0}.

We find ψ2 ∈ K1[x] with degψ2 < degϕ2 and vK1(ψ2(θ)) = h2/pµ∗2−µ2 . Let

R2 =
{

ρ ∈ K1[z]
∣∣ ρ irreducible and ρ

(
ϕ

e2 pµ2
2 (θ)/ψ2(θ)

)
= 0 for θ ∈Θ

∗
2

}
,

which is the set of irreducible factors of the characteristic polynomial ϕ
e2 pµ2
2 /ψ2 +Φ over K1. By Proposition 1 each

polynomial in R2 corresponds to a factor of Φ . Let f2 = lcm{degρ | ρ ∈ R2}. The splitting field L of Φ contains the
unramified extension K∗2 of degree f2 of K1. If e2 6= 1 L also contains the composite K2 of certain tamely ramified
extensions of K∗2 of degree e2. Otherwise we set K2 = K∗2. Over K2 the slope λ2 of the segment becomes h2/pµ2 . Let

Γ2 =
{

ϕ
pµ2
2 (θ)/ψ2(θ) ∈ K∗2

∣∣ θ ∈Θ
∗
2

}
.

By Proposition 1 each γ ∈ Γ2 corresponds to a factor of Φ over K2 and a branch of in our tree of partitions. We follow
the branch corresponding to some γ

2
∈ Γ2 to the node

Θ2 =
{

θ ∈Θ
∗
2
∣∣ ϕ

e2 pµ2
2 (θ)/ψ2(θ) = γ

2

}
.

If |Θ2|= 1, we do not need to investigate this branch of the tree of partitions further.
If |Θ2|= degϕ2 = pµ1 > 1 then ϕ2 is an approximation to an irreducible factor of Φ of degree degϕ2 that defines

a wildly ramified extension of K2. We obtain this factor with single factor lifting [10], construct the corresponding
wildly ramified extension, and start over at the root node Θ0 over this extension with a linear polynomial ϕ1.

Otherwise we use ϕ3 = ϕ
pµ2
2 − γ2ψ as the next approximation to an irreducible factor of Φ that generates a wildly

ramified extension of K2.
All the information obtained in this second iteration of the algorithm is included in or can be recovered from the

information in
(ϕ2,λ2,ψ2,z− γ

2
) ∈ OK1 [x]×Q×K1[x]×K2[z].
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We inductively continue this process and keep track of the information computed in a sequence of such tuples called
types (see [8, Definitions 1.21, 1.22 and section 2.1]). We generalize them insofar as we allow the coefficients of the
polynomials in all tuples in a type to be in an extension of K.

Definition 4. Let Φ ∈ OK[x] and let L/K be a finite. Let t = (ϕi,λi,ψ1,ρ i
)1≤i≤u where

(a) ϕ1 ∈ OL[x] is linear, ϕi ∈ OL[x] is monic,
(b) λi = hi/di ∈Q in lowest terms,
(c) ψi ∈ L[x] with degψi < degϕi, and
(d) ρ

i
∈ L irreducible.

We call t an extended type of Φ over L, if for all θ in some subset Θ of the set of roots of Φ we have:

(e) v(ϕi(θ)) = λi

(f) v(ψi(θ)) = eλi with e = lcm(d1,...,di)
lcm(d1,...,di−1)

,
(g) ρ

i
(ϕe

i (θ)/ψi(θ)) = 0, and
(h) v(ϕi(θ))> v(ϕi−1(θ)) and degϕi = e ·degρ

i−1
·degϕi−1 for 2≤ i≤ u.

We call (ϕi,λi,ρ i
)1≤i≤u a type of Φ over L.

Definition 5. Let t =(ϕi,λi,ψ1,ρ i
)1≤i≤u be an extended type over L. We call t optimal if degϕi−1 < degϕi for 2≤ i≤ u

and complete if
degϕu = pmax{µi|1≤i≤u} ·degρ

1
· · · · ·ρ

u
.

If degϕi is a power of p for all 1≤ i≤ u then we call t a wild type of Φ over L.

A type t describes a root path in a tree of partitions of Θ0. If t = (ϕi,λi,ψi,ρi)1≤i≤u a wild type over L with a corre-
sponding subset of roots Θu, then λi = hi/πµ∗i and lcm(pm1 , . . . , pmu) = pmax{m1,...,mu} divides the ramification index
of L(θ) for θ ∈Θu. In our considerations all types are wild and the polynomials ρ are linear.

At the end of the u-th iteration of our algorithm we construct a polynomial ϕu+1 of degree pmax{m1,...,mu} that is
irreducible with v(ϕu+1(θ))> v(ϕu(θ)) for θ ∈Θu.

In the following sections we describe methods for constructing ϕu+1, finding v(ϕu+1(θ)) for all θ ∈Θu, constructing
ψu+1, and finding ρ

u+1
. We will see that the sets Θ0 ⊃Θ1 ⊃ ·· · ⊃Θu help in the understanding the algorithm, but will

never be explicitly needed in actual computations.
If t = (ϕi,λi,ψ1,ρ i

)1≤i≤u is an extended type over L and |Θu| = pmax{m1,...,mu}, then ϕu is an approximation to a
unique irreducible factor of Φ over L of degree pmax{m1,...,mu}. Using the information in t, this approximation can be
lifted to an approximation of arbitrary precision using single factor lifting (see [10]).

5 The First Iteration

We start our description of the construction of the splitting field of Φ ∈ OK[x] of degree N with the first iteration. We
have already gone through these steps in a more conceptual manner in the previous section. As before let ϕ1 ∈ OK[x]
be linear and monic, say ϕ1(x) = x+β , and let Θ0 denote the set of zeros of Φ in K. Although we use the zeros in Θ0
in our exposition, they are not needed in any of the computations.

5.1 Newton Polygons I

The Newton polygon of Φ(x−β ) yields the valuations of the zeros θ1, . . . ,θN of Φ . Alternatively we can also use the
ϕ1-expansion of Φ :
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Definition 6. Let Φ ∈ OKu [x] of degree N and ϕ ∈ OKu [x] of degree n be monic polynomials. We call

Φ =
dN/ne

∑
i=0

aiϕ
i

with deg(ai)< n the ϕ-expansion of Φ .

If Φ = ∑
dN/degϕ1e
i=0 aiϕ

i
1 is the ϕ1-expansion of Φ , then the polynomial χ1(y) = ∑

dN/degϕ1e
i=0 aiyi has the zeros ϕ1(θ)

where θ ∈Θ0. We have
χ1(y) = Φ(y−β ) = χϕ1(y) (3)

with χϕ1 as in Definition 2. The negatives of the slopes of the segments of the Newton polygon of χ1 are the valuations
of ϕ1(θ) for θ ∈Θ0. We obtain a partition of Θ0 into the sets

{θ ∈Θ | v(ϕ1(θ)) = λ}

where λ is the negative of the slope of a segment of the Newton polygon of χ1. To find the splitting field one continues
the algorithm for each of the sets in this partition.

5.2 Residual Polynomial I

Residual (or associated) polynomials were first introduced by Ore [16, 13]. They yield information about the unrami-
fied part of the extension generated by the zeros of Φ . Let S be a segment of the Newton Polygon of χ1(y) = ∑

N
i=1 aiyi

(see (3)), let m1 be the length of S, (k,v(ak)) and (k+m1,v(ak+m1)) its endpoints, and λ1 =
v(ak)−v(ak+n)

m1
= h1

d1
where

gcd(h1,d1) = 1 the negative of its slope. If

Θ
∗
1 = {θ ∈Θ0 | v(ϕ1(θ)) = λ1},

then |Θ ∗1 |= m1. We evaluate χ1 at ϕ1(θ)y and obtain a polynomial whose Newton polygon has a horizontal segment
of length m1. For θ ∈Θ ∗1 we consider χ1(ϕ1(θ)y). Using the equivalence relation from Definition 1 we obtain

χ1(ϕ1(θ)y) =
N

∑
i=0

ai(ϕ1(θ)y)i ∼
k+m1

∑
i=k

aiϕ
i
1(θ)y

i ∼
m1/d1

∑
j=0

a jd1+kϕ
jd1+k

1 (θ)y jd1+k

The last equivalence holds, because the x-coordinates of the points on the segment of the Newton polygon are of the
form k+ jd1 with 0≤ j ≤ m1/d1. Furthermore for 0≤ j ≤ m1/d1 we have v(a jd1+kϕ

jd1+k
1 (θ)) = v(akϕk

1(θ)) and the
polynomial is divisible by yk. Dividing χ1(ϕ1(θ)y) by πv(ak)ϕk

1(θ)y
k we obtain a polynomial of degree m1/d1 that is

equivalent to a polynomial whose leading coefficient and constant coefficient have valuation zero:

χ1(ϕ1(θ)y)
πv(ak)ϕk

1(θ)y
k
≡

m1/d1

∑
j=0

a jd1+kϕ
jd1

1 (θ)y jd1

πv(ak)
mod (π).

For ε = ϕ
d1
1 /πh1 we have v(ε(θ)) = v(ϕd1

1 (θ)/πh1) = 0. Substitution of ϕ
d1
1 by επh1 yields

χ1(ϕ1(θ)y)
πv(ak)ϕk

1(θ)y
k
≡

m1/d1

∑
j=0

a jd1+kπ jh1ε jy jd1

πv(ak)
mod (π).

Replacing εyd1 by z and considering the resulting polynomial over K yields the residual polynomial of S:
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A1(z) :=
m1/d1

∑
j=0

a jd1+kπ
jh1−v(ak)z j ∈ K[z].

For θ ∈Θ ∗1 we have that ϕ
d1
1 (θ)/πh1 ∈ K is a zero of A1.

5.3 Unramified Extension I

Let f1 be the least common multiple of the degrees of the irreducible factors of A. The unramified extension K∗1 of K
of degree f1 is a subfield of L and A splits into linear factors over the residue class field K∗1 of K1.

Let Γ1 be the set of zeros of A1 in K1. By Proposition 1 we can obtain a proper factor of Φ over K1 for each γ ∈ Γ1.
For some γ1 ∈ Γ1 let

Θ1 = {θ ∈Θ
∗
1 | ϕ1(θ)

d1/π
h1 = γ

1
}.

Our choice of γ1 determines on which branch of the tree of partitions of Θ to follow.

5.4 Tamely Ramified Extension I

For all θ ∈Θ1 we have v(ϕ1(θ)) = λ1 = h1/d1 = h1/(e1 pµ∗1 ) where gcd(h1,d1) = gcd(e1, p) = 1.
If e1 = 1 is a power of p we set K1 = K∗1.
If e1 6= 1 is not a power of p, then the slope −h1/(e1 pµ∗1 ) together with γ

1
give enough information to provide

a generating polynomial of a tamely ramified subfield K1/K
∗
1 of L. Let γ1 be a lift γ

1
to OK1 . We have θ

d1

π
h1
∼ γ1, so(

θ pµ1
)e1
∼ γ1πh1 . Therefore for δ = θ pµ1 , we have δ e1 ∼ γ1πh1 . The Newton polygon of τ∗(x) = xe1 − γ1πh1 is a line

of slope −h1/e1 with gcd(h1,e1) = 1. By Proposition 2, if a and b are integers such that ae1 +bh1 = 1, the extension
generated by τ∗ is generated by the Eisenstein polynomial

τ = xe1 +(−1)b(γ1π
h1)b

π
e1a = xe1 +(−1)b

γ
b
1 π

bh1+ae1 = xe1 +(−γ1)
b
π.

As the splitting field of τ contains the e1-th roots of unity we continue the computations over the tamely ramified
extension K1 given by τ over the unramified extension of K∗1 that contains the e1-th roots of unity. Using proposition
3 we can obtain the composite of the tamely ramified extensions of degree e1 given by all γ ∈ Γ1.

5.5 Next Approximation I

After the considerations in section 5.4 above we can assume λ1 = h1/d1 = h1/pµ1 , as either d1 was a power of p
already or, if K1 is a tamely ramified extension of K∗1, recomputing the Newton polygon gives a segment with slope
−λ =−h1/pµ1 . In the latter case we also need to recompute the residual polynomial A in 5.2, which will be of higher
degree. Again let Γ1 be the set of zeros of A, and γ

1
∈ Γ1. Denote by γ1 a lift of γ

1
to OK1 and set

Θ1 = {θ ∈Θ
∗
1 | ϕ

d1
1 (θ)/π

h1
K1

= γ
1
}.

We have the relation ϕ
pµ1
1 (θ)∼ γ1π

h1
K1

for all θ ∈Θ1. Now

ϕ2 = ϕ
pµ1
1 − γ1π

h1
K1

8



is an approximation to a polynomial generating the wildly ramified subextension of K1(θ) with

vK1(ϕ2(θ)) = vK1(ϕ
pµ1
1 (θ)− γ1π

h1
K1
)> h1 ≥ h1/d1 = vK1(ϕ1(θ)).

5.6 Valuations I

Let a = ∑
d1
j=0 a jϕ

j
1 ∈ K1[x] with dega < degϕ2 = d1 = pµ1 . As the valuations

vK1(ϕ1(θ)) =
h1

d1
, . . . ,vK1(ϕ

d1−1
1 (θ)) =

(d1−1)h1

d1

are distinct (and not in Z),

vK1(a(θ)) = min
0≤ j≤degd1−1

vK1(a j(θ)ϕ
j

1(θ)) = min
0≤ j≤degd1−1

vK1(a j(θ))+ j(h1/d1).

Furthermore, if we only consider the terms with valuation vK1(a(θ)) we obtain a polynomial that at θ is equivalent to
a(x). That is, if vK1(a j(θ))+ j(h1/d1) = vK1(a(θ)) then we have a(θ)∼ a j(θ)+ϕ

j(h1/d1)
1 for θ ∈Θ1.

5.7 Polynomials with given Valuations I

The data computed in the first iteration allows us, given c ∈ Z and d ∈ N with gcd(c,d) = 1 and d | d1 = pµ1 , to find
ψ(x) ∈ K[x] with v(ψ(θ)) = c

d for θ ∈Θ1 and degψ < d1.
If d = 1 then ψ(x) := π

sπ

K1
with sπK1

= c has the property vK1(ψ(θ)) = c
d for all θ ∈Θ1.

Otherwise d is a proper divisor of d1. Find s1 ∈ Z such that s1h1 ≡ c
d d1 mod d1 and let s0 = c

d − v(ϕs1
1 (θ)) ∈ Z.

Now for ψ(x) := π
s0
K1

ϕ1(x)s1 ∈ K[x] we have v(ψ(θ)) = c
d for θ ∈Θ1.

5.8 Arithmetic I

We consider the arithmetic of polynomials of degree less than d1 = pµ1 .
Let a(x) = ∑

d1−1
i=0 aixi and τ(x) = xs1πs0 with s0,s1 ∈ Z. Multiplication gives a(x)τ(x) = ∑

d1−1
i=0 aiπ

sπ

K1
xi−s1 which in

general is a rational function or a polynomial of degree greater than d1−1.
As v(ϕd1

1 (θ)/π
h1
K1
− γ1) = 0 we have the relation

ϕ
d1
1 (θ)∼ γ1π

h1
K1
.

So by repeatedly substituting ϕ
d1
1 by γ1π

h1
K1

we obtain a polynomial b(x) ∈ K[x] with degb < d1 such that b(θ) ∼
a(θ)ψ(θ).

6 The u-th Iteration

We describe a general iteration of the algorithm. Let t = (ϕi,λi,ψi,y− γi)1≤i≤u−1 be a wild extended type of Φ over
Ku−1 that is not complete. We write λi = hi/pµ∗i with gcd(hi,ei p) = gcd(ei, p) = 1 and set Mu−1 = max{µ∗i |1 ≤ i ≤

9



u−1} and µu−1 = Mu−1−Mu−2. Assume that we have found the next approximation ϕu ∈ OKu−1 [x] to a generator of
a wildly ramified extension with degϕu = pMu−1 and vKu(ϕu(θ))> vKu(ϕu−1(θ)) for all θ ∈Θu−1.

We assume that we have the following methods, which rely on the data computed in the previous steps. For each
method the base case is described in section 5 and the general case in this section. Because of the recursive nature of
the algorithm we use forward references in our representation.

Valuation given a(x) ∈ Ku[x] with dega < degϕu = pMu−1 finds vKu(a(θ)) for θ ∈Θu−1 (see sections 5.6, 6.7 and
Algorithm 1).

PolynomialWithValuation given c∈Z and d ∈N with d | pMu finds ψ(x)∈Ku[x] with degψ < degϕu = pMu−1

such that vKu(ψ(θ)) = c
d for all θ ∈Θu−1 (see sections 5.7, 6.8 and Algorithm 3).

Furthermore we assume that we have methods for arithmetic and reduction of polynomials of degree less than pMu in
their representations as sums of power products (see sections 5.8, 6.9 and Algorithm 4 reduce).

In the u-th iteration of the algorithm we investigate the properties of ϕu and construct the next approximation
ϕu+1 ∈ OKu [x] to a polynomial defining a wildly ramified subfield of the splitting field.

6.1 Newton Polygon II

We use the ϕu-expansion of Φ to find the valuations vKu−1(ϕu(θ)) for θ ∈ Θu−1. Let lu = dN/degϕue and Φ =

∑
lu
i=0 aiϕ

i
u be the ϕu-expansion of Φ . For each root θ ∈Θu−1 we have

Φ(θ) =
lu

∑
i=0

ai(θ)ϕ
i
u(θ) = 0.

Hence

χu =
lu

∑
i=0

ai(θ)yi ∈ K[y]

has the zeros ϕu(θ) for θ ∈Θu−1.
The method Valuation returns the valuations of the coefficients ai(θ) of χu and with these the Newton polygon

of χu yields the valuations of ϕu(θ) for θ ∈Θu−1. We obtain a partition of Θu−1 into the subsets {θ ∈Θu−1 | v(ϕ(θ)) =
λ} where λ is the negative of the slope of a segment of the Newton polygon of χu. By Corollary 1 each segment of
the Newton polygon of χu, and thus each set in the partition, corresponds to a factor of Φ(x).

Definition 7. The Newton polygon of χu is called the Newton polygon of Φ with respect to ϕu. It is also called a
Newton polygon of higher order [14, 8].

6.2 Residual Polynomial II

Let S be a segment of the Newton Polygon of χu of length mu with endpoints (k,vKu−1(ak(θ))) and (k+m,vKu−1(ak+mu(θ)))
for θ ∈Θu−1. Let

λu =
vKu−1(ak(θ))− vKu−1(ak+n(θ))

mu
=

hu

du
,

where gcd(hu,du) = 1 and let Θ ∗u = {θ ∈Θu−1 | vKu−1(ϕu(θ)) = λu}. We have |Θ ∗u |= mu degϕu.
Let eu and µ∗u such that du = eu pµ∗u with gcd(eu, p) = 1 and M = ∑

u−1
i=0 µi = max{µ∗i | µ∗i }, ν = min{µ∗,M}, and

µu = max{µ∗u −M,0}. The method PolynomialWithValuation gives ψu ∈ Ku−1[x] with

vKu−1(ψu(θ)) = vKu−1

(
ϕ

eu pµu
u

)
= eu pµuλu = hu/pν

10



for θ ∈Θ ∗u . We have

χu(ϕu(θ))∼
k+m

∑
i=k

ai(θ)ϕ
i
u(θ)x

i ∼
m/(eu pµu )

∑
j=0

a jeu pµu+k(θ)ϕ
jeu pµu+k

u (θ)x jeu pµu+k

The last equivalence holds, because the x-coordinates of the points on the segment of the Newton polygon are of the
form k+ jeu pµu (0≤ j ≤ m/(eu pµu)). Division by ϕk

uyk yields

χu(ϕu(θ))

ϕk
u(θ)yk ∼

m/(eu pµu )

∑
j=0

a jeu pµu+k(θ)ϕ
jeu pµu

u (θ)y jeu pµu
.

For γ = ϕuθ eu pµu
/ψu(θ) we have vKu−1(γ) = vKu−1(ϕ

eu pµu
u (θ)/ψu(θ)) = 0. By substituting γψu(θ) for ϕ

eu pµu
u (θ) we

get
χ(ϕu(θ)y)
ϕk

u(θ)yk ∼
m/(eu pµu )

∑
j=0

a jeu pµu+k(θ)(γψ
j

u(θ))y
jeu pµu

The method PolynomialWithValuation gives a polynomial τ ∈ Ku−1[x] with vKu−1(τ(θ)) = vKu−1(ak(θ)) for
θ ∈Θu−1. Replacing γyeu pµu by y and division by τ(θ) yields

A(y) =
m/(eu pµu )

∑
j=0

a jeu pµu+k(θ)ψ
j

u(θ)

τ(θ)
y j.

By construction vKu−1

(
a jeu pµu+k(θ)ψ

j
u(θ)

τ(θ)

)
≥ 0, in particular vKu−1

(
ak(θ)ψu(θ)

τ(θ)

)
= 0 and vKu−1

(
ak+m(θ)ψ

m/(eu pµu )
u (θ)

τ(θ)

)
=

0. So the polynomial A(z) ∈ Ku−1[z] has degree mu/(eu pµu). It is called the residual polynomial of S.

6.3 Unramified Extension II

Let fu be the least common multiple of the degrees of the irreducible factors of A and let K∗u be the unramified extension
of Ku−1 of degree fu. Over K∗u the residual polynomial A splits into linear factors. We denote by Γu the set of lifts of
zeros of A to Ku and partition Θ ∗u into the sets of the form

Θu =

{
θ ∈Θ

∗
u

∣∣∣∣∣ ϕ
eu pµu
u

ψu
(θ) = γ

u

}
. (4)

where γu ∈ Γu. We have |Θu|= gdegϕu, where g is the multiplicity of γ
u

as a zero of A.

6.4 Tamely Ramified Extension II

For θ ∈Θu, we have
(

ϕ
eu pµu
u /ψu

)
(θ) = γu, and therefore

(
ϕ

pµu

u (θ)
)eu
∼ γuψu(θ). For ϕ̃ = ϕ pµu we have ϕ̃eu(θ)∼

γuψ(θ). As in section 6.2 let ν = min{µ∗u ,Mu−1}= µ∗u −µu. Since

vKu−1(ψ
pν

u (θ)) = pν(eu pµuλu) = pµ∗u−µueu pµu
hu

eu pµ∗u
= hu,

11



there is δ ∈ O×Ku−1
such that ψ

pµ∗u−µu
u (θ)∼ δπ

hu
Ku−1

. With ϕ̂ = ϕ̃ pν

we get

ϕ̂
eu(θ) = ϕ̃

pν ∼ γ
pν

u ψ
pνu

(θ)∼ γ
pν

u δπ
hu .

Thus the roots of τ∗(x) = xeu − γ
pν

u δπhu are in the splitting field L. Since the Newton polygon of τ∗ is a line of
slope −hu/eu where gcd(hu,eu) = 1, the polynomial τ∗ defines a tamely ramified extension of K∗u of degree eu. By
Proposition 2 it is generated by the Eisenstein polynomial

τ(x) = xeu +(−1)b(γ pν

u δπ
hu)b

π
eua = xeu +(−1)b

γ
bpν

u δ
b
π

bhu+aeu = xeu +(−γ
pν

u δ )b
π

where a and b are integers such that aeu +bhu = 1.

6.5 Wildly Ramified Extension

Now either du was a power of p already or, after extending K∗u the slope of the segment of the Newton polygon of χu
corresponding to S now is−hu/pµ∗u over Ku. If Ku is a tamely ramified extension of K∗u we would need to recompute the
associated polynomial A and to obtain a residual polynomial of higher degree. Hence we assume λu = hu/du = hu/pµ∗u .

If |Θu|= degϕu = 1 we have reached a leaf of the tree of partitions.
If |Θu| > degϕu we continue with constructing a next approximation to a polynomial that generates the wildly

ramified part of Ku(θ) for θ ∈Θu.
If |Θu| = degϕu = pMu−1 6= 1 then ϕu is an approximation to a unique irreducible factor ϕ̂ of degree pMu−1 of Φ

over Ku. We obtain ϕ̂ using single factor lifting [10], which generates a totally and wildly ramified extension M of Ku
over which Φ has at least one linear factor. Now for 1≤ i≤ u−1 with µi > 0 the data in t = (ϕi,λi,ψi,y− γi)1≤i≤u−1
and the slopes −λi, and thus ψi and Ai are not correct over M. Thus we continue our computations with the type
t = (ϕi,λi,ψi,y− γi)1≤i≤ j over M, where 1≤ j ≤ u−1 is such that µi = 0 for 1≤ i≤ j.

6.6 The Next Approximation II

As above in section 6.5 we assume that λu = hu/du = hu/pµ∗u and as in section 6.2 let ψu ∈ Ku−1[x] with v(ψu(θ)) =

hu/pµ∗u for θ ∈Θu ⊆Θu−1. If Γu denotes the set of zeros of the residual polynomial and γu ∈ Γu, then ϕ
pµ∗u
u (θ)∼ γuψu

for all θ ∈Θu. The polynomial
ϕu+1 = ϕ

pµ∗u
u − γuψu

is an approximation to a polynomial that generates the wildly ramified subextension of Ku(θ) with

vKu(ϕu(θ)) = vKu(ϕ
pµ∗u
u (θ)− γuψu) = vKu(ψu) = hu/pν ≥ hu/du = vKu(ϕu(θ))

for all θ ∈Θu.

6.7 Valuations II

For b(x) ∈ Ku−1[x] with degb < pMu−1 the method Valuation yields vKu−1(a(θ)) for θ ∈Θu ⊂Θu−1. Let a ∈ Ku[x]
with dega < pMu and m = ddega/degϕue. Let a = ∑

m
j=0 a jϕ

j
u with dega j < degϕu = pMu−1 be the ϕu-expansion of a.

As the valuations
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vKu(ϕu(θ)) =
h1

du
, . . . ,vKu(ϕ

pµu−1
u (θ)) =

(pµu −1)hu

du

are distinct (and not in 1
pMu−1

Z) we have

vKu(a(θ)) = min
0≤ j≤m

vKu

(
a j(θ)ϕ

j
u(θ)

)
= min

0≤ j≤m
vKu (a j(θ)+ j(hu/pµu)) .

Furthermore, if we only consider the terms with valuation vKu(a(θ)) we obtain a polynomial that at θ is equivalent
to a(x). That is, for J = { j | vKu(a j)+ jhu/du = vKu(a(θ))} and b(x) = ∑ j∈J a j(x)ϕ

j
u(x) we have a(θ) ∼ b(θ) for

θ ∈Θu.

6.8 Polynomials with given Valuations II

Let c ∈ Z and d ∈ N with d ≤Mu. We describe how ψ(x) ∈ Ku[x] with vKu(ψ(θ)) = c
pd and degψ < degϕu = pMu−1

can be constructed. Assume that for c′ ∈Z and d′ ∈N with d′ < Mu−1 we can find ψ ′(x)∈K[x] with vKu(ψ
′(θ)) = c′

pd′

for θ ∈Θu ⊆Θu−1.
If d < Mu−1 then we can find ψ(x) by our assumption. Otherwise we have Mu−1 < d ≤ Mu and we find su ∈ Z,

0≤ su < pµu such that
suhu ≡ cpMu−d mod pµu

and set c′

pd′ =
c
pd −suvKu(ϕu) in lowest terms. As d′<Mu−1 the assumption yields ψ ′(x)∈Ku[x] with vKu(ψ

′(θ))= c′

pd′ .

Thus we get ψ(x) = ϕsu
u (x)ψ ′(x) with vKu(ψ(θ)) = c

pd and degψ < pMu .

6.9 Arithmetic II

We consider the arithmetic of polynomials of degree less than pMu . Clearly addition and subtraction of two such
polynomials again yield polynomials of degree less than pMu . We assume that methods for handling polynomials of
degree less than pMu−1 are available. That is, given a(x) ∈Ku−1 and b(x) ∈Ku−1 we can find a polynomial c ∈Ku−1[x]
with degc < pMu−1 such that c(θ)∼ a(θ)b(θ) for θ ∈Θu ⊆Θu−1.

Let a(x) = ∑
pMu−1
i=0 ai(x)ϕ i

u and b = ϕs
ub′ with s ∈ Z, b′ ∈ Ku[x] of degree less than pMu−1 . Multiplication gives

a(x)b(x) = ∑
pMu−1
i=0 aib′ϕ i+s

u which in general is a rational function or a polynomial of degree greater than pMu−1. We
have ϕeu

u (θ)/ψu(θ) = γ
u
, thus

ϕ
eu
u (θ)∼ γψu(θ)

for any γ ∈ Ku with γ = γ
u
. Repeated substitution of ϕ

pµu
u by γψu reduces the exponents of ϕu to s′ with 0≤ s′ < pµu .

The coefficient of ϕs′
u now is the product of polynomials of degree less than pMu , which can be reduced to a polynomial

of degree less than pMu by our assumption. Thus we obtain a polynomial b(x) ∈ K[x] with degb < pMu such that
b(θ)∼ a(θ)ψu(θ). If vKu(a(θ)) = 0 recursive application of these reductions yield β ∈ Ku with a(θ)∼ β .

7 Algorithms

In our formulation of the algorithm we add a fifth component to the extended types from Definition 4, making all
the information from previous iterations of the algorithm needed in later iterations readily available. We denote the
subfield of the splitting field of Φ over which we are working at all times by L. So in this section types are of the form
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t = (ϕi,λi,ψi,γi,µi)1≤i≤u (5)

with ϕi ∈OL[x], λi =
h

ei pµ∗i
∈Q with gcd(h,ei p) = gcd(ei, p) = 1, γi ∈ L, µi ∈N such that µi = max{µ∗i −Mi,0} where

Mi = max{µ∗j | 1≤ j ≤ i−1}= ∑
i−1
j=1 µ j. By Θ =Θu we denote the set of zeros that corresponds to t as in (4).

In an implementation of the algorithm, the methods described below operate on representations of polynomials as
nested ϕi-expansions (1 ≤ i ≤ u). To avoid having to write down these somewhat involved data structures, we use
polynomials to formulate the input and the output of the methods. Sections 5.8 and 6.9 yield these methods:

div(t,a,b) Given a ∈ K[x] of degree less than pMu and b(x) = ϕsu
u . . .ϕs1

1 πsπ where si < ei we find c ∈ K[x] with
degc < degϕu such that a(θ)/b(θ)∼ c(θ) for all θ ∈Θu

mult(t,a,b) Given a,b∈K[x] of degree less than pMu we find c∈K[x] with degc< degϕu such that a(θ)b(θ)∼ c(θ)
for all θ ∈Θu.

pow(t,a,n) Given a ∈ K[x] of degree less than pMu we find c(x) ∈ K[x] with degc < degϕu such that an(θ) ∼ c(θ)
for all θ ∈Θu.

Furthermore we write divmod for the function that for a,b ∈ Z returns the quotient and remainder of the division of
a by b.

We first give auxiliary algorithms for the computation of vt(a) = v(a(θ)) for θ ∈Θu, the Newton polygon of Φ

with respect to ϕ , polynomials with given valuations, the reduction of elements represented as power products of
polynomials, and the computation of residues and residual polynomials. This is followed by the algorithm for the
splitting field.

We use Algorithm 1 Valuation to compute vL(a(θ)) for θ ∈Θu. It follows from the discussions in sections 5.6
and 6.7 that to find vL(a(θ)) for θ ∈Θu we only need the type t = (ϕi,λi,ρi)1≤i≤u and not θ . We thus obtain one of
the valuations of polynomial rings as classified by MacLane in [11]. We write vt(a) for the valuation computed by the
algorithm and have vt(a) = vKKu(a(θ))

Algorithm 1 Valuation

Input: A local field L, type (ϕi,λi,ψi,γi,µi)1≤i≤u over L, and a(x) ∈ L[x].
Output: Valuation vt(a).

• If a ∈ L: Return vL(a).
• Find the ϕu−1-expansion of a(x) = ∑

ddega/degϕue
j=0 a j(x)ϕ

j
u(x).

• Return min
{
Valuation

(
L,(ϕ j,λ j,ψ j,γ j,µ j)1≤ j≤u−1,a j

)
+ jλu−1

∣∣ 1≤ i≤ d dega
degϕu−1

e
}

Algorithm 2 NewtonPolygonSegments returns the set of segments of the Newton polygon of Φ with respect
to ϕ as described in section 5.1 and 6.1.

Algorithm 2 NewtonPolygonSegments

Input: A local field L, Φ ∈ L[x], a type t = (ϕi,λi,ψi,γi,µi)1≤i≤u over L, and
ϕ ∈ OL[x]

Output: Set of Segments S of the Newton polygon of Φ with respect to ϕ .

• Find the ϕ-expansion Φ = ∑
m
i=0 aiϕ

i where m = ddegΦ/degϕe.
• Find vi = Valuation(L, t,ai) for 0≤ i≤ m.
• Construct the lower convex hull of the set of points {(i,vi) | 1≤ i≤ m}.
• Return the set S of segments of this broken line.
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Given a type t as in (5) and w ∈ 1
pMu Z, Algorithm 3 PolynomialWithValuation returns a polynomial ψ

such that vt(ψ) = w as described in sections 5.7 and 6.8. See [19], [18, Algorithm 14] or [10, Section 4] for a general
version of this algorithm.

Algorithm 3 PolynomialWithValuation

Input: A type (ϕi,λi,ψi,γi,µi)1≤i≤u and c
pd ∈Q with d ≤ ∑

u−1
i=1 µi.

Output: ψ(x) ∈ K[x] with degψ < degϕu and vL(ψ(θ)) = c
pd .

• If d = 0: Return πc.
• M← ∑

u−2
i=1 µi.

• If d ≤M: Return PolynomialWithValuation
(
(ϕi,λi,ψi,γi,µi)1≤i≤u−1,

c
pd

)
.

• Find 0≤ s < pµu−1 such that shu−1 ≡ cpM+µu−1−d mod pµu−1 .
• Return ϕs

u(x) ·PolynomialWithValuation
(
(ϕi,λi,ψi,γi,µi)1≤i≤u−1,

c
pd − sλu−1

)
.

In sections 5.8 and 6.9 we have described how a product ∏
u
i=1 ϕ

si
i (x) can be reduced such that si < pµi for 1≤ i≤ u.

Algorithm 4 reduce conducts this reduction recursively. Because, for 1 ≤ i ≤ u the valuations of ϕ
si
i with si < pµi

are linearly independent, there is only one reduced representation of each class of some a ∈ L[x] with respect to the
equivalence relation from Definition 1. Thus if vt(a) = 0 then reduce(a) ∈ L.

Algorithm 4 reduce

Input: A type (ϕi,λi,ψi,γi,µi)1≤i≤u and a(x) = ϕru
u ·∏u−1

i=1 ϕ
ri
i · δ ∈ L[x] with

δ ∈ K.
Output: b(x) = ϕsu

u c(x)∈ L[x] with degc< degϕu, 0≤ su < pµu , and a(θ)∼ b(θ)
for θ ∈Θu.

• If a ∈ L: Return a.
• s,d← divmod(ru, pµu )
• Return ϕs

u · γd
u ·ψd

u ·reduce
(
(ϕi,λi,ψi,γi,µi)1≤i≤u−1,∏

u−1
i=1 ϕ

ri
i ·δ

)
.

The residual polynomial of a segment of a Newton polygon of higher order is computed in Algorithm 5 ResidualPolynomial.

Algorithm 5 ResidualPolynomial

Input: A type (ϕi,λi,ψi,γi,µi)1≤i≤u, a segment S of the Newton polygon of Φ

with respect to ϕ , and ψ with vt(ψ) = λu = epmin{µ,Mu} where−h/(epµ )
is the slope of S.

Output: The residual polynomial A of S.

• Let Φ =
dN/degϕue

∑
i=0

aiϕ
i be the ϕ-expansion of Φ(x).

• Let m be the length of S.
• τ ← PolynomialWithValuation(t,ν) where ν is the y-coordinate of the first point of S.

• A(z)←
m/eu

∑
j=0

reduce(t,mult(t,ak+e·i(x),div(t,pow(t,ψ(x), j),τ(x))))y j .

• return A.

Algorithm 6 SplittingField computes the splitting field of a polynomial. If µu = 0 and degϕ = 1 and the
multiplicity of the zero γ of A is one, then ϕ is an approximation to a linear factor and therefore discarded. In a type
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we denote non-assigned components by ·. In each iteration we of the algorithm we start with a type whose last member
has only the first component set and then fill in the other components. At the end of each iteration the last member of
all types again only have the first component assigned. We start with t = (x, ·, ·, ·, ·). The types in the algorithm are at
all times optimal. In step 4i. when the current iteration only yields a ϕ with a higher valuation at θ ∈Θ we replace
the last component of the type t by the current (ϕ, ·, ·, ·, ·); this is called an improvement step. If the degree of ϕ in
increases we append (ϕ, ·, ·, ·, ·) to t; this is called a Montes step.

Algorithm 6 SplittingField

Input: Φ ∈ OK[x] monic and square-free
Output: Splitting field of Φ

• Initialize L← K and T ←{(x, ·, ·, ·, ·)}
• While T is non-empty:

1. Choose a type t = (ϕi,λi,ψi,γi,µi)1≤i≤u from T .
2. Remove t from T .
3. M← ∑

u−1
i=1 µi

4. For S ∈ NewtonPolygonSegments(Φ(x), t,ϕu(x)):
a. Let λu =

h
epµ∗ with gcd(h, pe) = gcd(e, p) = 1 be the negative of the slope of S.

b. µu←max{µ∗−M,0} and ν ←min{µ∗,M}
c. ψu← PolynomialWithValuation(t,h/pν )
d. A← ResidualPolynomial(t,S,ψ)
e. Find f0 minimal with e | (|L f0 |−1).
f. If f = lcm{ f0,degρ | ρ irreducible factor of A}> 1:

continue over unramified extension
• Replace L by the unramified extension of L of degree f .

g. If the length of S is one and degϕu > 1:
continue over wildly ramified extension
• Let ϕ̂ be a lift of ϕu to a factor of Φ .
• Replace L by L[x]/(ϕ̂).
• Insert t into T .
• Replace each (ϕ j,λ j,ψ j,γ j,µ j) j ∈ T by (ϕ1, ·, ·, ·, ·)
• Exit for loop.

h. If e > 1:
continue over tamely ramified extension
• Find δ ∈ OK such that ψ pν

= δπh.
• Find a,b ∈ Z be such that ae+bh = 1.
• Replace L by the composite of L[x]/(xe +(−γ pν

δ )bπL) where the γ are lifts of the roots of A in L.
• Insert t into T .
• Exit for loop.

i. For all roots γ of A in L:
• Let γ be a lift of γ to OL.
• If µu > 0:

more wild ramification found, a Montes step
• Insert t with (ϕ

µu
u − γψu, ·, ·, ·, ·) appended into T .

• Else if degϕ > 1 or the multiplicity of γ is greater than 1:
valuation of ϕ increases, but not its degree, an improvement step
• Insert t with its last member replaced by (ϕu− γψu, ·, ·, ·, ·) into T .

• Return L.

Remark 1. For better readability of the algorithm we have excluded some obvious improvements. When we continue
over a tamely ramified extension in 5h., instead of exiting the for loop and recomputing the Newton polygon in 4.
we can adjust the slopes of the segments of the Newton polygon, which over the tamely ramified extension of degree
e do not have e in the denominator anymore and continue in 4c. When choosing t from T in 1. a speedup may be
achieved by first processing the longest type as this avoids discarding information about wildly ramified extensions in
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4h. If ϕ ∈OK[x] is Eisenstein the maximal tamely ramified subfield of the splitting field of ϕ can be obtained from [7,
Theorem 9.1].

7.1 Termination

The termination of the algorithm is assured by the following theorem.

Theorem 2 ([17, Proposition 4.1]). Let Φ(x) ∈ OK[x] be square-free and let Θ0 be the set of zeros of Φ(x) in K.
Let ϕ(x) ∈ K[x] such that the degree of any irreducible factor of Φ(x) is greater than or equal to degϕ . If (degΦ) ·
v(ϕ(θ j))> 2v(discΦ) for all θ ∈Θ0 then degϕ = degΦ and Φ(x) is irreducible over K.

By Theorem 2 the polynomial Φ(x) is irreducible if we find a monic ϕ(x) ∈OK[x] such that Nv(ϕu(θ))> 2v(discΦ)
for some u ∈ N. In every iteration of the algorithm the increase from v(ϕu) to v(ϕu+1) is at least 1/N. Thus the
algorithm terminates after at most v(discΦ) iterations.

7.2 Representation of Extensions

Extensions of local fields are often represented as a tower of an totally ramified extension over an unramified extension.
Although some computer algebra systems (for example Magma [3]) allow the construction of arbitrary towers of
extensions, in practice it is more efficient to work over smaller towers. We represent our extensions as a totally and
wildly ramified extension over a totally and tamely ramified extension over an unramified extension and insert new
extensions into the corresponding subfield in the tower.

Ramified extensions are usually given by Eisenstein polynomials, and indeed for the tamely ramified extensions in
our algorithm we explicitly give these. For the wildly ramified extensions, lifting the approximation to an irreducible
factor ϕ by single factor lifting yields a generating polynomial ϕ̂ that is not Eisenstein in general. Algorithm 3 can be
used to compute Π ∈ L[x] with vt(Π) = 1/pM where pM = degϕ . The characteristic polynomial (see Definition 2) of
Π ∈ L[x]/(ϕ̂) is the desired Eisenstein polynomial. It can be computed either using linear algebra methods as in [6]
or, in the p-adic case, using Newton relations.
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