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Abstract

Efficient Enumeration of Extensions of Local Fields

with Bounded Discriminant

Sebastian Pauli, Ph.D.

Concordia University, 2001

Let k be a p-adic field. It is well-known that k has only finitely many extensions of a

given finite degree. Krasner [1966] gives formulae for the number of extensions of a

given degree and discriminant. Following his work, we present an algorithm for the

computation of generating polynomials for all extensions K/k of a given degree and

discriminant. We also present canonical sets of generating polynomials of extensions

of degree pm. Some methods from the proof of the number of extensions of a given

degree and discriminant can also be used for the determination of a bound that gives

a considerably improved estimate of the complexity of polynomial factorization over

local fields. We use this bound in an efficient new algorithm for factoring a polynomial

Φ over a local field k. For every irreducible factor ϕ(x) of Φ(x) our algorithm returns

an integral basis for k[x]/ϕ(x)k[x] over k.
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Introduction

Let k be a local field, i.e., a field complete with respect to a discrete prime divisor

p, and fix an algebraic closure k of k.

Most results in chapter 2 hold for a local field in general; this includes local fields

with infinite residue class field.

In chapter 3 the field k will be a finite extension of the p-adic numbers Qp for some

prime number p.

For K a finite extension of k the description of the lattice of extensions of K in k is

an important problem in the theory of p-adic fields.

If we restrict our attention to Abelian extensions then this description is complete

and is given by Local Class Field Theory (see e.g. [Serre, 1963] or [Fesenko and

Vostokov, 1993]). In the general case, such a description is not yet known. But if we

restrict ourselves to local fields with finite residue class field the number of extensions

of a given degree and discriminant is finite. It is even possible to ask for a formula

that gives the number of extensions of a given degree, and for methods to compute

them. Krasner [1966] gives such a formula, using his famous lemma as a main tool.

Indeed, his proof is constructive. It is possible to adapt his methods to get a set of

polynomials defining all of these extensions.

Note that Serre [1978] computes the number of extensions using a different method

in the proof of his famous “mass formula” (which can also be proved by Krasner’s

method [Krasner, 1979]).

In chapter 3 we give a new proof of Krasner’s formula for the number of extensions of

a p-adic field of a given degree and discriminant. We use the formulae for the number

of extensions to compute a minimal set of polynomials that generate all extensions of
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a p-adic field of degree p and give an algorithm for the computation of all extensions

of a given degree.

Some methods from the proof of the number of extensions of a given degree and

discriminant can also be used for the determination of a bound that gives a con-

siderably improved estimate of the complexity of polynomial factorization over local

fields.

The factorization of polynomials over local fields is closely related to the computa-

tion of integral bases of local and global fields and can be applied to the factorization

of ideals in global fields. Several polynomial factorization algorithms have been pub-

lished:

• The Round Four algorithm of Zassenhaus [Ford, 1978, 1987, Ford and Letard,

1994] was originally conceived as an algorithm for the computation of integral

bases of algebraic number fields and is fast in most cases. In some cases however

a branch of the algorithm with exponential complexity is needed.

• Chistov [1991] proved the existence of a polynomial-time algorithm for factoring

polynomials over local fields.

• The algorithm for factoring ideals of Buchmann and Lenstra described by Co-

hen [1993, section 6.2] can be used for factoring polynomials over a local field in

polynomial time. (However, it needs an integral basis as an input.)

• The algorithm by Montes [1999] is formulated as an algorithm for the decomposi-

tion of ideals over number fields and is based on ideas of Ore [1926]. He does not

provide a complexity analysis.

• The improved Round Four algorithm by Ford et al. [2002] is considerably faster

than the original Round Four algorithm. Formulated as an algorithm for factoring

a polynomial Φ(x) over Qp, it returns a local integral basis (in fact, a power

basis) for Qp[x]/ϕ(x)Qp[x] for each irreducible factor ϕ(x) of Φ(x). The algorithm

terminates in polynomial time.

• Cantor and Gordon [2000] have developed an algorithm for deriving an irreducible

factor of a polynomial Φ(x) ∈ k[x] of degree N over an extension k of degree

k over Qp. In their talk at the fourth Algorithmic Number Theory Symposium

in July 2000 they announced that they had reduced the expected number of bit
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operations to

O(N4+εvp(discΦ)2+ε log1+ε pk).

The algorithm presented chapter 2 has its origins in the Round Four algorithm. It

returns all irreducible factors ϕ(x) of a polynomial Φ(x) over the valuation ring of a

local field k together with an integral basis for k[x]/ϕ(x)k[x]. If k is a finite extension

of Qp of degree k, our algorithm derives a complete factorization of a polynomial Φ(x)

of degree N with the expected number of bit operations being

O
(
N3+εvp(discΦ)1+ε log1+ε pk +N2+εvp(discΦ)2+ε log1+ε pk

)
.

Parts of this thesis have been published in [Pauli and Roblot, 2001] and [Pauli, 2001].
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Chapter 1

Preliminaries

1.1 Local Fields

We recall definitions and fundamental results in the theory of local fields. More

detailed exposition can be found in [Fesenko and Vostokov, 1993] and [Hasse, 1963].

Definition 1.1.1. A function | · | from a field k into the nonnegative reals such that

(i) |α| = 0 ⇐⇒ α = 0,

(ii) |αβ| = |α|·|β|,

(iii) |α + β| 6 max
{
|α|, |β|

}
.

is called a non-archimedean or ultrametric absolute value on k.

Definition 1.1.2. A function v from a field k into Q ∪ {∞} such that

(i) v(α) =∞ ⇐⇒ α = 0,

(ii) v(αβ) = v(α) + v(β),

(iii) v(α + β) > min
{
v(α), v(β)

}
.

is said to be a (an exponential) valuation on k.

Note that if v is an exponential valuation on a field k and if r ∈ R, 0 < r < 1, then

|a| :=
{

0 if a = 0
rv(a) otherwise

is a non-archimedian absolute value on k.
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Example 1.1.3. Let p be a prime number. Every a ∈ Q can be uniquely represented

by a = pm(r/s) with m, r ∈ Z, s ∈ N and p, r, s pairwise relatively prime. The map

vp : a 7→ m is a exponential valuation on Q. The map | · |p : a 7→ p−m is a non-

archimedian absolute value on Q. We call vp(·) the p-adic exponential valuation and

| · |p the p-adic absolute value.

Remark 1.1.4. The absolute value | · |∞, defined by

|a|∞ :=

{
α if α > 0
−α if α < 0

fulfills the weaker triangle inequality

(iii)′ |α + β| 6 |α|+ |β|

instead of the ultrametric inequality (iii). Absolute values which fulfill (iii)′ but not

(iii) are called archimedean absolute values.

Theorem 1.1.5 (Ostrowski). An absolute value on Q either coincides with (| · |∞)r

for some r ∈ R, or with (| · |p)r for some prime p and some r ∈ [0, 1].

Example 1.1.6. Let k(t) be the rational function field over k.

(i) For β(t), γ(t) ∈ k[t] with β(t) 6= 0 set deg(β/γ) = deg(β)− deg(γ). Then

v∞(α) :=

{
∞ if α(t) = 0
degα otherwise

defines a valuation on k(t).

(ii) Let ψ(t) be a monic, irreducible polynomial in k[t]. Every α(t) ∈ k(t) has

a unique representation α(t) = ψ(t)m
β(t)

γ(t)
with m ∈ Z, β(t), γ(t) ∈ k[t] and

gcd(ψ(t), β(t)) = 1, gcd(ψ(t), γ(t)) = 1, γ(t) monic and gcd(β(t), γ(t)) = 1. The

map vψ(t) : α 7→ m is a valuation on k(t).

Definition 1.1.7. We call a field a local field if it is complete with respect to a

discrete (non-archimedean) absolute value.

Example 1.1.8. Let | · |p be the p-adic absolute value defined in example 1.1.3. The

completion of Q with respect to | · |p is denoted by Qp.
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Let k be a field with an exponential valuation v. Denote the completion of k by

k̂. The field k̂ is a discrete valued field with exponential valuation v̂(limi→∞ αn) :=

limi→∞ v(αn) where (αn)n∈N is a Cauchy sequence. We usually denote v̂ by v as well.

Definition 1.1.9. Let k be a local field, with absolute value | · |. We call

Ok :=
{
α ∈ k | |α| 6 1

}
the valuation ring of k. Ok is a local ring with maximal ideal

p :=
{
α ∈ k | |α| < 0

}
,

which is principal. We denote by π a generator of p. The element π is called a prime

element of k.

We write vp or vπ for the exponential valuation on k which is normalized such that

vp(π) = vπ(π) = 1.

We call k := Ok/p the residue class field of k. For γ ∈ k we denote by γ the class

γ + p in k.

1.2 Extensions of local fields

Definition 1.2.1. Let k be a field. We call a polynomial ϕ(x) ∈ k[x] separable if

every irreducible factor of ϕ(x) has simple roots over its splitting field. Otherwise

ϕ(x) is called inseparable.

Let k be a local field and let ϕ(x) ∈ k[x] be a separable, monic, and irreducible

polynomial of degree n. We obtain an algebraic extension K of k by adjoining a root

α of ϕ(x) to k:

K = k(α) ∼= k[x]/ϕ(x)k[x].

We say K/k is an extension of degree [K : k] = n. Denote the roots of ϕ(x) in an

algebraic closure k of k by α = α(1), . . . , α(n). We call α(l) the l-th conjugate of α.

The field K is a vector space of dimension n over k, and the n-tuple (1, α, . . . , αn−1)

is a basis of K over k. Thus every element β ∈ K has a unique representation β =∑n−1
i=0 γiα

i with γi ∈ k for 0 6 i 6 n−1. The conjugates of β are β(l) =
∑n−1

i=0 γi
(
α(l)
)i

for 1 6 i 6 n.

We define the norm N(β) of β by N(β) =
∏n

l=1 β
(l).
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Definition 1.2.2. Let K be an algebraic extension of k. We denote the group of

automorphisms of K by Aut(K). We call

Gal(K/k) := {σ ∈ Aut(K) | σ(α) = α for all α ∈ k}

the Galois group of K/k.

If ϕ(x) is a non-constant polynomial in k[x] and K is the splitting field of ϕ(x) then

we call Gal(ϕ) := Gal(K/k) the Galois group of ϕ(x).

If K ∼= k[x]/ϕ(x)k[x] is the splitting field of ϕ(x) ∈ k[x] we say that the extension

K/k is Galois.

Theorem 1.2.3. Let K be a finite algebraic extension of degree n of a local field k

with exponential valuation vp(·). Then there exists one and only one prolongation ṽp

of the exponential valuation vp to an exponential valuation ṽp : K → Q ∪ {∞} with

ṽp|k = vp. This prolongation ṽp is defined by ṽp(α) = vp(N(α))/n for α ∈ K. The

field K is complete with respect to ṽp.

Let k be an algebraic closure of k. The prolongations of | · | and vp to k or any

intermediate field k̂ will also be denoted by | · | and vp, respectively.

Definition 1.2.4. Let ψ(x) ∈ k[x] be monic with ψ(x) =
∏n

l=1(x− ξl) where ξl ∈ k.

We define disc (ψ) :=
∏

l<k(ξl − ξk)2 =
∏

l 6=k(−1)(n2−n)/2(ξl − ξk).

If ψ(x) is irreducible and ξ is any root of ψ(x) then disc (ψ) = N(ψ′(ξ)).

Let K/k be an algebraic extension of degree n. Then OK is a free Ok-module of

degree n. We call a basis of OK over Ok an integral basis of K/k.

Definition 1.2.5. Let (δ0, . . . , δn−1) be an integral basis of K/k. We call disc (K/k) :=

det((δ
(l)
k )06k6n−1,16l6n)2 the discriminant of K/k.

Definition 1.2.6. Let K be a finite algebraic extension of k. We say K/k is unram-

ified if [K : k] = [K : k].

For every positive integer l there exists a unique unramified extension of k of degree l.

To find a polynomial generating this extension, we look at random monic polynomials

of degree l over the residue field of k until we find an irreducible one, say ϕl(x). Then

any (monic) lift of this polynomial to k[x] will define K over k. Since easy estimates

give that the ratio of the number of monic irreducible polynomials over k to the
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number of all monic polynomials of degree l is about 1/l, this method is adequate

for the values of l we will deal with in this thesis.

If K/k is an unramified extension given by a root of such a polynomial ϕl(x) then

vp(disc (ϕl)) = vp(disc (K/k)) = 0.

Definition 1.2.7. Let K be an algebraic extension of k. We say K/k is totally

ramified if [K : k] = 1.

A polynomial ϕ(x) = xn + ϕn−1x
n−1 + · · · + ϕ0 with coefficients in the valuation

ring Ok of k is called an Eisenstein polynomial if vp(ϕj) > 1 for 1 6 j 6 n − 1 and

vp(ϕ0) = 1. It is well known that such polynomials are irreducible and define totally

ramified extensions. Furthermore, the exponential valuation of the discriminant of the

field generated by such a polynomial is exactly the exponential valuation discriminant

of the polynomial. Conversely, if K/k is a totally ramified extension of degree n, then

every prime element of K is a generating element over k and is a root of an Eisenstein

polynomial (see [Serre, 1963, Chap. I, §6]).

Let K be an extension of k. We can split this extension uniquely into a tower of

extensions K/KT/k where K/KT is totally ramified and KT/k is unramified. In

section 2.4 we show how we can obtain an integral basis of KT/k and K/KT from a

defining polynomial of K/k.

Definition 1.2.8. Let K be a finite algebraic extension of degree n of a local field k.

We denote the maximal unramified subfield of K/k by KT . We call KT the inertia

field of K/k, fK/k := [KT : k] the inertia degree of K/k, and eK/k := [K/KT ] the

ramification index of K/k.

9



K = k(Γ,Π)

KT = k(Γ )

k

totally ramified extension of degree

generated by a root Γ of a monic polynomial ϕ(x) with

eK/k = eK/KT
generated by a root Π

of an Eisenstein polynomial Aω(x)

ϕ(x) ∈ k[x] irreducible

extension of degree
n = eK/kfK/k

unramified extension of degree fK/k = fKT /k

Let p be the characteristic of the residue class field of k. We say K/k is tamely

ramified if p - eK/k. Extensions K/k with p | eK/k are called wildly ramified. Every

totally ramified extension K/k can be split into a tower K/K0/k where K/K0 is

wildly ramified and K0/k is tamely ramified. See section 3.5 for a proof.

If ϕ(x) ∈ k[x] is insepararable then disc (ϕ) = 0. If ϕ(x) ∈ k[x] is irreducible and

disc (ϕ) = 0 then ϕ(x) is inseparable.

If k is a finite extension of Qp we call k a p-adic field. Setting e = ek/Qp and f = fk/Qp ,

we have the following situation.

generated by a root π

Qp

kT = Qp(ζ)

k = Qp(ζ, π

totally ramified extension of degree e

ramification index e

of an Eisenstein polynomial

monic polynomial ϕ(x) with
generated by a root ζ of a
unramified extension of degree f

ϕ(x) ∈ Fp[x] irreducible

extension of degree ef
with inertia degree f ,
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1.3 Krasner’s Lemma

Proposition 1.3.1 (Krasner’s Lemma). Let k be a field complete with respect to

a non-archimedian absolute value | · | and let α, β ∈ k with α separable over k. If

|β − α| < |α′ − α|

for all conjugates α′ 6= α of α then α ∈ k(β).

Proof. Let K/k(β) be the normal closure of k(α, β)/k(β). Let τ ∈ Gal(K/k(β)).

Then

|β − τ(α)| = |τ(α− β)| = |β − α| < |α′ − α|.

Therefore

|α− τ(α)| = |α− β + β − τ(α))| 6 max
{
|α− β|, |β − τ(α)|

}
< |α′ − α|

for all conjugates α′ of α. This implies that τ is the identity; thus k(α, β) = k(β).

1.4 Complexity Analysis

In analyzing the complexity of algorithms, it is convenient and usually sufficiently

informative to specify computing times only up to order of magnitude, i.e., up to a

constant factor. The “big-O” notation lets us do this.

Definition 1.4.1. Let f : N→ R and g : N→ R. We write f(n) = O(g(n)) if there

is a constant C such that |f(n)|∞ 6 Cg(n) for all n ∈ N.

As the algorithms we present are formulated over a general local field k, their com-

plexities are given in terms of arithmetic operations in k. We fix the following nota-

tion.

•We write P(n, f) for the number of steps required to factorize a polynomial of

degree n over an extension of the residue class field k of k of degree f .

•We denote by M(n) the number of ring operations needed for multiplying two

polynomials of degree at most n in k[x]. Schönhage and Strassen [1971] have

shown that M(n) = O(n log n log log n).

11



• Let β, γ be in the algebraic closure k of k with [k(β) : k] 6 n and [k(γ) : k] 6 n

for some n ∈ N. We denote by C(n) the number of arithmetic operations in k

needed to compute an element δ ∈ k such that δ is a primitive element of the

compositum k(β, γ).

•We denote by T(m,n) the number of ring operations required for triangularizing

a m× n matrix over the valuation ring Ok of k.

•We denote by R(m,n) the number of ring operations needed for computing the

resultant in x of two polynomials in k[t][x] of degree in x at most n and of degree in

t at most m. There exists an algorithm such that R(m,n) = O(nM(nm) log(nm)).

The extended euclidian algorithm for two polynomials of degree at most n is of

complexity O(M(n) log n).

See von zur Gathen and Gerhard [1999] and the references cited therein for the

relevant algorithms.
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Chapter 2

Polynomial Factorization

We first present a root-finding algorithm, which we will use in an algorithm for the

computation of all totally ramified extensions of a p-adic field in section 3.8. We will

also use it in the construction of a minimal set of generating polynomials of degree p

in section 3.6 and in the construction of a set of independent generating polynomials

of degree pm in section 3.7. This algorithm can also be found in Panayi [1995].

Secondly, we describe the polynomial factoring algorithm mentioned in the introduc-

tion.

Throughout this chapter we assume that the polynomial Φ(x) which is to be factored

is squarefree and separable. If Φ(x) is not squarefree this can be easily remedied by

dividing Φ by gcd(Φ,Φ′), where Φ′(x) is the formal derivative of Φ(x). In some cases

it is also possible to use the following much faster criterion to check whether Φ(x) is

squarefree.

Lemma 2.0.2. Let Φ(x) = cNx
N+cn−1x

n−1+· · ·+c1x+c0 ∈ k[x] with gcd(N, p) = 1,

vp(cN) < vp(ci) and vp(c0) 6 vp(ci) for i ∈ {0, . . . , N − 1}. Then Φ(x) is squarefree.

Proof. Without loss of generality we can assume vp(cN) = 0. Now vp(ξ) = vp(c0)/N

for all roots ξ ∈ k of Φ(x). The roots of the formal derivative Φ′(x) of Φ(x) have

valuation at least vp(ici)/(N − i) for some i ∈ {1, . . . , N − 1}. But vp(c0) 6 vp(ci)

and N > N − i for all i ∈ {1, . . . , N − 1}. Thus vp(ξ) < vp(ξ
′) for all roots ξ of Φ(x)

and all roots ξ′ of Φ′(x). Therefore Φ(x) is squarefree.

Unless restricted otherwise in this chapter k will be a local field as specified in

definition 1.1.7.
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2.1 Root-Finding Algorithm

Lemma 2.1.1 (Newton Lifting). Let k be a field complete with respect to a non-

archimedian absolute value | · |, with Ok its valuation ring and p its prime ideal. Let

Φ(x) ∈ Ok[x] and assume there exists α ∈ Ok satisfying |Φ(α)| < |Φ′(α)|2. Then Φ

has a root in Ok congruent to α modulo p.

A constructive proof of this lemma can be found in [Cassels, 1986]. Panayi’s root-

finding algorithm relies on the following result.

Lemma 2.1.2. Let Φ(x) = cnx
n + · · · + c0 ∈ Ok[x]. Denote the minimum of the

valuations of the coefficients of Φ(x) by vp(Φ) := min
{
vp(c0), . . . , vp(cn)

}
and define

Φ#(x) := Φ(x)/πvp(Φ). For α ∈ Ok, denote its representative in the residue class field

k = Ok/p by α, and for β ∈ Ok/p, denote a lift of β to Ok by β̂.

a) If α is a zero of Φ(x) then α is a zero of Φ(x).

b) α is a zero of Φ(xπ + β̂) if and only if απ + β̂ is a zero of Φ(x).

c) α is a zero of Φ(x) if and only if α is a zero of Φ#(x).

d) Let β be a zero of Φ(x) and let ψ(x) := Φ(xπ + β̂). Then deg(ψ#) 6 deg(Φ#).

e) If deg(Φ#) = 0 then Φ(x) has no zero in Ok.

f) If deg(Φ#) = 1 then Φ(x) has a zero in Ok.

g) If Φ#(x) = (x− β)mh(x) where gcd((x− β), h(x)) = 1 and if ψ(x) := Φ(xπ + β̂)

then deg(ψ#) 6 m

Proof. The statements a) to c) are obvious.

d) Let d = deg(Φ#). Then vp(cd) 6 vp(cν) for all ν 6 d and vp(cd) < vp(cν) for all

ν > d. Now ψ = bnx
n+· · ·+b0 with bi =

∑n
j=i

(
j
i

)
cjπ

iβ̂j−i. Because (ii) = 1 we have

vp(bd) = vp(cd)+d and vp(bν) > vp(cd)+ν for all ν > d. Hence, deg(ψ#) 6 deg(Φ#).

e) Clear from a), b), and c).

f) We denote the coefficients of Φ#(x) by c#ν . Let β be a root of Φ#(x). Since

deg(Φ#) = 1, vp(c
#
1 ) = 0 and vp(c

#
ν ) > 1 for ν > 1. So Φ#′(β̂) 6≡ 0 mod p and

Φ#(β̂) ≡ 0 mod p. Thus Φ#(x) has a root by lemma 2.1.1, and by c) Φ(x) has a

root as well.
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g) Without loss of generality, we may assume that Φ(x) = Φ#(x). Consider the

Taylor expansion

Φ(πx+ β̂) =
n∑
i=0

Φ(i)(β̂)

i!
πixi.

As Φ(x) = (x− β)mh(x), we have vp(Φ
(m)(β̂)/m!) = 0. Also vp(Φ

(i)(β̂)πi/i!) > i >

vp(Φ
(m)(β̂)/m!)πm = m for i > m. Hence deg(ψ#) 6 m.

Assume Φ(x) has a root β modulo p and define two sequences (Φν(x))ν and (δν)ν in

the following way:

• Φ0(x) := Φ#(x),

• δ0 := β̂,

• Φν+1(x) := Φ#
ν (xπ + β̂ν) where βν is a root of Φ#

ν (x),

• δν+1 := β̂νπ
ν+1 + δν where βν is a zero of Φ#

ν (x) if there are any.

At each step, one can find such a root if indeed Φ(x) has a root (in Ok) congruent to

β modulo p and δν is congruent to this root modulo increasing powers of p. At some

point, one of the following cases must happen:

• deg(Φν) 6 1 and one uses 2.1.2 e) or f) to conclude;

• Φ#
ν has no roots and thus δν−1 is not an approximation of a root of Φ(x);

• ν > vp(disc (Φ)) and then lemma 2.1.3 below tells us that lemma 2.1.2 e) or f)

applies.

While constructing this sequence it may happen that Φν(x) has more than one root.

In this case we split the sequence and consider one sequence for each root. Lemma

2.1.2 g) tells that there are never more than deg(Φ) candidate roots. Notice that if

the conditions of lemma 2.1.2 f) or lemma 2.1.3 are satisfied, the construction used in

the proof of lemma 2.1.1 can be used to compute an arbitrarily close approximation

of the root faster than with the root-finding algorithm.

Lemma 2.1.3. If ν > vp(disc (Φ)), then deg(Φν) 6 1.

Proof. Assume deg(Φν) > 2. We have
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Φν(x) = Φ(πνx+ δν−1) =
n∑
i=0

Φ(i)(δν−1)

i!
πνixi.

There exists an integer j > 2, such that vp

(Φ(j)(δν−1)
j!

πνj
)

is the minimum of the

exponential valuations of the coefficients of Φν(x). Because Φ(i)(x)/i! ∈ Ok[x] this

minimum is greater than or equal to 2ν. So vp(Φ(δν−1)) > 2ν and vp(Φ
′(δν−1)) > ν.

As vp(Φ
′(δν−1)) ≡ 0 mod pν the polynomial Φ(x) has (at least) a double root modulo

pν . But, the discriminant of Φ(x) modulo pν is nonzero by hypothesis, thus this is

impossible. Hence deg(Φν) < 2.

The following algorithm returns the number of zeroes of a polynomial Φ(x) over a

local field k. We use the notation from lemma 2.1.2.

Algorithm 2.1.4 (Root Finding).

Input: A local field k with prime element π, a polynomial Φ(x) ∈ k[x]

Output: A set G of approximations of the roots of Φ(x) over k

• Set C ← {(Φ#(x), 0, 0)}.
• Set G← { }.
•While C is not empty:

• For all (ψ(x), δ, s) in C:

• C ← C \ {(ψ(x), δ, s)}.
• R← {β | β is a root of ψ(x) in k }.
• For all β in R:

• Set ψ(x)← ψ(πx+ β̂).

• Replace ψ(x)← ψ#(x).

• If degψ = 1 then

• derive an approximation δ of a root of Φ(x) using lemma 2.1.1.

• G← G ∪ {δ}.
• If degψ > 1 then

• C ← C ∪ {(ψ(x), δ + πsβ, s+ 1)}.
• Return G.

Corollary 2.1.5. Let k be a local field and let Φ(x) ∈ k[x] be a polynomial of degree

N . Algorithm 2.1.4 returns approximations to all roots of a polynomial Φ(x) ∈ k[x]

in at most
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O
(
Nvp(disc (Φ)) · (P(N) +NM(N))

)
operations in k.

Proof. At any time there are no more than N = degΦ candidate roots. By lemma

2.1.3 the algorithm terminates after at most vp(discΦ) iterations. In each iteration

of the inner loop a polynomial of degree at most N is factored over the residue class

field of k and Ψ(πx+β̂) is evaluated. This can be done in P(N), respectively NM(N),

operations in k.

2.2 Polynomial Factorization

Let Φ(x) be a monic, separable, squarefree polynomial of degree N in Ok[x]. In order

to find a proper factorization of Φ(x) or to prove its irreducibility, we construct a

polynomial ϕ(x) ∈ k[x] with degϕ less than or equal to the degree of every irreducible

factor of Φ(x). The polynomial ϕ(x) is iteratively modified such a way that |ϕ(ξ)|
decreases strictly for all roots ξ ∈ k of Φ(x).

In section 2.3 we describe how a proper factorization of Φ(x) can be derived if

|ϕ(ξi)| 6= |ϕ(ξj)| for some roots ξi and ξj of Φ(x). In section 2.4 we describe how

an integral basis of k[x]/Φ(x)k[x] over k can be obtained from the data computed in

the algorithm. In section 2.5 we show that Φ(x) is irreducible if |ϕ(ξ)|N < |discΦ|2

for some root ξ of Φ(x). In section 2.6 we present an algorithm that returns a proper

factorization of Φ(x) over Ok if one exists or an integral basis of k[x]/Φ(x)k[x] over

k otherwise. In section 2.8 we analyse the complexity of the algorithm.

2.3 Reducibility

Hensel lifting gives a very efficient method for approximating factors of a polynomial

over a local field if the polynomial has at least two relatively prime factors over the

residue class field.

Proposition 2.3.1 (Quadratic Hensel Lifting). Let R be a commutative ring

with 1, let b be an ideal of R, and let Ψ(x), Ψ1,0(x), Ψ2,0(x) be monic, non-constant

polynomials in R[x] such that
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Ψ(x) ≡ Ψ1,0(x)Ψ2,0(x) mod b.

Assume there exist γ1,0(x), γ2,0(x) ∈ R[x] and γ0,0(x) ∈ b[x] with

γ1,0(x)Ψ1,0(x) + γ2,0(x)Ψ2,0(x) = 1 + γ0,0(x).

Then for every m ∈ N there exist Ψ1,m(x), Ψ2,m(x) satisfying

Ψ(x) ≡ Ψ1,m(x)Ψ2,m(x) mod b2m

and
Ψ1,m(x) ≡ Ψ1,0(x) mod b,

Ψ2,m(x) ≡ Ψ2,0(x) mod b.

Also there exist γ1,m(x), γ2,m(x) ∈ R[x] and γ0,m(x) ∈ b[x] with

γ1,m(x)Ψ1,m(x) + γ2,m(x)Ψ2,m(x) = 1 + γ0,m(x).

For a proof see Pohst and Zassenhaus [1989].

We present two criteria which, if they are fulfilled, allow us to apply Hensel lifting

to the problem of factoring Φ(x).

Definition 2.3.2. Let Φ(x) =
∏N

j=1(x− ξj) ∈ Ok[x]. For ϑ(x) ∈ k[x] we define

χϑ(y) :=
N∏
i=1

(y − ϑ(ξi)) = resx(Φ(x), y − ϑ(x)).

Definition 2.3.3. Let ϑ(x) ∈ k[x] with χϑ(y) = yN + c1y
N−1 + · · ·+ cN ∈ Ok[y].

We say ϑ(x) passes the Hensel test if χ
ϑ
(y) = νϑ(y)s for some s > 1, where νϑ(y) is

monic and irreducible in k[y].

We define further v∗p(ϑ) := min
16i6N

vp(ci)

i
.

We say the polynomial ϑ(x) passes the Newton test if
vp(cN)

N
= v∗p(ϑ).

Note that vp(ϑ(ξ1)) = · · · = vp(ϑ(ξN)) = vp(cN)/N if ϑ(x) passes the Newton test.

Proposition 2.3.4. Let γ(x) ∈ k[x] with χγ(y) ∈ Ok[y]. If γ(x) fails the Hensel test

then Φ(x) is reducible in Ok[x].
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Proof. As γ(x) fails the Hensel test, χ
γ
(y) has at least two irreducible factors. Hensel’s

lemma gives relatively prime monic polynomials χ1(y) and χ2(y) in Ok[y] with

χ1(y)χ2(y) = χγ(y). Reordering the roots of Φ(x) if necessary, we may write

χ1(y) = (y − γ(ξ1)) · · · (y − γ(ξr)) and χ2(y) = (y − γ(ξr+1)) · · · (y − γ(ξN)),

where 1 6 r < N . It follows that

Φ(x) = gcd(Φ(x), χ1(γ(x))) · gcd(Φ(x), χ2(γ(x)))

is a proper factorization of Φ(x).

Corollary 2.3.5. Let ϑ(x) ∈ k[x] with χϑ(y) = yN + c1y
N−1 + · · · + cN ∈ Ok[y]. If

ϑ(x) fails the Newton test then Φ(x) is reducible in Ok[x].

Proof. If ϑ(x) fails the Newton test we have v∗p(ϑ) = r/s < vp(cN)/N . Setting γ(x) :=

ϑ(x)s/πr we get

min{vp(γ(ξ1)), . . . , vp(γ(ξN))} = 0 < max{vp(γ(ξ1)), . . . , vp(γ(ξN))}.

Consequently γ(x) fails the Hensel test and it follows from proposition 2.3.4 that

Φ(x) is reducible.

In general it is not possible to compute exactly the greatest common divisor of two

polynomials over a local field. The following result from Ford and Letard [1994] (also

see Ford et al. [2002]) provides a method for approximating the greatest common

divisor to any desired precision.

The Sylvester matrix SΦ,Ψ of the polynomials Φ(x) = c0x
N + · · · + cN and Ψ(x) =

b0x
M + · · ·+ bM is the (M +N)× (M +N) matrix

b0 · · · bM 0
. . . . . .

0 b0 · · · bM
c0 · · · cN 0

. . . . . .

0 c0 · · · cN


.

Proposition 2.3.6 (Ford). Let Φ(x) ∈ Ok[x] be monic. Let relatively prime poly-

nomials Ψ1(x) and Ψ2(x) in Ok[x] and r0 ∈ N be given, such that

19



Φ(x) | Ψ1(x)Ψ2(x) and pr0 =
(
Ψ1(x)Ok[x] + Ψ2(x)Ok[x]

)
∩ Ok.

Choose m ∈ N, m > r0. For j = 1, 2 let SΦ,Ψj be the Sylvester matrix of Φ(x) and

Ψj(x). Let πrjΦj(x) with Φj(x) monic, rj ∈ N, be the polynomial given by the last

non-zero row of the matrix obtained by row reduction of SΦ,Ψj modulo pm. Then

Φj(x) ≡ gcd
(
Φ(x), Ψj(x)

)
mod pm−r0 .

Proof. Define

G1(x) := gcd
(
Φ(x), Ψ1(x)

)
, H1(x) := Ψ1(x)/G1(x),

G2(x) := gcd
(
Φ(x), Ψ2(x)

)
, H2(x) := Ψ2(x)/G2(x),

so that

Φ(x) = G1(x)G2(x),

and let
ps1Ok =

(
G2(x)Ok[x] +H1(x)Ok[x]

)
∩ Ok,

ps2Ok =
(
G1(x)Ok[x] +H2(x)Ok[x]

)
∩ Ok.

Because Ψ1(x) = G1(x)H1(x) and Ψ2(x) = G2(x)H2(x) we have s1 6 r0 and s2 6 r0.

For j = 1, 2 let SΦ,Ψj be the Sylvester matrix of Φ and Ψj. It is clear that row-

reduction of SΦ,Ψj over k gives the coefficients of Gj(x) in its last non-zero row. It

follows (because the rank is invariant) that row-reduction of SΦ,Ψj over Ok gives the

coefficients of prjGj(x) in its last non-zero row, for some rj > 0. Since

psjGj(x) ∈ Φ(x)Ok[x] + Ψj(x)Ok[x]

it follows that rj 6 sj, and since

prj ∈ Φ(x)

Gj(x)
Ok[x] +

Ψj(x)

Gj(x)
Ok[x]

it follows that sj 6 rj; hence rj = sj.

If m > r0 then row-reduction of SΦ,Ψj over Ok performed modulo pm gives in its last

non-zero row the coefficients of psjΦj(x), with Φj(x) in Ok[x], Φj(x) monic, and

Φj(x) ≡ Gj(x) (mod pm−sjOk[x]).

It follows that
Φ1(x) ≡ gcdΦ(x), Ψ1(x) mod πm−r0Ok[x],

Φ2(x) ≡ gcdΦ(x), Ψ2(x) mod πm−r0Ok[x].
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Remark 2.3.7. In the construction of Φ1(x) and Φ2(x) it is sufficient to have ap-

proximations to Φ(x), Ψ1(x), and Ψ2(x) that are correct modulo pm.

Remark 2.3.8. Let γ(x) be a polynomial in k[x] such that χ1(y)χ2(y) = χγ(y) ∈
Ok[y] where gcd(χ

1
(y), χ

2
(y)) = 1. There exist α1(y), α2(y) ∈ Ok[y] with

α1(y)χ
1
(y) + α2(y)χ

2
(y) = 1.

Because the index of k[x]/Φ(x)k[x] in its maximal order is at most pd, where d =

bvp(discΦ)/2c, and

πdα1(γ(x))πdχ1(γ(x)) + πdα2(γ(x))πdχ2(γ(x)) ≡ π2d mod p2d+1,

it follows that r0 6 2d 6 vp(discΦ).

Both criteria for finding a proper factorization of Φ(x) need a factorization of the

polynomial over the residue class field before Hensel lifting can be applied. If the

residue class field k is finite we can use the algorithms of Berlekamp [1970], Cantor

and Zassenhaus [1981], or one of their many improvements.

If k is the completion of a function field over a number field then polynomials over

k can be factored using the algorithms for factoring polynomials over number fields

by Trager [1976], Pohst [1999], Roblot [2000], or Fieker and Friedrichs [2000].

We will see that it is convenient to factor the polynomial Φ(x) over an unramified

extension k̂ of k. Then the norms of the factors of Φ(x) over k̂ can be used to derive

a factorization of Φ(x) over k. For more on the norm of a polynomial see Pohst and

Zassenhaus [1989, section 5.4].

Definition 2.3.9. Let k̂ be an algebraic extension of k of degree n. Let ϑ(x) ∈
k̂[x] and ϑ(j)(x) ∈ k̂(j)[x] (1 6 j 6 n) be the corresponding polynomials over the

conjugate fields obtained by applying conjugation to the coefficients of ϑ(x) only.

Then the norm of ϑ(x) is defined by Nbk/k(ϑ) :=
∏n

j=1 ϑ
(j)(x).

Remark 2.3.10. Note that Nbk/k(ϑ(x)) ∈ k[x] and that

Nbk/k(ϑ1(x)ϑ2(x)) = Nbk/k(ϑ1(x))Nbk/k(ϑ2(x))

for all ϑ1(x), ϑ2(x) ∈ k̂[x].
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Remark 2.3.11. Let ν(y) ∈ Ok[y] be irreducible and let k̂ := Ok[y]/ν(y)Ok[y].

Let ϕ(x) =
∑n

i=0 ci(y)xn be a polynomial in k̂[x]. Denote by Ci a lift of ci from

Ok[y]/ν(y)Ok[y] to Ok[y]. Then Nbk/k(ϕ(x)) = resy
(
ν(y),

∑n
i=0Ci(y)xn

)
.

2.4 Two-Element Certificates and Integral Bases

For a polynomial ϑ(x) ∈ k[x] the values Eϑ and Fϑ defined below give lower bounds

for the ramification indices and the inertia degrees respectively of the extensions k(ξ)

for all roots ξ of Φ(x).

Definition 2.4.1. Let ϑ(x) ∈ k[x], with χϑ(y) ∈ Ok[y], such that ϑ(x) passes the

Hensel and Newton tests. We define νϑ(y) to be an arbitrary monic polynomial in

Ok[y], with νϑ(y) irreducible in k[y], such that χ
ϑ
(y) = νϑ(y)s for some s > 1. We set

Fϑ := deg νϑ. We define Eϑ to be the (positive) denominator of the rational number

v∗p(ϑ) in lowest terms.

Definition 2.4.2. Let Φ(x) be a monic polynomial in Ok[x]. Let ξ be a root of Φ(x)

Let Γ (x) ∈ k[x] with χΓ (y) ∈ Ok[y] and Π(x) ∈ k(Γ (ξ))[x] with χΠ(y) ∈ Ok(Γ (ξ))[y]

such that Γ (x) passes the Hensel test and Π(x) passes the Newton test. We call the

pair (Γ (x), Π(x)) a two-element certificate for Φ(x) if v∗p(Π) = 1/EΠ and FΓEΠ =

degΦ.

Proposition 2.4.3. Let Φ(x) be a monic polynomial in Ok[x]. If a two-element cer-

tificate (Γ (x), Π(x)) exists for Φ(x) then Φ(x) is irreducible over k. Moreover an

integral basis of the extension K/k generated by a root ξ of Φ(x) is given by the

elements Γ (ξ)iΠ(ξ)j with 0 6 i 6 FΓ − 1 and 0 6 j 6 EΠ − 1.

Proof. The polynomial Φ(x) is irreducible because every root of Φ generates an ex-

tension of degree FΓEΠ = degΦ over k. Denote the inertia field of K/k by KT . Let

γ be a root of νΓ (x) such that γ ≡ Γ (ξ). Then KT = K(γ) and OKT /k = Ok[γ]. As

v∗p(Π) = 1/EΠ we have OK/k = OKT /k[Π(ξ)] = Ok[γ,Π(ξ)]. The elements γiΠ(ξ)j

with 0 6 i 6 FΓ − 1 and 0 6 j 6 EΠ − 1 form an integral basis of K/k. Because

Γ (ξ) ≡ γ mod Π(ξ) the elements Γ (ξ)iΠ(ξ)j with 0 6 i 6 FΓ−1 and 0 6 j 6 EΠ−1

are an integral basis of K/k as well.
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Let Φ(x) ∈ Ok[x] be irreducible and let E be the ramification index and F the inertia

degree of k[x]/Φ(x)k[x]. Set k̂0 := k. Assume we are given a tower of unramified

extensions

k̂r := k̂r−1[yr]/νγr−1k̂r−1[yr]
...

k̂2 := k̂1[y2]/νγ1(y2)k̂1[y2]

k̂1 := k̂0[y1]/νγ0(y1)k̂0[y1]

k̂0 := k

with γi(x) ∈ k̂i[x], such that k̂r is isomorphic to the inertia field of k[x]/Φ(x)k[x].

Denote by γ̃i(x) a lift of γi(x) to k[y1, . . . , yi][x] and by ξ a root of Φ(x). Define a

sequence δi(x) ∈ k[x] by δ0(x) := γ̃0(x) and δi(x) := γ̃
(
δ0(x), . . . , δi−1(x)

)
(x) for

1 6 i 6 r. Then the inertia field of k(δ0(ξ), . . . , δi(ξ)) is isomorphic to k̂i.

Let Γ (x) ∈ k[x] be such that Γ (ξ) is a primitive element of k̂r over k. Then FΓ = F .

Assume that a polynomial ψ(x) ∈ k̂r[x] with χψ(y) ∈ Obkr[y] and v∗p(ψ) = 1/E is

known. Denote by ψ̃(x) a lift of ψ(x) to k[y1, . . . , yi][x] and set

Π(x) = ψ̃
(
δ0(x), . . . , δr(x)

)
(x).

Then (Γ (x), Π(x)) is a two-element certificate for Φ(x).

If the residue class field k of k is finite the following lemma can be used to find a

primitive element of k̂r.

Lemma 2.4.4. Let Fq be the field with q elements. Let β and γ be elements of an al-

gebraic closure of Fq. Let Fβ := [Fq(β) : Fq], Fγ := [Fq(γ) : Fq] and F := lcm(Fβ, Fγ).

Let δ ∈ Fq(β, γ) be randomly chosen. Then the probability that Fq(δ) = Fq(β, γ) is at

least 1/2.

Proof. The number of elements of FqF generating a proper subfield of FqF is at most∑
l prime
l<F, l|F

qF/l 6 (log2 F )qF/2.

Therefore the probability that a randomly chosen element of FqF belongs to a proper

subfield of FqF is at most

(log2 F )qF/2

qF
=

log2 F

qF/2
6

log2 F

2F/2
6

1

2
.
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For the case that k is the completion of a function field over a number field, the

residue class field k is a number field. Cohen [1999, section 2.1] presents an algorithm

for computing a primitive element of the compositum of two number fields.

The two element certificate can also be used to derive a decomposition of a prime

number in a number field.

Proposition 2.4.5. Let Φ(x) be an irreducible polynomial in Z[x]. Let ξ be a root

of Φ(x), let K := Q(ξ), and let OK be its maximal order. If ϕ1(x) . . . ϕm(x) is the

complete factorization of Φ(x) into distinct monic irreducible polynomials in Zp[x]

and if (γi(x), πi(x)) certifies the irreducibility of ϕi(x) for i = 1, . . . ,m, then

pOK = pe11 . . . pemm

is the complete factorization of pOK into prime ideals in OK, where

pi = pOK +Πi(ξ)OK

ei = Eπi

for i = 1, . . . ,m with Πi(x) being any polynomial with

Πi(x) ≡ πi(x) mod ϕi(x)

Πi(x) ≡ 1 mod ϕj(x) for all j 6= i.

2.5 Irreducibility

The following proposition gives an upper bound for the number of steps needed in our

algorithm either to derive a proper factorization of Φ(x) or to produce a two-element

certificate of the irreducibility of Φ(x).

Proposition 2.5.1. Let ξ1, . . . , ξN , α1, . . . , αn be elements of an algebraic closure of

k and assume the following hypotheses hold.

• Φ(x) :=
∏N

j=1(x− ξj) is a squarefree polynomial in Ok[x].

• ϕ(x) :=
∏n

i=1(x− αi) is a polynomial in k[x].

• |ϕ(ξj)|N< |discΦ|2 for 1 6 j 6 N .

• The degree of any irreducible factor of Φ(x) is greater than or equal to n.
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Then N = n and Φ(x) is irreducible over k.

To prove of this proposition we need a few lemmas.

Lemma 2.5.2. Let Φ(x) =
∏N

j=1(x−ξj) ∈ k[x]. Let α be an element of the algebraic

closure of k and assume ξ̃ is chosen among the roots of Φ(x) such that |α − ξ̃| is

minimal. Then

|Φ(α)| =
N∏
i=1

max{|α− ξ̃|, |ξ̃ − ξi|}.

Proof. We have |Φ(α)| =
∏N

i=1 |α − ξi| and |α − ξi| = |α − ξ̃ + ξ̃ − ξi| 6 max{|α −
ξ̃|, |ξ̃ − ξi|}. If |α− ξ̃| < |ξ̃ − ξi| then |α− ξi| = |ξ̃ − ξi|, and if |α− ξ̃| > |ξ̃ − ξi| then

|α− ξi| = |ξ̃ − α|.

Lemma 2.5.3. Assume the hypotheses of proposition 2.5.1 hold. Then ϕ(x) belongs

to Ok[x] and ϕ(x) is irreducible over k. Furthermore there exist a root ξ of Φ(x) and

a root α of ϕ(x) such that k(ξ) = k(α), so that the minimal polynomial of ξ over k

is an irreducible factor of Φ(x) of degree n.

Proof. Let Φi(x) =
∏Ni

j=1(x − ξi,j), 1 6 i 6 m, denote the m irreducible factors of

Φ(x). Let Gi be the Galois group of the extension k[ξi,1, . . . , ξi,Ni ]/k. Let ∆Φi be the

minimal distance between two distinct zeroes of Φi(x). Let ξ̃i,j denote a root of Φi(x)

such that |αj − ξ̃i,j| is minimal. Assume that |αj − ξ̃i,j| > ∆Φi. Then for 1 6 i 6 m

and 1 6 j 6 n, using lemma 2.5.2, we get

|Φi(αj)| =

Ni∏
k=1

|αj − ξi,k| =

Ni∏
k=1

max{|αj − ξ̃i,j|, |ξ̃i,j − ξi,k|}

>
Ni∏
k=1

max{∆Φi, |ξ̃i,j − ξi,k|}

= ∆Φi
∏

ξi,k 6=eξi,j
max{∆Φi, |ξ̃i,j − ξi,k|} = ∆Φi

∏
ξi,k 6=eξi,j

|ξ̃i,j − ξi,k|.

Without loss of generality, we may assume that ∆Φi = |ξi,1 − ξi,2|. Choose σi,1, . . . ,

σi,n ∈ Gi so that ξ̃
σi,1
i,1 , . . . , ξ̃

σi,n
i,1 are distinct and choose τi,1, . . . , τi,n ∈ Gi so that

ξ̃
τi,1
i,1 , . . . , ξ̃

τi,n
i,n are distinct. Then ∆Φi = |ξσi,ji,1 − ξ

σi,j
i,2 | for 1 6 j 6 n and |ξ̃i,j − ξi,k| =

|ξ̃τi,ji,j − ξ
τi,j
i,k | for 1 6 j 6 n and 1 6 k 6 Ni. Hence

25



n∏
j=1

|Φi(αj)| >
n∏
j=1

(
∆Φi

∏
ξi,k 6=eξi,j

|ξ̃i,j − ξi,k|
)

=

( n∏
j=1

|ξσi,ji,1 − ξ
σi,j
i,2 |
)( n∏

j=1

∏
ξi,k 6=eξi,j

|ξ̃τi,ji,j − ξ
τi,j
i,k |
)

> |discΦi|2.

Now

max
16k6N

|ϕ(ξk)|N >
N∏
k=1

|ϕ(ξk)| =
n∏
j=1

|Φ(αj)| =
m∏
i=1

n∏
j=1

|Φi(αj)|

>
m∏
i=1

|discΦi|2 > |discΦ|2.

Thus if maxNk=1 |ϕ(ξk)|N< |discΦ|2 then there exist i, j with 1 6 i 6 m and 1 6 j 6 n

such that |αj − ξ̃i,j| < ∆Φi. It follows from Krasner’s lemma (proposition 1.3.1) that

k(ξ̃i,j) ⊆ k(αj). As degϕ = n 6 degΦi = Ni we get k(ξ̃i,j) = k(αj). Therefore

Ni = n, and Φi(x), which is the minimal polynomial of ξ̃i,j over k, is an irreducible

factor of Φ(x) of degree n. Because Φ(x) ∈ Ok[x] and |αj− ξ̃i,j| < ∆Φi it follows that

ϕ(x) ∈ Ok[x].

Lemma 2.5.4. Assume the hypotheses of proposition 2.5.1 hold. Then k(ξ) ∼= k(α)

for every root ξ of Φ(x) and every root α of ϕ(x).

Proof. The result is an immediate consequence of lemma 2.5.3 if n = N , so we

assume n < N . Let Φ1(x) :=
∏n

i=1(x − ξ1,i) denote the irreducible factor of Φ(x)

given by lemma 2.5.3 and write Φ2(x) :=
∏N−n

j=1 (x − ξ2,j) = Φ(x)/Φ1(x). Let B =

maxNj=1 |ϕ(ξj)|. By lemma 2.5.3 ϕ(x) is an irreducible polynomial in Ok[x]; because

n∏
i=1

|Φ1(αi)| =
n∏
j=1

|ϕ(ξ1,j)| 6 Bn and
n∏
i=1

|Φ2(αi)| =
N−n∏
j=1

|ϕ(ξ2,j)| 6 BN−n

it follows that |Φ1(α)| 6 B and |Φ2(α)| 6 B(N−n)/n for each root α of ϕ(x). We have

|discΦ1| |res(Φ1, Φ2)| =
n∏
i=1

(∏
j 6=i

|ξ1,i − ξ1,j|
N−n∏
j=1

|ξ1,i − ξ2,j|
)
.

Let G be the Galois group of the extension k[ξ1,1, . . . , ξ1,n]/k = k[α1, . . . , αn]/k. For

1 6 i 6 n let α̃i be a root of ϕ(x) that is closest to ξ1,i, and for 1 6 j 6 n let σj,i be

a member of G such that ξ
σj,i
1,j = ξ1,i. Then
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|α̃i − ξ1,i| 6 |α̃
σj,i
i − ξ1,i| = |α̃

σj,i
i − ξσj,i1,j | = |α̃i − ξ1,j|

for 1 6 j 6 n. Thus

Ai :=

(∏
j 6=i

|ξ1,i − ξ1,j|
)(N−n∏

j=1

|ξ1,i − ξ2,j|
)

=

(∏
j 6=i

|ξ1,i − α̃i + α̃i − ξ1,j|
)(N−n∏

j=1

|ξ1,i − α̃i + α̃i − ξ2,j|
)

6

(∏
j 6=i

max {|ξ1,i − α̃i|, |α̃i − ξ1,j|}
)(N−n∏

j=1

max {|ξ1,i − α̃i|, |α̃i − ξ2,j|}
)

=

(∏
j 6=i

|α̃i − ξ1,j|
)(N−n∏

j=1

max {|ξ1,i − α̃i|, |α̃i − ξ2,j|}
)
.

If |ξ1,i−α̃i| > |α̃i−ξ2,j| for some j then Ai 6 |Φ1(α̃i)| 6 B, and if |ξ1,i−α̃i| < |α̃i−ξ2,j|
for all j then Ai 6

∏N−n
j=1 |α̃i − ξ2,j| = |Φ2(α̃i)| 6 B(N−n)/n 6 B. Hence

BN < |discΦ|2 = |discΦ1|2|res(Φ1, Φ2)|4|discΦ2|2 6 Bn|discΦ2|2.

It follows that BN−n < |discΦ2|2, and also that N − n > n (otherwise Φ(x) would

have an irreducible factor of degree less than n). Repeatedly applying lemma 2.5.3

in this manner we decompose Φ(x) as a product of irreducible polynomials each of

degree n, and the result follows.

Proof of proposition 2.5.1. By lemma 2.5.4 N must be a multiple of n. If n = N we

are done. But if n < N then Φ(x) is the product of N/n irreducible polynomials, say

Φ1(x), . . . , ΦN/n(x), each of degree n. For 1 6 r 6 N/n let Φr(x) =
∏n

i=1(x − ξr,i),
and for 1 6 i 6 n let α̃r,i denote a root of ϕ(x) that is closest to ξr,i. Arguing as in

the proof of lemma 2.5.4 we have

Ar,i :=

(∏
j 6=i

|ξr,i − ξr,j|
)(∏

s 6=r

n∏
j=1

|ξr,i − ξs,j|
)

6

(∏
j 6=i

max {|ξr,i − α̃r,i|, |α̃r,i − ξr,j|}
)(∏

s 6=r

n∏
j=1

|ξr,i − ξs,j|
)

6

(∏
j 6=i

|α̃r,i − ξr,j|
)(∏

s 6=r

n∏
j=1

max {|ξr,i − α̃r,i|, |α̃r,i − ξs,j|}
)

6 B,
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hence

|discΦ| =

N/n∏
r=1

n∏
i=1

Ar,i 6 BN < |discΦ|2,

which since discΦ ∈ Ok is impossible.

2.6 Polynomial Factorization Algorithm

The following algorithm constructs a polynomial ϕ(x) as described in section 2.2.

We will use proposition 2.5.1 to show that the algorithm terminates; to do this we

need to ensure that degϕ is less than or equal to the degree of any irreducible factor

of Φ(x). As the algorithm progresses we accumulate polynomials ϕi(x) with Eϕi > 1

and use these for altering ϕ(x) so that the valuation of ϕ(x) evaluated at the roots

of Φ(x) increases (see remarks 2.6.7 and 2.6.3). When we find an element γ with

Fγ > 1 we ensure the condition on the degree of ϕ(x) by determining an unramified

extension k̂ of k with k̂ ⊆ k(ξ) for every root ξ of Φ(x), finding a factor Φ̂(x) of Φ(x)

with deg(Φ̂) = deg(Φ)/Fγ over k̂, then factoring Φ̂(x) itself over k̂. As we collect

more information about the fields generated by the roots of Φ(x), we enlarge the

unramified extension k̂.

Algorithm 2.6.1 (Polynomial Factorization).

Input: a monic, separable, squarefree polynomial Φ(x) over a local field k

Output: a proper factorization of Φ(x) if one exists,

a two-element certificate for Φ(x) otherwise

• Initialize ϕ(x)← x, Φ̂(x)← Φ(x), k̂← k, E ← 1, P ← { }.
• Repeat:

a) If ϕ(x) fails the Newton test then: [ remark 2.6.2 ]

• Return a proper factorization of Φ(x).

b) If Eϕ - E then [increase E]: [ remark 2.6.3 ]

• P ← P ∪ {ϕ}, S ← lcm(E,Eϕ)/E, E ← SE, ϕ(x)← ϕ(x)S.

• If E = deg Φ̂ then: [ remark 2.6.4 ]

• Return a two-element certificate for Φ(x).

c) Find ψ(x) = πc0ϕ1(x)c1ϕ2(x)c2 · · ·ϕk(x)ck with: [ remark 2.6.7 ]

v∗p(ψ) = v∗p(ϕ), ϕi(x) ∈ P , c0 ∈ Z, ci ∈ N (i > 0), degψ < E.

d) Set γ(x)← ϕ(x)ψ−1(x). [ remark 2.6.5 ]
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e) If γ(x) fails the Hensel test then: [ remark 2.6.2 ]

• Return a proper factorization of Φ(x).

f) If EFγ = deg Φ̂ then: [ remark 2.6.4 ]

• Return a two-element certificate for Φ(x).

g) If Fγ > 1 then [extend the ground field]: [ remark 2.6.6 ]

• Replace k̂← k̂[y]/νγ(y)k̂[y].

• Derive a proper factorization Φ̂(x) = Φ̂1(x) · · · Φ̂r(x) of Φ̂(x) over k̂.

• Replace Φ̂(x)← Φ̂i(x), with deg Φ̂i =
(
deg Φ̂

)
/Fγ.

h) Find δ ∈ Obk with δ ≡ γ(ξ) mod πObk for all roots ξ of Φ(x).

i) Replace ϕ(x)← ϕ(x)− δψ(x). [ remark 2.6.3 ]

Remark 2.6.2. A proper factorization of Φ̂(x) over k̂ can be derived by applying

proposition 2.3.4 to Φ̂(x) and ϕ(x) or corollary 2.3.5 to Φ̂(x) and γ(x). From this

factorization of Φ̂(x) over k̂ a factorization of Φ(x) over k can be obtained using

remark 2.3.10.

Remark 2.6.3. Replacing ϕ(x) by ϕ(x)S ensures that degϕ = E when E is replaced

by SE, and as deg δψ < E the degree of ϕ(x) remains equal to E when ϕ(x) is

replaced by ϕ(x)− δψ(x). As ϕ(x) = x initially, ϕ(x) remains monic.

Remark 2.6.4. If E = deg Φ̂ then every root ξ of Φ̂(x) generates an extension

of degree deg Φ̂, and hence Φ̂(x) is irreducible. It follows from proposition 2.5.1

that degϕ = E = deg Φ̂ if deg Φ̂ · v∗p(ϕ) > 2vp(discΦ). As v∗p(ϕ) increases strictly

algorithm 2.6.1 terminates. There exist c0 ∈ Z and c1, . . . , cs ∈ N such that

Π(x) := ϕ1(x)c1 · · ·ϕs(x)cs with ϕi(x) ∈ P and v∗p(Π) = 1/E. Following section

2.4 we construct a two-element certificate of Φ(x).

Remark 2.6.5. In practice we find ψ̂(x) ∈ k̂[x] such that ψ̂(x)ψ(x) ≡ 1 mod Φ̂(x)

and set γ(x)← ϕ(x)ψ̂(x). Note that v∗p(γ) = 0. As only the values of the polynomials

γ(x) and ψ̂(x) at the roots of Φ̂(x) are of concern, these polynomials can be reduced

modulo Φ̂(x).

Remark 2.6.6. As Fγ > 1, and as Φ̂(x) and therefore νγ(y) are separable, νγ(y)

must have at least two distinct factors over k̂[y]/νγ(y)k̂[y], at least one of which is

linear. Proposition 2.3.4 gives a factorization of Φ̂(x) over k̂[y]/νγ(y)k̂[y].
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Remark 2.6.7. Let the elements in P be numbered so that the increase of E by

the factor Sj due to ϕj(x) is followed by the increase of E by the factor Sj+1 due to

ϕj+1(x). As Eϕ | E there is an element ψ(x) = πc0ϕ1(x)c1 · · ·ϕk(x)ck with v∗p(ψ) =

v∗p(ϕ). By construction of the ϕj(x) we have the relations

v∗p(ϕ
Sj
j ) = v∗p(πbjϕ

bj,1
1 · · ·ϕ

bj,j−1

j−1 )

with bj ∈ Z and bj,i ∈ N; hence we can reduce the exponents c1, . . . , ck so that

0 6 cj < Sj for 1 6 j 6 k. We get

degψ 6 (S1 − 1) + (S2 − 1)S1 + (S3 − 1)S1S2 + · · ·+ (Sk − 1)S1 · · ·Sk−1

= (−1 + S1 · · ·Sk) = E − 1.

The integers c0, c1, . . . , ck can be computed using the following algorithm.

Algorithm 2.6.8.

Input: A list of pairs
(
ai/bi, Si

)
, 1 6 i 6 k, with ai, bi, Si ∈ N, gcd(ai, bi) = 1

and lcm(b1, . . . , bi−1) ·Si = lcm(b1, . . . , bi) for all 1 6 i 6 k, and a rational

number w = t/u where gcd(t, u) = 1 and u 6
∏k

i=1 Si

Output: Positive integers c0, . . . , ck with c0 ∈ Z, 0 6 ci < Si for 1 6 i 6 k, and

c0 +
∑k

i=1 ci · ai/bi = w.

• Set T ←
∏k

i=1 Si.

• For i from 1 to k:

• Replace T ← T/Si and set d← bi/ gcd(bi, T ).

• Set r ← T · d · ai/bi and s← w · e · d.

• Find ci so that ci · r ≡ s mod d with 0 6 x < d.

• Replace w ← w − ci · ai/bi.
• Set c0 ← w.

• Return c0, . . . , ck.

2.7 Examples

In the first example we show the irreducibility of a polynomial Φ(x) whose roots

generate totally ramified extensions of Q2. We need to increase the ramification index

bound E twice to show the irreducibility of Φ(x). From the polynomials collected in

the set P we compile a certificate for the irreducibility of Φ(x).
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In the second example a polynomial Ψ(x) is factored over Q3. In the first iteration

of the algorithm we discover that all extensions of Q3 generated by roots of Ψ(x)

contain an unramified extension k̂/Q3. We derive a factorization of Ψ(x) over k̂ from

which we obtain a factorization of Ψ(x) over Q3.

In the third example we factor a polynomial over the field F3((t)).

The fourth example showws that not every p-adic order is an equation order.

Example 2.7.1. Let k = Q2 and

Φ(x) = x6 + 3·2x4 + 25x3 + 3·22x2 − 3·26x+ 33·23.

Initially we set P := { } and ϕ(x) := x, hence χϕ(y) = Φ(y). It follows that ϕ(x)

passes the Hensel and Newton tests. We find v∗2(ϕ) = 1/2, thus Eϕ = 2, and we set

E := 2, ϕ1(x) := ϕ(x) and replace P by {ϕ1(x)}.

We replace ϕ(x) by x2; thus ψ(x) = 2 and γ(x) = ϕ(x)ψ−1(x) = 2−1x2 with χ
γ
(y) =

y6 − y4 + y2 − 1. Hence νγ(y) = y + 1.

We replace ϕ(x) by ϕ(x)− (−1)ψ(x) = x2 + 2. As

χϕ(y) = y6 − 29y3 + 9·211y2 − 3·215y + 3·216

the polynomial ϕ(x) passes the Hensel and Newton tests. We have v∗2(ϕ) = 8/3 and

Eϕ = 3. We replace E by lcm(E,Eϕ) = 6, we set ϕ2(x) := ϕ(x), and we replace P

by {ϕ1(x), ϕ2(x)}.

The ramification index of an extensions of Q2 generated by a root of Φ(x) must be at

least E = 6. As the degree of Φ(x) is six, Φ(x) is irreducible. The irreducibility of Φ(x)

is certified by the two-element certificate (1, Π(x)) with Π(x) := 2−3ϕ1(x)ϕ2(x) =

2−3x3 + 2−2x. Note that v∗2(Π) = 1/6.

Example 2.7.2. Let k = Q3 and

Ψ(x) = x8 + 4x6 + 2·3x4 + 7x2 + 32x+ 13.

We derive a factorization of Ψ(x) over Q3 to a precision of twelve 3-adic digits.

Initially we set ϕ(x) := x. Then χϕ(y) = Ψ(y) and νϕ(y) = y2 + 1. Thus we continue

our computation over the extended ground field k̂ := k[y]/νϕ(y)k[y]. Let α be a

primitive element of k̂. Hensel lifting gives the factors
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Ψ̂(x) = x4 + 435740αx3 + (−33734·32α− 59774·3)x2

+ (−89882α + 8443·32)x+ (−5132·32α + 520585)

and its conjugate

x4 − 435740αx3 + (33743·32α− 59774·3)x2

+ (89882α + 8443·32)x+ (5132·32α + 520585)

of Ψ over k̂. We now factorize Ψ̂(x) over k̂.

Over k̂ the polynomial ϕ(x) = x has characteristic polynomial χϕ(y) = Ψ̂(y). Hence

ϕ(x) passes the Hensel and Newton tests and νϕ(y) = y + 2α.

Thus ψ(x) = 1, γ(x) = ϕ1(x), and δ = −2α. Replacing ϕ(x) by ϕ(x)−δψ(x) = x+2α.

we get

χϕ(y) = y4 + (145244·3α)y3 + (−33734·32α− 24679·32)y2

+ (−116638·3α + 50654·32)y + (53869·32α− 33559·32);

thus ϕ(x) fails the Newton test. Note that the valuations of the roots of χϕ(y) are

1/3 and 1. The polynomial ϑ(x) := ϕ(x)3/3 with

χϑ(y) = y4 + (−155281·3α + 16838·32)y3 + (−3793·32α + 60782·3)y2

+ (277066α + 9565·32)y + (8165·32α− 8350)

fails the Hensel test. Hensel lifting gives the factors

χϑ,1(y) = y − (4151·32α + 57679·32),

χϑ,2(y) = y3 + (−142828·3α + 5156·33)y2 + (−30373·32α + 150737·3)y

+ (−520028α− 17123·32)

of χϑ(y). We obtain the factors

Ψ̂1(x) := gcd(Ψ̂ , χϑ,1(ϑ(x)) = x+ 391409α− 26500·3,

Ψ̂2(x) := gcd(Ψ̂ , χϑ,2(ϑ(x)) = x3 + (14777·3α− 150647·3)x2

+ (158332·3α− 117802·3)x+ 188791α− 185620

of Ψ̂(x). As χϕ(y) has a root of valuation 1/3 at least one of the extensions given

by roots of Ψ̂(x) must have ramification index greater than or equal to three. Thus
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Ψ̂2(x) is irreducible. Computing the norm of Ψ̂1(x) and Ψ̂2(x) we get the irreducible

factors of Ψ(x) modulo 312 over k:

Ψ1(x) := Nbk/k(Ψ̂1) = x2 − 53000·3x+ 204634

Ψ2(x) := Nbk/k(Ψ̂2) = x6 − 124147·3x5 − 128147·3x4 + 120868·3x3

+ 28201·3x2 + 107405·3x+ 312880.

The two-element certificate (Γ1(x), Π1(x)) = (x, 3) certifies Φ1(x); the two-element

certificate (Γ2(x), Π2(x)) = (x, Nbk/k(x+ 2α)) = (x, x2 + 4) certifies Φ2(x).

Example 2.7.3. Let k = F3((t)) be the completion of F3(t) with respect to vt(·),
normalized such that vt(t) = 1. Let

Φ(x) = x6 + 2tx4 + (t7 + 2t)x3 + t2x2 + (t8 + 2t2)x+ t2 ∈ F3((t))[x].

We derive a factorization of Ψ(x) ∈ k = F3((t))[x] to a precision of 32 digits. Initially

we set ϕ(x) := x. Then χϕ(y) = Φ(y). Thus ϕ(x) = x passes the Hensel and Newton

tests and we obtain v∗t (ϕ) = 1/3. Replacing ϕ(x) by x3 we get

χϕ(y) = y6 + 2t3y4 + (t21 + 2t3)y3 + t6y2 + (t24 + 2t6)y + t6.

and therefore v∗t (ϕ) = 1. Thus we set γ(x) := ϕ(x)/t = x3/t. Now

χγ(y) = y6 + 2ty4 + (t18 + 2)y3 + t2y2 + (t19 + 2t)y + 1

with χγ(y) = y6 + 2y3 + 1 and νγ(y) = y + 1. Hence we replace ϕ(x) by x3 + t. The

characteristic polynomial

χϕ(y) = y6 + 2t3y4 + (t21 + t4)y3 + t6y2 + (t24 + t7)y + 2t25 + 2t24 + t8

of ϕ passes the Hensel and Newton tests. As v∗t (ϕ) = 8/6 = 4/3 we set ψ(x) = tx.

The characteristic polynomial of γ(x) = ϕ(x)ψ−1(x) is

χγ(y) = y6 + t6y5 + t6y4 + (2t11 + 2)y3 + (2t17 + t11 + t6)y2

+ (t17 + 2t11 + t6)y + 2t17 + 2t16 + 1

with νγ(y) = y + 1. Replacing ϕ(x) with ϕ(x)− (−1)ψ(x) = x3 + tx+ t we get

χϕ(y) = y6 + t21y3 + 2t24.
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Thus ϕ(x) passes the Hensel and Newton tests.

As v∗t (ϕ) = 4 we set γ(x) := ϕ(x)/t4 = (x3 + tx+ t)/t4 and get χγ(y) = y6 + t9y3 + 2.

We have

χγ(y) = (y + 1)3(y + 2)3.

Hensel Lifting gives the factors

χγ,1(y) = y3 + 2t18 + 2t9 + 1 and

χγ,2(y) = y3 + t18 + 2t9 + 2

of χγ(y) modulo t32. As the sum of the degrees of the polynomials

χγ,1(γ(x)) ≡ (t6 + 1)/t4 ·x3 + (t6 + 1)/t3 ·x+ (2t21 + 2t12 + t3 + 1)/t3 mod Φ(x),

χγ,2(γ(x)) ≡ (t6 + 1)/t4 ·x3 + (t6 + 1)/t3 ·x+ (t21 + 2t12 + 2t3 + 1)/t3 mod Φ(x)

is equal to the degree of Φ we only need to divide by the leading coefficients in order

to derive a factorization of Φ. Thus the polynomials

Φ1(x) = x3 + tx+ 2t28 + t22 + t16 + 2t10 + 2t7 + t4 + t,

Φ2(x) = x3 + tx+ t28 + 2t22 + 2t16 + t10 + 2t7 + 2t4 + t

are the irreducible factors of Φ(x) to a precision of 32 digits. The two-element certifi-

cates (Γ1(x), Π1(x)) = (1, x) and (Γ2(x), Π2(x)) = (1, x) certify their irreducibility.

All orders occuring in the polynomial factorization algorithm are equation orders

of some polynomial. In a local equation order the maximal ideal has a two element

representation. The following example shows that there exist local order where the

maximal ideal does not have a two element representation. This shows that not every

local order is an equation order.

Example 2.7.4. Let Φ(x) = x3 + 3 ∈ Z3[x]. Let π be a root of Φ(x) in a fixed

algebraic closure of Z3. As Φ(x) is an Eisenstein polynomial Z3[π] is the local maximal

order of Q3(π). Set α := 1 + 9π. Let O := Z3[1, 3π
2, 9π]. We obtain the following

tower of extensions.
Z3[π]
|

O = Z3[1, 3π
2, 9π]

|
Z3[α] = Z3[1 + 9π]

|
Z3
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The maximal ideal of O is m := (3, 3π2, 9π). Thus

m2 = (9, 9π2, 27π2, 81, 81π2, 243π) = (9, 9π2, 27π) = 3m.

We consider m/m2 as a O/m-module. As there are no non-trivial solutions to the

equation

a13 + a23π
2 + a39π = 0

where a1, a2, a3 ∈ O/m ∼= F3 the module m/m2 is of rank 3 with basis 3, 3π2, 9π. As

m/m2 has rank 3 as a O/m-module the rank of m as a O module must be greater

than or equal to 3. Therefore there is no two element representation of m.

2.8 Complexity Analysis

Theorem 2.8.1. Let k be a local field and let Φ(x) ∈ Ok[x] be monic, separable, and

squarefree of degree N .

There exists an algorithm that derives a factorization of Φ(x) into irreducible factors

and returns an integral basis of k[x]/ϕ(x)k[x] for every irreducible factor ϕ(x) of

Φ(x) with the number of arithmetic operations in k being

O
(
logN(P(N,N) + T(N,N) + C(N)) + vp(discΦ)(R(1, N) + P(N,N))

)
.

Lemma 2.8.2. Let k be a local field and let Φ(x) ∈ k[x] be monic, separable, and

squarefree of degree N . Let EΦ be the minimum of the ramification indices and FΦ be

the minimum of the inertia degrees of all extensions of k generated by roots of Φ(x).

Algorithm 2.6.1 derives a proper factorization of Φ(x) or a two-element certificate

for Φ(x) with the number of arithmetic operations in k being

O
(

logFΦ
(
P(N,FΦ) + C(FΦ) + T(N,N)

)
+ EΦ

vp(discΦ)

N

(
R(1, N) + P(N,FΦ)

))
.

Proof. Let k̂ be an unramified extension of k contained in k(ξ) for all roots ξ of

Φ(x) and let F = [k̂ : k]. Then vp(discΦ) > Fvp(disc Φ̂), where Φ̂(x) is a factor of

degree N/F of Φ(x) over k̂. Therefore extending the ground field does not increase

the number of repetitions of the main loop, i.e., steps a), c) to f) and i) are repeated

at most 2(EΦ/N)vp(discΦ) times by proposition 2.5.1. Note that two polynomials

of degree (degΦ)/F over an extension k̂ of degree F of k can be multiplied in

M(F ·N/F ) = M(N) operations in k.
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a) The resultant in the Hensel test needs R(1, N) arithmetic operations in k.

b) [increase E] An increase of E can occur at most log2EΦ times. Computing ϕ(x)S

is of complexity M(N) logEΦ.

c) The extended euclidian algorithm needed for the computation of ψ−1 is of com-

plexity O(M(N) logN).

e) The resultant in the Newton test needs R(1, N) arithmetic operations in k.

g) [extend the ground field] The ground field can be extended at most log2 FΦ

times. Factoring χγ(y) over the residue class field is of complexity P(N/F, F ).

The construction of a primitive element of a compositum of two residue class field

is of complexity C(FΦ). Deriving a proper factorization requires approximating

the greatest common divisor (see proposition 2.3.6) and computing the norm of

Φ̂(x) over k (see remark 2.3.11). This can be achieved in T(N,N), respectively

R(F,N/F ), operations in k.

h) The factorization of χγ(y) over the residue class field is of complexity P(N/F, F ).

Thus a proper factorization of Φ(x) or a two-element certificate for Φ(x) can be

derived with the number of arithmetic operations in k being

O
(

logFΦ
(
R(1, N) + P(N,FΦ) + C(FΦ) + T(N,N)

)
+ logEΦ

(
M(N) log(N)

)
+ EΦ

vp(discΦ)

N

(
R(1, N) + P(N,FΦ)

))
= O

(
logFΦi

(
P(N,FΦi) + C(FΦ) + T(N,N)

)
+EΦi

vp(discΦ)

N

(
R(1, N) + P(N,FΦi)

))
.

Proof of theorem 2.8.1. Denote by Φ1(x), . . . , Φm(x) the irreducible factors of Φ(x).

Let FΦi be the inertia degree of the field given by Φi(x). Let EΦi be the ramification

index of the field given by Φi(x). It follows from 2.8.2 that the number of arithmetic

operations required for deriving a factorization of Φ(x) into irreducible factors is

m∑
i=1

O
(

logFΦi
(
P(N,FΦi) + C(FΦ) + T(N,N)

)
+ EΦi

vp(discΦ)

N

(
R(1, N) + P(N,FΦi)

))
= O

(
logN(P(N,N) + C(N) + T(N,N)) + vp(discΦ)(R(1, N) + P(N,N))

)
.
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Note that there are algorithms for factoring a polynomial of degree N over Fq with

the expected number of bit operations being O(N2 log q) (see Kaltofen and Shoup

[1998]).

If the residue class field of k is finite then lemma 2.4.4 implies that the expected

number of resultants needed to find an element δ such that δ is a primitive element

of the compositum k(β, γ) is O(1). Therefore, in this case, the expected value of

C(N) is O(NM(N) log(N)) operations in k.

It follows from proposition 2.5.1 and remark 2.3.8 that throughout the algorithm a

precision of 2vp(discΦ) digits in the ground field is sufficient. Thus p2vp(discΦ) can

be used as a modulus for the triangulization of the matrices occuring in the com-

putation of the approximations of the greatest common divisor. Noting that the

triangularization is done over a local ring and to a fixed precision, it is easily seen

that T(N,N) = O(N3).

Corollary 2.8.3. Let k be a finite extension of Qp of degree k. Let Φ(x) ∈ Ok[x] be

a monic, separable, and squarefree polynomial. There exists an algorithm that

• derives a factorization of Φ(x) into irreducible factors and

• returns an integral basis of k[x]/ϕ(x)k[x] for every irreducible factor ϕ(x) of Φ(x)

with the expected number of bit operations being

O
(
N3+εvp(discΦ)1+ε log1+ε pk +N2+εvp(discΦ)2+ε log1+ε pk

)
.
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Chapter 3

Totally Ramified Extensions

Let k be a p-adic field. Let n > 1, d > 0 be integers, and let p be the prime ideal of

k. In this chapter, we give an algorithm to compute all extensions of degree n and

discriminant pd.

In section 3.1 we state Ore’s conditions, which give all possible discriminants pd of

totally ramified extensions of degree n. In section 3.2 we introduce an ultrametric

distance on the set of Eisenstein polynomials of degree n. This distance is used in

section 3.3 in the construction of a set of polynomials defining all totally ramified

extensions of degree n. In section 3.4 we give explicit formulae for the number of

totally ramified extensions. In section 3.8 we describe the construction of totally

and tamely ramified extensions since this construction is easier than in the general

case. It is also possible to construct a set of generating polynomials for all extensions

of degree p in general (see section 3.6) and of extensions of degree pm with some

restrictions. (see section 3.7). Section 3.10 contains two examples.

Note that similar formulas can also be given for local fields of characteristic p 6= 0.

The following result shows us that these are not particularly interesting.

Theorem 3.0.4. Assume that char k = char k = p 6= 0 and that k is perfect.

Then k is isomorphic to k ∼= k((π)), the field of all power series in one indeterminate

π over k with the exponential valuation given by the exponent of the lowest power of

π.
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Thus for the rest of our discussion we focus on the totally ramified extension K

of degree n of a p-adic field k. Let p and e be the prime ideal and the absolute

ramification index of k/Qp respectively. We denote the uniformizer of p by π.

Let vp denote the unique prolongation of vp to k such that vp(π) = 1. Let q denote

the cardinality of the residue class field of k.

3.1 Discriminants

The possible discriminants for totally ramified extensions of k are given by the fol-

lowing criterion from Ore [1926].

Proposition 3.1.1 (Ore’s Conditions). Let k be a finite extension of Qp with

maximal ideal p. Given j ∈ Z let a, b ∈ Z be such that j = an+ b and 0 6 b 6 n− 1.

Then there exist totally ramified extensions K/k of degree n and discriminant pn+j−1

if and only if

min{vp(b)n, vp(n)n} 6 j 6 vp(n)n.

Proof. Every totally ramified extension K of k can be generated by a root ξ of an

Eisenstein polynomial ϕ(x) = xn+ϕn−1x
n−1+. . .+ϕ0. We have disc (K/k) = disc (ϕ)

and vp(disc (ϕ))/n = vp(ϕ
′(ξ)). Because vp(ξ) = 1/n the valuations of iϕiξ

i−1 for

1 6 i < n and nξn−1 are all different, we get

vp(ϕ
′(ξ)) = vp(nξ

n−1 + (n− 1)ϕn−1ξ
n−2 + . . .+ ϕ1)

= min
16i6n−1

{
vp(n) +

n− 1

n
, vp(i) + vp(ϕi) +

i− 1

n

}
= min

16i6n−1

{
nvp(n)

n
,
n(vp(i) + vp(ϕi)− 1) + i

n

}
+
n− 1

n

Setting j := vp(disc (ϕ))− n+ 1 = nvp(ϕ
′(ξ))− n+ 1 gives

j = min
16i6n−1

{nvp(n), n(vp(i) + vp(ϕi)− 1) + i} .

Thus either j = nvp(n) or j = n(vp(b)+vp(ϕb)−1)+b for some 1 6 b 6 n−1. Fix b ∈ Z
with 1 6 b 6 n−1. Set a := vp(b) +vp(ϕb)−1. As vp(ϕb)−1 > 0 we get nvp(b) + b 6

j = an + b. Because n - b we can simplify this condition to nvp(b) 6 j = an + b.

Combining this case with j = nvp(n) we get min{nvp(b), nvp(n)} 6 j 6 nvp(n).

It is clear from the discussion above that for every j = an+ b with
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min{nvp(b), nvp(n)} 6 j 6 nvp(n)

we can construct an Eisenstein polynomial ϕ(x) such that disc (ϕ) = pn+j−1.

Let j be an integer satisfying Ore’s conditions with respect to n (in particular 0 6

j 6 vp(n)n), and let j = an+ b be the Euclidean division of j by n. The following is

trivial but crucial

n | j ⇐⇒ b = 0 ⇐⇒ j = vp(n)n ⇐⇒ a = vp(n).

Proposition 3.1.2. Let k be a finite extension of Qp with maximal ideal p. Let K/k

be a totally ramified field extension of degree n and discriminant pn+j−1. Let n0, n1

be two positive integers such that n = n0n1. Suppose K/k has an intermediate field

K0 of degree n0 and discriminant pn0+j0−1. Then there exist integers j0, j1 such that

j = j0n1 + j1 and such that n0, j0 and n1, j1 satisfy Ore’s conditions.

Proof. Assume that K/k admits a sub-extension K0/k of degree n0. Let P0 be the

prime ideal of K0 and let pn0+j0−1 (resp. Pn1+j1−1
0 ) be the discriminant of K0/k (resp.

K/K0). Then n0, j0 and n1, j1 must satisfy Ore’s conditions. Furthermore, by the

formula for discriminants in a tower of extensions, we have

disc (K/k) = (disc (K0/k))n1 · NK0/k(disc (K/K0)).

Now, since K0/k is totally ramified, it follows that

pn+j−1 = p(n0+j0−1)n1pn1+j1−1,

which proves the result.

3.2 Eisenstein Polynomials

We now fix an integer j fulfilling Ore’s conditions (proposition 3.1.1) and turn to the

more specific problem of the construction of all totally ramified extensions K/k of

degree n and discriminant pn+j−1.

Definition 3.2.1. Let k be a local field with maximal ideal p. We denote by Kn,j

the set of all extensions of k of degree n and discriminant pn+j−1.
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Let En,j denote the set of all Eisenstein polynomials over k of degree n and dis-

criminant pn+j−1. The roots of the polynomials in En,j generate all the extensions

K ∈ Kn,j.

For two elements ϕ(x) and ψ(x) of En,j, we set d(ϕ, ψ) := |ϕ(β)| where β is a root of

ψ(x). Let β′ be any root of ψ(x) and let σ ∈ Gal(ψ) over k such that σ(β) = β′. Since

σ is an isometry, we have |ϕ(β)| = |σ(ϕ(β))| = |ϕ(σ(β))| = |ϕ(β′)| hence d(ϕ, ψ)

does not depend on the choice of β. Observe that

|ϕ(β)|n =
∏
i

|ϕ(βi)| =
∏
i,j

∣∣βi − αj∣∣
where βi (respectively αj) denote the roots of ψ(x) (respectively ϕ(x)). The last

formula is symmetric with respect to ϕ(x) and ψ(x). Thus for any root α of ϕ(x) we

obtain the equality |ϕ(β)| = |ψ(α)|. Hence, d(ϕ, ψ) = d(ψ, ϕ).

The distance d(ϕ, ψ) is easily calculated using the following lemma.

Lemma 3.2.2. Write ϕ(x) = xn +ϕn−1x
n−1 + · · ·+ϕ0 and ψ(x) = xn +ψn−1x

n−1 +

· · ·+ ψ0 and set

w := min
06i6n−1

{
vp(ψi − ϕi) +

i

n

}
.

Then d(ϕ, ψ) = |π|w.

Proof. Observe that

ψ(α) = ψ(α)− ϕ(α) =
n−1∑
i=0

(ψi − ϕi)αi,

and since α is a prime element, vp(α) = 1/n. Thus in the sum above all the terms

have different valuations. It follows that the valuation of ψ(α) is the minimum of

these.

Let ϕ(x) = xn + ϕn−1x
n−1 + · · ·+ ϕ0, ψ(x) = xn + ψn−1x

n−1 + · · ·+ ψ0, and ϑ(x) =

xn + ϑn−1x
n−1 + · · ·+ ϑ0 be polynomials in En,j. We have
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min
06i6n−1

{
vp(ϕi − ψi) +

i

n

}
> min

06i6n−1

{
min {vp(ϕi − ϑi), vp(ϑi − ψi)}+

i

n

}
= min

06i6n−1

{
min

{
vp(ϕi − ϑi) +

i

n
, vp(ϑi − ψi) +

i

n

}}
= min

{
min

06i6n−1

{
vp(ϕi − ϑi) +

i

n

}
, min
06i6n−1

{
vp(ϑi − ψi) +

i

n

}}
.

Thus d(ϕ, ψ) 6 max{d(ϕ, ϑ), d(ϑ, ψ)}, i.e., d satisfies the ultrametric inequality. It

is clear that d(ϕ, ψ) = 0 if and only if ϕ(x) = ψ(x). The following result summarizes

the properties of d.

Proposition 3.2.3. Let ϕ(x) and ψ(x) be two polynomials from the set En,j of

Eisenstein polynomials of degree n and discriminant pn+j−1 over k. Then d(ϕ, ψ) :=

|ϕ(β)| = |ψ(α)| where α (respectively β) is any root of ϕ(x) (respectively ψ(x)) de-

fines an ultrametric distance over En,j. Furthermore, let ϕ(x), ψ be two elements of

En,j, α = α1, . . . , αn the roots of ϕ(x), and β one of the roots of ψ(x) which is closest

to α. Then

d(ϕ, ψ) =
n∏
i=1

max{|β − α|, |α− αi|}.

3.3 Generating Polynomials

In this section, we construct a set of polynomials that generate all the extensions in

Kn,j.

Let m > l > 1 be two integers, and Rl,m a fixed system of representatives of the

quotient

pl/pm.

We denote by R∗l,m the subset of those elements of Rl,m whose vp-valuation is exactly

l.

For 1 6 i 6 n− 1, define

l(i) :=

{
max{2 + a− vp(i), 1} if i < b,
max{1 + a− vp(i), 1} if i > b.

Let c be any integer such that
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c > 1 + 2a+
2b

n
=
n+ 2j

n
.

The reason for choosing these values of l(i) and c will become clear presently.

Let Ω be the set of n-tuples (ω0, . . . , ωn−1) ∈ kn satisfying

ωi ∈


R∗1,c if i = 0, (1)
Rl(i),c if 1 6 i 6 n− 1 and i 6= b, (2)
R∗l(b),c if i = b 6= 0. (3)

To each element ω := (ω0, . . . , ωn−1) ∈ Ω, we associate the polynomial Aω(x) ∈ Ok[x]

given by

Aω(x) := xn + ωn−1x
n−1 + · · ·+ ω1x+ ω0.

Lemma 3.3.1. The polynomials Aω(x) are Eisenstein polynomials of discriminant

pn+j−1.

Proof. Since l(i) > 1 for all i, we have vp(ωi) > 1 and (1) gives vp(ω0) = 1. Thus,

Aω(x) is an Eisenstein polynomial.

Let κ be a root of Aω(x). Since the discriminant of Aω = Nk(κ)/k(A′ω(κ)), the second

assertion is equivalent to

vp(A
′
ω(κ)) =

n+ j − 1

n
= 1 + a+

b− 1

n
.

But A′ω(κ) = nκn−1 + (n− 1)ωn−1κn−2 + · · ·+ω1 and vp(A
′
ω(κ)) is the minimum of

these valuations since they are all different.

It is straightforward to see by (2) that for i 6= b

vp(iωiκi−1) > 1 + a+
b− 1

n
,

and for i = b 6= 0

vp(bωbκb−1) = 1 + a+
b− 1

n
.

If b 6= 0 then by Ore’s conditions

vp(nκn−1) > vp(bωbκb−1).

Hence v(A′ω(κ)) = 1 + a+ (b− 1)/n.

If b = 0, then for 1 6 i 6 n− 1 we have a = vp(n), thus
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vp(nκn−1) = vp(n) + (n− 1)/n < vp(iωiκi−1)

and therefore vp(A
′
ω(κ)) = 1 + vp(n)− 1/n as required.

Theorem 3.3.2 (Krasner). Let c be an integer such that c > 1+2a+2b/n. The set

En,j is the disjoint union of the closed discs DEn,j(Aω, r) with center Aω and radius

r := |pc| as ω runs through Ω.

Proof. Lemma 3.3.1 proves that the polynomials Aω are indeed elements of En,j.

Let ω and ω′ be two distinct elements of Ω and let i be such that ωi 6= ω′i. Then

vp(ωi − ω′i) +
i

n
6 c− 1 +

i

n
< c

and thus by lemma 3.2.2, d(Aω, Aω′) > r and by the ultrametric property of d the

discs Dω and Dω′ are disjoint.

Now, let ϕ be an element of En,j and write ϕ(x) = xn + ϕn−1x
n−1 + · · ·+ ϕ0. Since

f is an Eisenstein polynomial, vp(ϕ0) = 1 and there exists ω0 ∈ R∗1,c such that

ϕ0 ≡ ω0 mod pc.

By reasoning as in lemma 3.3.1, we find that vp(ϕi) > l(i) for all i > 0 and there

exists ωi satisfying (2) or (3) such that

ϕi ≡ ωi mod pc.

Let ω := (ω0, . . . , ωn−1). We claim that f ∈ Dω. We have vp(ϕi − ωi) > c for

i = 0, . . . , n− 1. Thus, for all i

vp(ϕi − ωi) +
i

n
> c

which by lemma 3.2.2 proves the claim.

Corollary 3.3.3. Let ω be an element of Ω and let κ be a root of Aω(x). Then the

extension k(κ)/k is a totally ramified extension of degree n and discriminant pn+j−1.

Conversely, if K/k is a totally ramified extension of degree n and discriminant pn+j−1

then there exist ω ∈ Ω and a root κ of Aω(x) such that K = k(κ).

Proof. The first claim is clear since the polynomials Aω(x) belong to En,j. For the

second, let α be a prime element in K and denote its irreducible polynomial over k
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by ϕ(x). We denote by α1, . . . , αn the roots of ϕ(x). Let α ∈ {α1, . . . , αn} and let

∆ϕ be the minimal distance between α and any other root of ϕ(x). Then

|ϕ′(α)| =
n∏
i=2

|α− αi| 6 ∆ϕ
∣∣p(n−2)/n

∣∣
since the αi are prime elements. But

|ϕ′(α)| =
∣∣p(n+j−1)/n

∣∣
and thus

∆ϕ >
∣∣p(j+1)/n

∣∣.
Now let ω ∈ Ω be such that d(ϕ,Aω) 6 r = |pc| where c > 1+2a+2b/n = (n+2j)/n

and let κ denote a root of Aω such that |κ − α| is minimal. Then we claim that

|κ − α| < ∆ϕ, since otherwise

d(ϕ,Aω) =
n∏
i=1

max{|α− κ|, |α− αi|}

>
n∏
i=1

max{∆ϕ, |α− αi|}

> ∆ϕ
n∏
i=2

|α− αi| = ∆ϕ|ϕ′(α)|

>
∣∣p(n+2j)/n

∣∣.
This contradicts |p(n+2j)/n| > r by the particular choice of c. Hence |κ − α| < ∆ϕ

and it follows by Krasner’s lemma (proposition 1.3.1) that K = k(κ).

3.4 Number of Extensions in Kn,j

We have constructed a finite set of polynomials that generate all the extensions in

Kn,j, namely the set {Aω | ω ∈ Ω}. Nevertheless, for each extension, there are in

general several polynomials Aω that generate the same extension. Hence the number

of extensions is in fact smaller than the number of elements in Ω.

The aim of this section is to prove exact formulae for the number of extensions in

Kn,j. These formulae are interesting by themselves, but will also be useful to get a
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more efficient algorithm for the computation of all totally ramified extensions of a

given degree and discriminant (see section 3.8 for details). We also use them as a

tool in the computation of canonical generating polynomials of degree p in section

3.6.

We will need the following lemma.

Lemma 3.4.1. Let t > j+ 1 be an integer and let s :=
∣∣p(n+j−1+t)/n

∣∣. Let #DEn,j(s)

denote the number of disjoint closed discs of radius s in En,j. Then the number of

elements in Kn,j is

#Kn,j = #DEn,j(s)
n

(q − 1)qt−2
.

Proof. Let Πn,j denote the set of all prime elements of members of Kn,j. Alternatively,

Πn,j can be defined as the union of the sets P\P2 where P is the prime ideal of some

member of Kn,j. Let µ be the map from Πn,j to En,j that sends a prime element to

its minimal polynomial over k.

Let u = |pt/n| and let α and β be two elements of Πn,j such that |α− β| 6 u. Then

α and β generate the same field K ∈ Kn,j by Krasner’s lemma (proposition 1.3.1).

Observe that we have d(µ(α), µ(β)) 6 u
∣∣p(n+j−1)/n

∣∣ = s by the same reasoning as

in the proof of corollary 3.3.3. Hence µ(DΠ(α, u)) ⊆ DEn,j(µ(α), s), where DΠ(α, u)

is the closed disc of center α and radius u in Πn,j. Conversely, let f ∈ En,j and let α

denote any root of f , so f = µ(α). Then it is straightforward to prove, using the same

methods, that DEn,j(µ(α), s) ⊂ µ(DΠ(α, u)). Thus, DEn,j(µ(α), s) = µ(DΠ(α, u)) for

all α ∈ Πn,j.

Now, the map µ is clearly surjective and n-to-one. Furthermore, the inverse image

of µ(α) is the set of conjugates of α over k, and, since t > j + 1, the closed discs of

radius u centered at the conjugates of α are all disjoint. It follows that the inverse

image of any closed disc of radius s in En,j is the disjoint union of n closed discs of

radius u in Πn,j. But, again by the remark above, any such disc is in fact contained

in P \P2 for some K ∈ Kn,j. Thus, the number of disjoint closed discs of radius u

in Πn,j is equal to #Kn,j times the number of disjoint closed discs in P \P2, which

does not depend on K ∈ Kn,j. This number is easily seen to be equal to qt−1 − qt−2,

and so

#Kn,j q
t−2 (q − 1) = n#DE(s),

and the result is proved.
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Theorem 3.4.2. Let k be a finite extension of Qp, let p be the prime ideal of k with

e its ramification index, and let q be the number of elements in the residue field of

k. Let j = an + b, where 0 6 b < n, be an integer satisfying Ore’s conditions. Then

the number of totally ramified extensions of k of degree n and discriminant pn+j−1

is

#Kn,j =

 n q

ba/ecP
i=1

en/pi

if b = 0,

n (q − 1) q

ba/ecP
i=1

en/pi+b(j−ba/ecen−1)/pba/ec+1c
if b > 0

We compute the number of elements in the closed disc DEn,j(r) of radius |pc| and

then apply lemma 3.4.1 to obtain #Kn,j.

Lemma 3.4.3. The number of polynomials Aω where ω ∈ Ω, or equivalently by

theorem 3.3.2 the number of disjoint closed discs of radius r := |pc| in En,j, is given

by

#DEn,j(r) =

 (q − 1) q
nc−n−j−1+

ba/ecP
i=1

en/pi

if b = 0,

(q − 1)2 q
nc−n−j−1+

ba/ecP
i=1

en/pi+b(j−ba/ecen−1)/pba/ec+1c
if b > 0.

Proof. The number of elements in R∗1,c is (q − 1) qc−2. For i 6= b, the number of

elements in Rl(i),c is qc−l(i) and the number of elements in R∗l(b),c is (q − 1) qc−l(b)−1.

So we have

#DEn,j(r) =

 (q − 1) q
c−2+(n−1)c−

n−1P
i=1

l(i)
if b = 0,

(q − 1)2 q
c−2+(n−1)c−1−

n−1P
i=1

l(i)
if b > 0.

It remains to compute the sum
∑n−1

i=1 l(i). For b > 0, we get

n−1∑
i=1

l(i) = n− 1 +
b−1∑
i=1

max{1 + a− vp(i), 0}+
n−1∑
i=b

max{a− vp(i), 0}.

Let τ > σ be two positive integers and let ρ > 0 be a real number. Then
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τ∑
ν=σ

max{ρ− vp(i), 0} =
∑
i>0

τ∑
ν=σ

vp(ν)=i

max{ρ− ei, 0}

=

bρ/ec∑
i=0

τ∑
ν=σ

vp(ν)=i

(ρ− ei)

=

bρ/ec∑
i=0

(ρ− ei)
(⌊

τ

pi

⌋
−
⌊
τ

pi+1

⌋
−
⌊
σ − 1

pi

⌋
+

⌊
σ − 1

pi+1

⌋)
.

Thus, using this formula, we find

n−1∑
i=1

l(i) = n− 1 +

ba+1
e
c∑

i=0

(1 + a− ei)
(⌊

b− 1

pi

⌋
−
⌊
b− 1

pi+1

⌋)

+

ba/ec∑
i=0

(a− ei)
(⌊

n− 1

pi

⌋
−
⌊
n− 1

pi+1

⌋
−
⌊
b− 1

pi

⌋
+

⌊
b− 1

pi+1

⌋)
.

Note that, in the first summation, we can replace b(a+ 1)/ec by ba/ec since these

are the same if e - a + 1, and otherwise the term i = (a + 1)/e does not contribute

to the sum since in this case 1 + a− ei = 0. Rearranging and simplifying the sums,

we obtain

n−1∑
i=1

l(i) = n+ b+ a(n− 1)− 2−
⌊
b− 1

pba/ec+1

⌋
− a

⌊
n− 1

pba/ec+1

⌋

+ eba/ec
⌊
n− 1

pba/ec+1

⌋
−
ba/ec∑
i=1

e

⌊
n− 1

pi

⌋
Since b > 0 by Ore’s conditions we find that vp(n) > ba/ec + 1. It follows, that for

all 1 6 i 6 ba/ec+ 1, one has b(n− 1)/pic = n/pi − 1. Thus,

n−1∑
i=1

l(i) = an+ b+ n− 2− an

pba/ec+1
−
⌊
b− 1

pba/ec+1

⌋
+
eba/ecn
pba/ec+1

−
ba/ec∑
i=1

en

pi

= n+ j − 2−
⌊
j − ba/ecen− 1

pba/ec+1

⌋
−
ba/ec∑
i=1

en

pi

The formula for b = 0 can be derived in a similar way.

Theorem 3.4.2 is proven by choosing t such that n + j − 1 + t = nc and applying

lemma 3.4.3 and lemma 3.4.1.
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3.5 Tamely Ramified Extensions

In this section let K/k be totally and tamely ramified, i.e., p does not divide n = [K :

k]. The description of totally and tamely ramified extensions of p-adic fields is well-

known (see [Hasse, 1963, Chapter 16] or theorem 3.5.2 below). The aim of this section

is to recover this description using the methods developed in the previous sections.

Note first the following result the proof of which follows directly from proposition

3.1.1.

Proposition 3.5.1. Let K/k be a totally and tamely ramified extension of degree

n. Then j = 0 and thus the discriminant of this extension is pn−1, a = b = 0, and

c = 2.

The totally tamely ramified extensions of degree n of k are described by the following

theorem.

Theorem 3.5.2. Let ζ be a primitive (q − 1)-th root of unity contained in k, let g

be the gcd of n and q − 1, and let m := n/g. Then there are exactly n totally and

tamely ramified extensions K/k of degree n. Furthermore, these extensions can be

split into g classes of m k-isomorphic extensions, the extensions in a given class

being generated over k by the roots of the polynomial

xn + ζrπ

with r = 0, . . . , g − 1.

Proof. We look at the set of generating polynomials defined in section 3.3. Proposition

3.5.1 tells us that j = a = b = 0, and that the smallest value for c is 2. We choose

R∗1,2 := {ζ iπ | 0 6 i 6 q−2} andR1,2 := R∗1,2∪{0}. Then the roots of the polynomials

xn + ωn−1x
n−1 + · · ·+ ω0 where ωi ∈ R1,2 for 1 6 i 6 n− 1 and ω0 ∈ R∗1,2 generate

all these extensions K.

We now turn to the extensions K generated by the roots of the polynomials xn+ ζ iπ

(i.e., we take ωi = 0 for 1 6 i 6 n − 1). Let α be such a root. Then it is clear

that for any integer h, ζhα generates the same extension. Furthermore, the minimal

polynomial of ζhα is xn+ζnh+iπ and one can choose h such that nh+i ≡ r (mod q−1)

with 0 6 r < g. So in fact it is enough to consider only the polynomials xn + ζrπ

with 0 6 r 6 g − 1.
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Now let xn + ζrπ and xn + ζr
′
π be two such polynomials, with 0 6 r, r′ 6 g − 1 and

r 6= r′, and let α (respectively α′) be a root of xn+ζrπ (respectively xn+ζr
′
π). Then

if α and α′ generate the same field, it follows that this field contains an n-th root

of ζr−r
′
. But this is not possible, since this field contains only the (q − 1)-th roots

of unity and r − r′ is not a multiple of n modulo q − 1. So α and α′ generate two

distinct extensions of k. Furthermore, the conjugates of α over k are α, ρα, . . . , ρn−1α

where ρ is a primitive n-th root of unity in Qp such that ρm = ζ(q−1)/g (recall

that m = n/g). It is clear that α, ρmα = ζ(q−1)/gα, . . . , ρ(g−1)mα = ζ(g−1)(q−1)/gα all

generate the same field, whereas α, ρα, . . . , ρm−1α all generate different extensions.

Thus, the roots of the polynomial xn + ζrπ generate m isomorphic but distinct

extensions, and the roots of all of these polynomials generate mg = n extensions.

Since we know that this is exactly the number of totally ramified extensions of degree

n of k by theorem 3.4.2, this proves that all the totally ramified extensions of degree n

of k are obtained considering only these polynomials, and that any other polynomials

are redundant.

Proposition 3.5.3. Let K be a totally ramified extension of k of degree n and dis-

criminant pj+n−1, with n = n0p
s and gcd(n0, p) = 1. Then K has a tamely ramified

subfield K0 of degree n0 over k with discriminant pn0−1.

Proof. By proposition 3.1.2, all the subfields of degree n0 of K, provided they ex-

ist, have discriminant pn0−1. Assume such a subfield K0 exists. Then disc K/K0 =

Pps+j1−1
0 , where j1 = j = a(n0p

s) + b and P0 is the prime ideal of K. Using theorem

3.4.2 we obtain

#Kn,j = #Kn0,0 #(K0)n1,j.

Hence either all extensions K have such a subfield of degree n0 or some of the

extensions K have two or more non-isomorphic subfields of degree n0.

Let π be a uniformizer of k. Assume K0 and K1 are non-isomorphic subfields of

degree n0 over k, generated by the polynomials

ϕ0(x) = xn0 + ζr0π and ϕ1(x) = xn0 + ζr1π

respectively (see theorem 3.5.2). Let κ0 be a root of ϕ0, then

ψ(x) := −ϕ1(κ0x)

πn0
= xn0 − ζr1−r0
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has a root in K. If ψ has a root in k then K0
∼= K1 which contradicts the assumption

that K0 � K1, and if ψ has no root on k then the extension K/k has inertia degree

greater than 1, which contradicts the assumption that K/k is totally ramified.

3.6 Extensions of Degree p

Let k be an extension of Qp of degree ef with ramification index e, prime ideal p, and

inertia degree f . Set q := pf . In this section we present a canonical set of polynomials

that generate all extensions of k of degree p. Note that similar polynomials have been

given by Amano [1971], although our results are more explicit.

Let j = ap + b. By theorem 3.4.2 the number of extensions of k of degree p and

discriminant pn+j−1 is

#Kp,j =

{
pqe if b = 0
p(q − 1)qa if b 6= 0.

We will give a set of canonical polynomials for every possible value of j = ap+ b. Let

ζ be a (q − 1)-th root of unity, and set R = (ρ0, . . . , ρq−1) = (0, 1, ζ, ζ2, . . . , ζq−2),

then R is a multiplicative system of representatives of k in k.

First we will compute a set of canonical generating polynomials for pure extensions

of degree p of a p-adic field that is, for the case b = 0. Secondly we give a set of

canonical generating polynomials for extensions of degree p of discriminant pp+ap+b−1

where b 6= 0 of a p-adic field. We use the notation from section 2.1.

Extensions of p-adic fields of discriminant pp+pe−1

Theorem 3.6.1. Let L(0) :=
{
r ∈ Z | 1 6 r < pe/(p− 1), p - r

}
. Then each

extension of degree p of k of discriminant pp+ep−1 is generated by a root of exactly

one of the polynomials of the form

ϕ(x) =

 xp + π +
∑

i∈L(0) ρciπ
i+1 + kδπpe/(p−1)+1 if

(p− 1) | e and
xp−1 + (p/πe) is reducible,

xp + π +
∑

i∈L(0) ρciπ
i+1 otherwise,

where δ is chosen such that xp − x + δ is irreducible over k and 0 6 k < p. These

extensions are Galois if and only if (p− 1) | e and xp−1 + p/πe is reducible, i.e., if k

contains the p-th roots of unity.
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Lemma 3.6.2. Let

ϕ(x) = xp + π +
∑
i∈L(0)

ρciπ
i+1 + πRγ

and

ψ(x) = xp + π +
∑
i∈L(0)

ρdiπ
i+1 + πRδ.

where ρci, ρdi ∈ R, R > pe/(p− 1), and γ, δ ∈ Ok. Let α be a zero of f and β be a

zero of g in an algebraic closure of k. If ci 6= di for some i ∈ L(0) then k(α) � k(β).

Proof. We will use Panayi’s root-finding algorithm (algorithm 2.1.4) to show that

ψ(x) does not have any roots over k(α). As ψ(x) ≡ xp mod (π) we set ψ1(x) :=

ψ(αx). Then

ψ1(x) = αpxp + π +
∑
i∈L(0)

ρdiπ
i+1 + πRδ

= (−π −
∑
i∈L(0)

ρciπ
i+1 − πRγ)xp + π +

∑
i∈L(0)

ρdiπ
i+1 + πRδ

≡ π(−xp + 1)

Hence ψ#
1 (x) = ψ1(x)/π ≡ −xp + 1 and we set ψ2(x) := ψ#

1 (αx+ 1).

Let βi be a root of ψ#
i+2. Let 2 6 r < pe/(p − 1). Assume that the root-finding

algorithm does not terminate with degψ#
j = 0 for some 2 6 j 6 r and that there

is t < r < pe/(p− 1) with βt 6≡ 0 mod (α). After r iterations of the root-finding

algorithm we have

ψr+1(x) =
(
−1−

∑
i∈L(0)

ρci+1
πi − ρca+2π

a+1
)

(αrx+ βr−1α
r−1 + · · ·+ βtα

t + 1)p

+ 1 +
∑
i∈L(0)

ρdi+1
πi + ρda+1π

a+1 + πR−1δ

≡ −αprxp − pαrx− pβtαt +
∑

i∈L(0),i>t

(ρdi+1
− ρci+1

)πi.

The minimal valuation of the coefficients of ψr+1(x) is either vα(αpr) = pr or

vα(pβtα
t) = pe + t. As gcd(p, t) = 1 and t < pe/(p− 1) there exists r ∈ N such

that the polynomial ψ#
r+1(x) is constant. Thus the root-finding algorithm terminates

with the conclusion that ψ(x) is irreducible over k(α).
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It is obvious that a pure extension can be Galois only if k contains the p-th roots of

unity.

Lemma 3.6.3. Assume that ϕ(x) := xp−1 + c ∈ Fq[x] has p − 1 roots in Fq. Then

there exists d ∈ Fq such that ψk(x) := xp + cx − kd ∈ Fq[x] is irreducible for all

1 6 k < p.

Proof. Let h(x) = xp + cx ∈ Fq[x]. As ϕ(x) splits completely over Fq, there exists

d ∈ Fq \ h(Fq). Now ψ1(x) = xp + cx− d is irreducible. It follows that

kψ1(x) = kxp + ckx− kd = (kx)p + c(kx)− kd

is irreducible. Replacing kx by y we find that ψk(y) = yp+ cy−kd is irreducible over

Fq.

Lemma 3.6.4. Assume k contains the p-th roots of unity and let t = pe/(p− 1).

Then there exists δ ∈ Ok such that

ϕ(x) = xp + π +
∑
i∈L(0)

ρciπ
i+1 + kδπt+1 ∈ Ok[x]

and

ψ(x) = xp + π +
∑
i∈L(0)

ρciπ
i+1 + lδπt+1 ∈ Ok[x]

generate non-isomorphic extensions over k if l 6= k.

Proof. Let α be a root of ϕ(x). We set ϕ1(x) := ϕ(αx) and ϕ2(x) := ϕ#
1 (αx + 1).

After t + 1 iterations of the root-finding algorithm we obtain ϕ2+t(x) ≡ −αtpxp −
pαtx+(l−k)δπt. By lemma 3.6.3 there exists δ ∈ Ok such that ϕ#

2+t(x) is irreducible

for all 1 6 k < p and all 1 6 l < p with k 6= l. Therefore ψ(x) has no root in k(α).

Thus ϕ(x) and ψ(x) generate non-isomorphic extensions over k.

Proof of theorem 3.6.1. We will show that the number of extensions given by the

polynomials ϕ(x) is greater or equal to the number of extensions given by theorem

3.4.2. The number of elements in L(0) is

#L(0) =

⌊
pe

p− 1

⌋
−
⌊

pe

p(p− 1)

⌋
= e+

⌊
e

p− 1

⌋
−
⌊

e

p− 1

⌋
= e.

By lemma 3.6.2 the roots of two polynomials generate non-isomorphic extensions if

the coefficients ρci differ for at least one i ∈ L(0). For every i we have the choice

54



among pf = q values for ρci . This gives qe polynomials generating non-isomorphic

extensions.

If k does not contain the p-th roots of unity then an extension generated by a root

α of a polynomial ϕ(x) does not contain any of the other roots of ϕ(x). Hence the

roots of each polynomial give p distinct extensions of k. Thus our set of polynomials

generates all pqe extensions.

If k contains the p-th roots of unity then lemma 3.6.4 gives us p − 1 additional

extensions for each of the polynomials from lemma 3.6.2. Thus our set of polynomials

generates all pqe extensions.

Extensions of p-adic fields of discriminant pp+ap+b−1, b 6= 0

Theorem 3.6.5. Let L(0) :=
{
r ∈ Z | 1 6 r < (ap+ b)/(p− 1), p - (b + r)

}
and

if (p − 1) | (a + b) set t := a + (a+ b)/(p− 1). Each extension of degree p of k

of discriminant pp+ap+b−1 with b 6= 0 is generated by a root of exactly one of the

polynomials of the form

ϕ(x) =


xp + ζsπa+1xb + π +

∑
i∈L(0) ρciπ

i+1 + kδπt+1 if


(p− 1) | (a+ b) and
xp−1 + (−1)ap+1ζsb
has p− 1 roots ,

xp + ζsπa+1xb + π +
∑

i∈L(0) ρciπ
i+1 otherwise,

where ρ ∈ R and δ is chosen such that xp + (−1)ap+1ζsbx + δ is irreducible in k

and 0 6 k < p. These extensions are Galois if and only if (p − 1) | (a + b) and

xp−1 − ζsb ∈ k[x] is reducible.

Lemma 3.6.6. Let

ϕ(x) = xp + ζsπa+1xb + π + γπ2 ∈ Ok[t]

and

ψ(x) = xp + ζtπa+1xb + π + δπ2 ∈ Ok[t]

with γ, δ ∈ Ok. If s 6= t then the roots of ϕ(x) and ψ(x) generate non-isomorphic

extensions of k.

Proof. Let α be a root of ϕ(x). Then αp/π = −ζsπaαr − 1 − γπ. We use Panayi’s

root-finding algorithm to show that ψ(x) has no root over k(α). As before we get

ψ1(x) := ψ(αx) ≡ π(−xp + 1). Therefore we set
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ψ2(x) := ψ#
1 (αx+ 1) = (−ζsπaαb − 1− γπ)(αx+ 1)p + ζtπaαb(αx+ 1)b + 1 + δπ.

Let 2 6 r 6 e. Let βi ∈ R be a root of ψ#
i (x). Assume that the root-finding

algorithm does not terminate with degψ#
j = 0 for some 2 6 j 6 r and assume that

there exists r such that t < r < pe/(p− 1) with βt 6≡ 0 mod (α). After r iterations

of the root-finding algorithm we have

ψr+1(x) = (−ζsπaαb − 1− γπ)(αrx+ βr−1α
r−1 + · · ·+ βuα

u + 0 + · · ·+ 0 + 1)p

+ ζtπaαb(αrx+ βr−1α
r−1 + · · ·+ βuα

u + 0 + · · ·+ 0 + 1)b + 1 + δπ.

Because r 6 e, vα(p) = pe, and a < e, the minimal valuation of the coefficients

of ψr+1(x) is either vα(−αpr) = pr or vα(πaαb) = pa + b. Hence the root-finding

algorithm terminates with ψr+1(x) ≡ (ζt − ζs)πaαb for some r in the range 2 6 r 6

e.

Lemma 3.6.7. Let

ϕ(x) = xp + ζsπa+1xb + π +
∑
i∈L(0)

ρciπ
i+1 + πRγ ∈ Ok[t]

and

ψ(x) = xp + ζsπa+1xb + π +
∑
i∈L(0)

ρdiπ
i+1 + πRδ ∈ Ok[t]

with ρci , ρdi ∈ R, R > a + (a + b)/(p− 1) and γ, δ ∈ Ok. Let α be a zero of ϕ(x)

and β be a zero of ψ(x) in a fixed algebraic closure of k. If ci 6= di for some i ∈ L(0)

then k(α) � k(β).

Proof. We use Panayi’s root-finding algorithm to show that ψ(x) does not have any

roots over k(α). As ψ(x) ≡ xp mod (π), we get ψ1(x) := ψ(αx). Now ψ#
1 (x) ≡ −xp+1

and we set ψ2(x) := ψ#
1 (αx+ 1).

Let βi be a root of ψ#
i+1(x). Assume that the root-finding algorithm does not termi-

nate earlier with degψ#
j = 0 for some j 6 r. After r iterations we have
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ψr+1(x) =
(
−ζsπaαb − 1−

∑
i∈L(0)

ρci+1
πi − ρca+2π

a+1
)

· (αrx+ βr−1α
r−1 + · · ·+ βtα

t + 1)p

+ ζsπaαb(αrx+ βr−1α
r−1 + · · ·+ βtα

t + 1)b + 1

+
∑
i∈L(0)

ρdi+1
πi + ρda+1π

a+1

≡ −αprxp − pαrx− pβtαt −
∑
i∈L(0)

ρci+1
πi(βtα

t)p − (βtα
t)p

+ ζsπaαbbαrx+ ζsπaαbbβtα
t +

∑
i∈L(0)

(ρdi+1
− ρci+1

)πi

with βt 6≡ 0 mod (α). The minimal valuation of the terms of ψr+1(x) is

vα(ζsπaαbbβtα
t) = pa+ b+ t

or vα(αpr) = pr. By the choice of L(0) we have p - (pa + b + t). Therefore the

root-finding algorithm terminates with ψr(x) ≡ ζsπaαbbβtα
t for some r ∈ N.

Lemma 3.6.8. Let

ϕ(x) = xp + ζsπa+1xb +
∑
i∈L(0)

ρciπ
i+1 + π ∈ Ok[x]

with ϕ(α) = 0 for some α ∈ k. Then k(α)/k is Galois if and only if a + b ≡
0 mod (p− 1) and xp−1 + (−1)ap+1ζsb is reducible over k.

Proof. We will show that ϕ(x) splits completely over k(α) if and only if the conditions

above are fulfilled. Using the root-finding algorithm (algorithm 2.1.4) we set ϕ1(x) :=

ϕ(αx) and ϕ2(x) := ϕ#
1 (αx+ 1), i.e.

ϕ2(x) =
(
−ζsπaαb − 1−

∑
i∈L(0)

ρciπ
i
)

(αx+ 1)p + ζsπaαb(αx+ 1)b + 1 +
∑
i∈L(0)

ρciπ
i

≡ x(−αpxp−1 + ζsπaαb+1b).

After r + 1 iterations we get

ϕr+1(x) ≡


−αrpxp if rp < pa+ b+ r,
x(−αrpxp−1 + ζsπaαb+rb) if rp = pa+ b+ r,
ζsπaαb+1bx if rp > pa+ b+ r and (p− 1) - (a+ b).

In the third case ϕ#
r+1(x) is linear and therefore ϕ(x) has only one root.
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In the second case

ϕr+1(x) ≡ −αrpxp + ζsπaαb+rbx ≡ −αrpxp + ζs(−α)ap + αb+r

thus ϕ#
r+1(x) ≡ −xp−1 + (−1)apζsb mod (α). If ϕ#

r+1(x) has p roots over k for every

root β of ϕ#
r+1(x) we get

ϕr+2(x) = ϕr+1(αx+β) ≡ −α(r+1)pxp+(−1)apαr+1βζsπaαb+(−1)apαr+1bβbζsπaαbx.

But rp + p > r + 1 + pa + b; thus ϕ#
r+2(x) is linear and ϕ(x) has as many distinct

roots as ϕ#
r+1(x).

Lemma 3.6.9. Assume that a+b ≡ 0 mod (p−1) and xp−1+(−1)ap+1ζsb is reducible

over k. Then there exists δ ∈ Ok such that

ϕ(x) = xp + ζsπa+1xb +
∑
i∈L(0)

ρciπ
i+1 + kδπt+1 ∈ Ok[x]

and

ψ(x) = xp + ζsπa+1xb +
∑
i∈L(0)

ρciπ
i+1 + lδπt+1 ∈ Ok[x]

(where t = a+ (a+ b)/(p− 1)) generate non-isomorphic extensions over k if l 6= k.

Proof. Let α be a root of ϕ(x). Using the root finding algorithm we set ϕ1(x) := ϕ(αx)

and ϕ2(x) := ϕ#
1 (αx+ 1). We get ϕt+1(x) ≡ −αtpxp + ζsπaαb+tbx+ (k− l)δπt hence

ϕ#
t+1(x) = xp + (−1)ap+1ζsbx + (k − l)δ. By lemma 3.6.3 there exists δ ∈ Ok such

that ϕ#
t+1(x) is irreducible.

Proof of theorem 3.6.5. If (p− 1) - (a+ b) then

#L(0) = a+

⌊
a+ b

p− 1

⌋
−
⌊
a+ b

p
+

a+ b

p(p− 1)

⌋
−
⌊
b

p

⌋
= a+

⌊
a+ b− 1

p− 1

⌋
−
⌊
a(p− 1) + a+ b(p− 1) + b

p(p− 1)

⌋
= a.

If (p− 1) | (a+ b) then

#L(0) = a+
a+ b

p− 1
− 1−

⌊
a+ b

p
+

a+ b

p(p− 1)
− 1

⌋
−
⌊
b

p

⌋
= a+

a+ b− 1

p− 1
−
⌊
a+ b− 1

p− 1

⌋
= a.
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Using lemma 3.6.6 we get pf−1 sets of generating polynomials. By lemma 3.6.7 each

of these sets contains pfa polynomials that generate non-isomorphic fields. Now either

the roots of one of the polynomials generate p distinct extensions or else the extension

generated by any root is cyclic. In the latter case we have p−1 additional polynomials

generating one extension each by lemma 3.6.9. Thus we obtain (pf −1)paf+1 distinct

extensions.

Corollary 3.6.10. Let k be an extension of Qp of degree n. The number of Galois

extensions of k of degree p and discriminnant pp+ap+b−1 is

p · p
n − 1

p− 1
.

Proof. Let ϕ(x) as in theorem 3.6.5. We denote the inertia degree and the ramification

index of k by f and e respectively. The number of values of s for which xp−1 − ζs is

reducible is (pf − 1)/(p − 1). By Ore’s Conditions 0 6 a < e. For every a there is

exactly one b with 1 6 b < p such that (p − 1) | (a + b). For every a the set L(0)

contains a elements. This gives pfa combinations of values of ci, i ∈ L(0). We have p

choices for k. Thus the number of polynomials ϕ(x) generating Galois extensions is

p · p
f − 1

p− 1
·
e−1∑
a=0

pfa = p · p
f − 1

p− 1
· p

fe − 1

pf − 1
= p · p

n − 1

p− 1
.

3.7 Extensions of Degree pm

Let j = ap + b. By theorem 3.4.2 the number of extensions of k of degree n = pm

and discriminant pp
m+empm−1 is

#kpm+empm−1 = pmqe
pm−1
p−1

In the case of extensions of degree pm with m > 1 we only give a set of polynomials

generating independent extensions (but not – as before for extensions of degree p –

a set of polynomials that give all extensions).

Lemma 3.7.1. Let p be a prime number, let m ∈ N, and let a < pm with p - a. If

1 6 r 6 pm − 1 then

vp

((
apm

r

))
= m− vp(r).
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Proof. For any 1 6 s 6 pm − 1 we have vp

(
apm − s

s

)
= 0. Hence

vp

((
apm

r

)
r

)
= vp

(
(apm)!r

r!(apm − r)!)

)
= vp

(
apm

(r − 1)!(apm − r)!)

)
= vp

(
apm(apm − 1) · · · (apm − r + 1)

(r − 1)(r − 2) · · · 1

)
= m+ vp

(
apm − (r − 1)

r − 1
· · · ap

m − 1

1

)
= m.

Extensions of discriminant ppm+empm−1

Proposition 3.7.2. Let k be a p-adic field. Set

L(0) :=

{
l ∈ Z

∣∣∣∣ 1 6 l 6
pe

p− 1
or epm−1 < l 6

epm

p− 1
, and p - l

}
,

L(i) :=

l ∈ Z
∣∣∣∣∣∣
em− evp(i) 6 l < em and pm−h+1 - i if
eph

p− 1
<

i

pm−h
+ ph(l − eh) 6

eph+1

p− 1
with 1 6 h 6 m− 1


for 1 6 i 6 pm − 1. Let

ϕ(x) = xp
m

+

pm−1−1∑
i=1

xi
∑
l∈L(i)

ρci,lπ
l+1 +

∑
l∈L(0)

ρc0,lπ
l+1 + π

and

ψ(x) = xp
m

+

pm−1−1∑
i=1

xi
∑
l∈L(i)

ρdi,lπ
l+1 +

∑
l∈L(0)

ρd0,lπ
l+1 + π.

Assume ci,l 6= di,l for some 0 6 i 6 pm−1−1 and some l ∈ L(i). Let α ∈ k and β ∈ k

be roots of ϕ(x) respectively ψ(x). Then k(α) 6∼= k(β).

Note that L(i) = ∅ if p - i.

Proof. We use Panayi’s root-finding algorithm (algorithm 2.1.4) to prove that ψ(x)

does not have any roots over k(α). As in the proofs of lemmas 3.6.2 and 3.6.7, we

get

ψ#
1 (x) =

(
−

pm−1−1∑
i=1

αip
∑
l∈L(i)

ρci,lπ
l −

∑
l∈L(0)

ρc0,lπ
l + 1

)
xp

m

+

pm−1−1∑
i=1

αipxip
∑
l∈L(i)

ρdi,lπ
l +

∑
l∈L(0)

ρd0,lπ
l + 1.
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We denote by βs a lift of a root of ψ#
s+1(x) to k(α). Let t be the smallest integer such

that βt 6≡ 0 mod (α) and let r 6 epm/(p− 1). Then

ψr+1(x) =

(
−

pm−1−1∑
i=1

αip
∑
l∈L(i)

ρci,lπ
l −

∑
l∈L(0)

ρc0,lπ
l − 1

)
· (αrx+ αr−1βr−1 + · · ·+ αtβt + 0 + · · ·+ 0 + 1)p

m

+

pm−1∑
i=1

αi(αrx+ αr−1βr−1 + · · ·+ αtβt + 0 + · · ·+ 0 + 1)i
∑
l∈L(i)

ρdi,lπ
l

+
∑
l∈L(0)

ρd0,lπ
l + 1.

Again we assume that the root-finding algorithm does not terminate earlier with

deg
(
ψ#
s (x)

)
= 0 for s < r. It will become clear presently why the root-finding

algorithm cannot terminate with deg
(
ψ#
s (x)

)
= 1 under the condition r 6 epm/(p−

1).

Consider the term (αrx+ 1)p
m

. For every r the non-constant term with coefficient of

lowest exponential valuation is one of

αrp
m

xp
m

, . . . , phαrp
m−h

xp
m−h

, . . . , pmαrx.

The exponential valuations of the coefficients of these terms are

vα(αrp
m

) = rpm, . . . , vα(phαrp
m−h

) = ehpm + rpm−h, . . . , vα(pmαr) = empm + r.

We find that if r > eph+1/(p− 1) then

hepm + rpm−h > (h+ 1)epm + rpm−h−1.

Thus for eph/(p− 1) < r 6 eph+1/(p− 1) the valuation of the coefficient of the term

phαrp
m−h

is lower than the valuations of the coefficients of any other non-constant

term of (αrx+ 1)p
m

. Therefore the degree of
(
(αrx+ 1)p

m)#
is 1 if r > epm/(p− 1).

Consider the term αi(αrx+1)iπem−vp(i). By lemma 3.7.1 for every r the non-constant

term with coefficient of lowest exponential valuation is of the form

αipgαrp
vp(i)−g

xp
vp(i)−g

πem−evp(i)

with 1 6 g 6 vp(i). The valuations of these terms are
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vα(αipgαrp
vp(i)−g

xp
vp(i)−g

πem−evp(i)) = i+ pm(em− evp(i) + eg) + rpvp(i)−g.

If r > epm−vp(i)+g+1/(p− 1) then

i+ pm(em− evp(i) + eg) + rpvp(i)−g > i+ pm(em− evp(i) + e(g + 1)) + rpvp(i)−(g+1).

Thus for epm−vp(i)+g/(p− 1) < r 6 epm−vp(i)+g+1/(p− 1) the valuation of the coef-

ficient of the term αipgαrp
vp(i)−g

xp
vp(i)−g

πem−evp(i) is lower than the valuations of the

coefficients of any other non-constant term of αi(αrx+ 1)iπem−vp(i).

We compare the non-constant terms with minimal valuation from (αrx + 1)p
m

and

αi(αrx + 1)iπem−vp(i) for a given ep/(p − 1) < r 6 epm/(p − 1). Setting h := m −
vp(i) + g, we obtain

vα(phαrp
m−h

) = ehpm + rpm−h

= e(m− vp(i) + g)pm + rpm−m+vp(i)−g

< i+ e(m− vp(i) + g)pm + rpvp(i)−g

= vα(αipgαrp
vp(i)−g

xp
vp(i)−g

πem−evp(i)).

Hence the non-constant term relevant in the root-finding algorithm is always of the

form ph
(
αrx
)pm−h

.

In step r where eph/(p − 1) < r 6 eph+1/(p − 1) for some 1 6 h 6 m − 1 we get

βr 6= 0 only if vα(phαrp
m−h

) = vα(αi + πl) for some 1 6 i 6 pm − 1 and l ∈ L(i). It

follows that

vα(phαrp
m−h

) = ehpm + rpm−h = i+ lpm = vα(αi + πl);

hence
eph

p− 1
< r =

i

pm−h
+ ph(l − eh) 6

eph+1

p− 1
.

It is obvious that p | r if and only if pm−h+1 | i.

Assume that vp(i) = m− h; then p - r. Set s := ip−vp(i) and d := l + vp(i)−m. We

obtain
eph

p− 1
< r = s+ phd 6

eph+1

p− 1

and as i < pm we have 1 6 i < ph, p - i, and 0 6 d < evp(i). Therefore

s+ phd 6 ph − 1 + ph(evp(i)− 1) = phevp(i)− 1.
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If vp(i) > 1 we have phevp(i) − 1 > eph+1/(p− 1). Thus for every r with eph/(p −
1) < r 6 eph+1/(p − 1) and p - r there exist 1 6 i 6 pm − 1 and l ∈ L(i) with

r = i/pm−h + ph(l − eh).

If vp(i) = 1 then h = m − 1 and epm−1 − 1 < epm/(p − 1). For every r with

epm−1/(p − 1) < r 6 epm−1 − 1 and p - r there exist 1 6 i 6 pm − 1 and l ∈ L(i)

with r = i/p+ pm−1(l− em− e). For epm− 1 < r 6 epm/(p− 1) such elements i and

l do not exist.

We have seen that for r 6 epm/(p − 1) all the valuations of all coefficients of non-

constant terms with minimal valuation are divisible by p. The valuations of all con-

stant terms of the form αi + πlρ are divisible by p as L(i) = ∅ if p | i.

The valuations of the constant terms of the form pmβtα
t are not divisible by p. If

r > epm/(p−1) then deg
(
ψ#
r+1

)
6 1. The coefficient of the linear term of ψr+1(x) has

valuation vα
(
pmαr

)
= empm + r > empmepm/(p− 1). As t < epm/(p− 1) the root-

finding algorithm terminates with deg
(
ψ#
r+1

)
= 0 for some 1 6 r 6 epm/(p− 1).

Remark 3.7.3. Proposition 3.7.2 gives us a set S ⊂ En,j of polynomials whose roots

define non-isomorphic field extensions of k.

• The number of integers l with 1 6 l 6 ep/(p− 1) or epm−1 < l 6 epm/(p− 1) is

s1 :=

⌊
ep

p− 1

⌋
+

⌊
epm

p− 1
− epm−1

⌋
=

⌊
ep

p− 1

⌋
+

⌊
epm−1

p− 1

⌋
.

• The number of integers l with em− vp(i) 6 l < em for i from 1 to pm − 1 is

s2 :=

pm−1∑
i=1

vp(i) = e

pm−1∑
i=1

vp(i) = e
pm − 1

p− 1
− em.

• The number of integers r with 0 6 r 6 epm/(p− 1) with p | r is

s3 :=

⌊
epm

p(p− 1)

⌋
=

⌊
epm−1

p− 1

⌋
.

• But there exist r with p | r such that there is no i with 1 6 i 6 pm−1 and l ∈ L(i)

such that
eph

p− 1
< r =

i

pm−h
+ ph(l − eh) 6

eph+1

p− 1
,

or respectively
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epm−1

p− 1
< r 6 epm−1.

We have vp(i) 6 m− 1. Therefore vp(ip
h−m) 6 h− 1.

If h < m− 1 then the number of integers r with eph/(p− 1) < r 6 eph+1/(p− 1)

and vp(r) > h is

s4 :=

⌊
beph+1/(p− 1)c − beph/(p− 1)c

ph

⌋
= e.

The number of integers r with epm−1(p− 1) < r 6 epm−1 and vp(r) > m− 1 is

s5 :=

⌊
epm−1 − bepm−1/(p− 1)

pm−1

⌋
= e−

⌊
e

p− 1

⌋
.

We get

s := s1 + s2 − s3 + (m− 2)s4 + s5

=

⌊
ep

p− 1

⌋
+

⌊
epm−1

p− 1

⌋
+ e

pm − 1

p− 1
− em−

⌊
epm−1

p− 1

⌋
+ (m− 2)e+ e−

⌊
e

p− 1

⌋
= e

pm − 1

p− 1
.

Thus the number of polynomials in S is

#S = qs = qe
epm−1
p−1 .

Note that if the roots of every polynomial in S generate pm distinct extensions, then

all extensions of degree pm and discriminant pp
m+empm−1 are given by the elements

of S.

3.8 Computing Totally Ramified Extensions

Let k be a finite extension of Qp with maximal ideal p. Let n and j be such that

they satisfy the conditions of section 3.1.

The following algorithm finds a minimal set of polynomials generating all totally

ramified extensions of degree n and discriminant pn+j−1 using the polynomials Aω

defined in section 3.3.
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Algorithm 3.8.1 (Totally Ramified Extensions).

Input: k, n, j

Output: A minimal set of polynomials generating all totally ramified extensions

of k of degree n and discriminant pn+j−1

• Compute #Kn,j using theorem 3.4.2.

• L← ∅.

• l← 0.

• For ω ∈ Ω:

• Let κ be a root of Aω(x).

• If no h ∈ L has a root in k(κ) then:

• L← L ∪ {Aω}.
• Let r be the number of roots of Aω in k(κ).

• l← l + n/r.

• If l = #Kn,j then return L.

Notice that we could test all the polynomials Aω for isomorphism and keep only

the ones defining non-isomorphic extensions. However, since the number of these

polynomials is far greater than the number of extensions, it is better to proceed

as above, that is, to compute the number of extensions at the beginning and to

stop when enough polynomials have been found to generate all these extensions.

This explains why it is useful to know the number of such extensions before the

construction.

There are several improvements that can be made to this algorithm.

• If p does not divide n, one can use theorem 3.5.2 to get directly a minimal set of

polynomials generating all extensions.

• If n = p one can use the complete description of extensions of degree p as given in

section 3.6.

• If n = pm one can start with a set of polynomials defining distinct extensions (see

section 3.7).

• Also, the computation becomes faster if one enumerates the elements of Ω in such

a way that the distance between polynomials in L and the next Aω is maximal.
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•We can improve the computation time considerably by using propositions 3.1.2

and 3.5.3, which enable us to compute the subfield lattice at the same time. We

first compute all suitable sub-extensions K0/k and then construct the absolute

extensions K/k which are relative extensions of K0. Since the number of polyno-

mials to be considered is much smaller in the relative case and one has to look

for roots of polynomials with smaller degree and discriminant, this reduces the

computation time considerably, especially in the case treated in proposition 3.5.3.

Splitting up the construction of extensions this way enables us to apply theorem

3.5.2 and the results of sections 3.6 and 3.7.

The proof of lemma 3.4.1 can also be used to compute a minimal set of polynomials

in a different way. We use the notation from the proof of lemma 3.4.1. In addition

to the map µ that sends a prime element α in Πn,j to its irreducible polynomial

µ(α) over k, we define a map µ̃ from Πn,j to Ω that sends this prime element to the

unique element ω ∈ Ω such that d(µ(α), Aω) 6 r. Also, for such a prime element α,

we define the set A(α) to be a (fixed) set of representatives of the prime elements of

k(α) modulo Pt
α where Pα is the prime ideal of k(α). For example, one can choose

A(α) to be the set of elements α(ζ0 + ζ1α + · · · + ζt−2α
t−2) where the ζj’s range

through a set of representatives of Ok/p and ζ0 6≡ 0 (mod p).

Proposition 3.8.2. Let α be an element of Πn,j. Then the set {µ̃(β) : β ∈ A(α)}
is exactly the set of ω ∈ Ω such that α and any root of Aω define k-isomorphic

extensions. Moreover, for any such ω the number m of β ∈ A(α) such that µ̃(β) = ω

is independent of ω and is the number of k-automorphisms of k(α); so, in particular,

the number of conjugate fields over k of k(α) is n/m.

Proof. This is a direct application of the proofs of corollary 3.3.3 and lemma 3.4.1.

This gives us the following algorithm.

Algorithm 3.8.3 (Totally Ramified Extensions).

Input: k, n, j

Output: A minimal set of polynomials generating all totally ramified extensions

of K of degree n and discriminant pn+j−1

• Let {ω1, . . . , ωl} be the elements of Ω.

• For 1 6 i 6 l, set Bi ← 0.
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• L← ∅.

• c← 1.

•While c 6 l:

• if Bc = 0:

• L← L ∪ {Aωc}.
• Let κ be a root of Aωc .

• For all d such that ωd ∈ µ̃−1(A(κ)):

• Bd ← 1.

• c← c+ 1.

• Return L.

Since the basic operation in algorithm 3.8.3 is the computation of characteristic poly-

nomials whereas the basic operation in algorithm 3.8.1 is the root finding algorithm,

this algorithm seems faster than the latter. But this is not the case in general. The

reason is that the number of elements in A(α) is (q − 1)qt−2 and so the number of

such basic operations quickly becomes large. Furthermore, if in algorithm 3.8.1 the

polynomials from Aω are chosen cleverly, the algorithm can rapidly find polynomials

defining all non-isomorphic extensions and thus can terminate after using the root

finding algorithm only a few times.

3.9 Generating Polynomials of Galois Extensions

Shafarevich [1947] also gives a formula for the number of extensions of a p-adic field.

Instead of Krasner’s topological approach he chose a group-theoretic approach.

Theorem 3.9.1 (Shafarevich). Let k be a finite extension of Qp with [k : Qp] = n

not containing the p-th roots of unity. Let G be a group of order pm with d 6 n + 1

generators and Aut(G) the group of its automorphisms. The number extensions of k

with Galois group G is

1

#Aut(G)

(
#G

pd

)n+1 d−1∏
i=0

(pn+1 − pi).

Yamagishi [1995] generalized Shafarevich’s results to include the case when k includes

the p-th roots of unity. The following proposition is a consequence of his work.
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Denote by µp and µp2 the set of the p-th, respectively p2-th, roots of unity.

Proposition 3.9.2 (Yamagishi). The number of Galois extensions of degree p2 of

k/Qp with ramification index E and inertia degree F is given below.

Galois number of extensions of k, if

group
E F

µp 6⊂ k µp ⊂ k and µp2 6⊂ k µp2 ⊂ k

p p
pn − 1

p− 1

pn+1 − 1

p− 1
Cp × Cp

p2 1 p2 p
n − 1

p− 1

pn−1 − 1

p2 − 1
p2 p

n+1 − 1

p− 1

pn − 1

p2 − 1

1 p2 1

Cp2 p p pn − 1 pn+1 − 1

p2 1 pn+1 p
n − 1

p− 1
pn+2 p

n − 1

p− 1
pn+2 p

n+1 − 1

p− 1

Denote by e and f the ramification index and inertia degree of k. Let π be a prime

element of k and let ζ ∈ k be a (pf − 1)-th root of unity.

Lemma 3.9.3. Let ϑ(x) ∈ k[x] be monic with deg(ϑ) = p and ϑ(x) irreducible over

k[x]. Let j = ap+b such that they fulfill Ore’s Conditions and such that p−1 divides

a+ b. Let

ϕ(x) = xp + ζsπa+1xb + π +
∑
i∈L(0)

ρciπ
i+1 ∈ k[x]

with xp−1 +(−1)ap+1ζsb in k[x] reducible. Denote by Γ and Π roots of ϑ(x) and ϕ(x)

respectively. Then k(Γ,Π)/k is Galois with Galois group isomorphic to Cp × Cp.

Proof. By theorem 3.6.5 k(Π) is Galois over k. In the proof of corollary 3.6.10 we

have seen that the number of polynomials of the form ϕ(x) is (pn − 1)(p − 1). By

theorem 3.6.5 these generate non-isomorphic extensions. As the coefficients of ϕ(x)

are fixed by all elements in Gal(k(Γ )/k) the extension k(Γ,Π) is Galois over k.

Remark 3.9.4. We use the notation from theorem 3.6.5. Fix a, b, s, and ci, i ∈ L(0).

For k ∈ {1, . . . , p} set
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ϕk(x) := xp + ζsπa+1xb + π +
∑
i∈L(0)

ρciπ
i+1 + (k − 1)δπt+1 ∈ k[x].

Denote by Πk a root of ϕk in an algebraic closure of k. Let ϑ(x) ∈ k[x] be monic

with deg(ϑ) = p and ϕ(x) irreducible over k[x]. The lattice of subfields of k(Γ,Π1) =

· · · = k(Γ,Πp) is:

p

k(Γ,Π1)

k(Γ ) k(Π1) · · · k(Πp)

k

p

For σ ∈ Gal(K/k) and ψ(x) = cnx
n + · · · + c1x + c0 ∈ K[x] denote by σ(ψ)(x) the

polynomial σ(cn)xn + · · ·+ σ(c1)x+ σ(c0).

Lemma 3.9.5. Let ϑ(x) ∈ k[x] be monic with deg(ϑ) = p and ϑ(x) irreducible over

k[x]. Denote by Γ a root of ϑ(x). Let j = ap+b such that they fulfill Ore’s Conditions

and such that (p− 1) | (a+ b). Let

ϕ(x) = xp + ζsπa+1xb + π +
∑
i∈L(0)

ρciπ
i+1 + kδπt ∈ k(Γ )[x]

with xp−1 − ζsb reducible in k[x] and δ ∈ k(Γ ) such that xp − ζsbx + δ ∈ k(Γ )[x]

is irreducible. Let Π be a root of ϕ(x). Then k(Γ,Π)/k is Galois with Galois group

isomorphic to Cp2.

Proof. All Galois extensions of degree p of k(Γ ) are generated by the roots of poly-

nomials of the form

ϕ(x) = xp + ζsπa+1xb + π +
∑
i∈L(0)

ρciπ
i+1 + kδπt+1,

where (p− 1) | (a+ b) and xp−1 − ζsb is reducible in k[x].

Let Π be a root of ϕ(x). The extension k(Γ,Π)/k is Galois if for every σ in

Gal(k(Γ )/k) the polynomial σ(ϕ)(x) is reducible over k(Γ,Π). By lemma 3.6.6 the

extension k(Γ,Π)/k is not Galois if ζs ∈ k(Γ ) \ k. It follows from the proof of
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lemma 3.6.7 that k(Γ,Π)/k is not Galois if ρci ∈ k(Γ ) \k. By Lemma 3.9.3 we have

Gal(k(Γ,Π)/k) ∼= Cp × Cp if k = 0. This leaves

p
pn − 1

p− 1
− pn − 1

p− 1
= pn − 1

Galois extensions of k of degree p2 with ramification index p and inertia degree p

and Galois group not isomorphic to Cp × Cp.

Proposition 3.9.6. Let p be an odd prime. Let ϑ(x) ∈ Qp[x] be monic with deg(ϑ) =

p and ϑ(x) irreducible over Fp[x]. Let Γ be a root of ϑ(x). Let ϕ(x) := xp + (p −
1)pxp−1 + p ∈ Qp(Γ ). Let π be a root of ϕ(x). Let ψ(x) := xp + (p − 1)πxp−1 + π.

Then Qp(Γ, π,Π) is the unique Galois extension of Qp with Galois group isomorphic

to

E1 := 〈σ, τ ; σp = τ p = [σ, τ ]p = 1, [σ, [σ, τ ]] = [τ, [σ, τ ]] = 1〉.

The lattice of subgroups of E1 is shown below. The subgroups with dotted lines are

not normal in E1.

Cp · · · Cp

E1

Cp × Cp Cp × Cp · · · Cp × Cp

{id}

Cp Cp · · · Cp · · · Cp · · · Cp

Proof. It follows from theorem 3.9.1 that there is only one Galois extension of Qp

with Galois group isomorphic to E1.

First we show that Qp(Γ, π,Π) is Galois over Qp. As the coefficients of ϕ(x) and ψ(x)

are fixed under the automorphisms of Qp(Γ ) the extension Qp(Γ, π,Π)/Qp(Γ ) is Ga-

lois. It follows from the proof of lemma 3.6.8 that there exists σ ∈ Gal(Qp(Γ, π)/Qp(Γ )

generating Gal(Qp(Γ, π)/Qp(Γ ), such that σ(π) ≡ π+π2 mod π3. This gives σ(ψ)(x) ≡
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xp + (p − 1)(π + π2)xp−1 + π + π2. We use the root-finding algorithm to show that

σ(ψ)(x) has a root over Qp(Γ, π,Π). We get

σ(ψ)2(x) ≡ π(xp + (p− 1)x+ 1)

(c.f. proof of lemma 3.6.7) which has p roots over Qp(Γ, π,Π). It follows that σ(ψ)(x)

has p roots over Qp(Γ, π,Π). Thus Qp(Γ, π,Π) is Galois over Qp.

The extension of degree p3 with Galois group isomorphic to E1 is the only Galois

extension of degree p3 which has p2 totally ramified subfields of degree p2 that are

not Galois over Qp.

For i ∈ {0, . . . , p − 1} let ϕi(x) := xp + (p − 1)pxp−1 + p + ip2 ∈ Qp[x] and denote

by πi a root of ϕi(x). For i ∈ {0, . . . , p − 1} and k ∈ {0, . . . , p − 1} let ψik(x) :=

xp + (p− 1)πix
p−1 + πi + kπ2

i ∈ Qp(πi) and denote by Πik a root of ψik(x).

We show that Qp(πi, Πik) is not Galois over Qp(πi). It follows from the proof of

lemma 3.6.8 that there exists σ ∈ Gal(Qp(πi)/Qp such that σ(π) ≡ πi + π2
i mod π3

i .

This gives σ(ψik)(x) ≡ xp + (p − 1)(π + π2)xp−1 + π + π2. We use the root-finding

algorithm to show that σ(ψik)(x) has a root over Qp(Γ, π,Π). As in the proof of

lemma 3.6.8 we get

σ(ψ)2(x) ≡ πi(x
p − (p− 1)x+ 1),

which is irreducible over Qp(πi, Πik). Thus Qp(πi, Πik) is not Galois over Qp(πi).

For p 6= 2 the lattice of subfields of the unique extensions of Qp of degree p3 with Ga-

lois group E1 is depicted below. The elements Γ , πi, and Πk,l with i, k, l ∈ {1, . . . , p}
are as in the proof of proposition 3.9.6. The elements α1, . . . , αp are generators of the

remaining degree-p extensions of Qp(Γ ).
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Qp(Γ,Π1,1)

Qp

Qp(Γ, α1) · · ·Qp(Γ, αp) Qp(Γ, π1) Qp(Π1,1) · · ·Qp(Π0,p) · · · Qp(Πp,1) · · ·Qp(Πp,p)

Qp(Γ ) Qp(π1) · · · Qp(πp)

f=p

f=p e=p e=p

e=p E=p

E=p f=pE=p

3.10 Examples

Example 3.10.1 (Extensions of degree 9 and discriminant 312 over Q3).

There are 54 extensions of degree 9 and discriminant 39+4−1 over Q3. We compute all

these as absolute extensions over Q3. We find the following generating polynomials,

each of them defining 9 isomorphic extensions.

Φ1(x) = x9 + 2 · 3x4 + 3 Φ4(x) = x9 + 2 · 3x4 + 2 · 3x3 + 3

Φ2(x) = x9 + 3x4 + 2 · 3x3 + 3 Φ5(x) = x9 + 3x4 + 3

Φ3(x) = x9 + 3x4 + 3x3 + 3 Φ6(x) = x9 + 2 · 3x4 + x3 + 3

Following proposition 3.1.2, we compute the subfields of degree 3 and discriminant

33+j0−1 where j0 = 1. Notice that these are the only possible subfields. We find

out that there are six such subfields generated by the roots of the two polynomials

ϕ1(x) = x3 + 6x+ 3 and ϕ2(x) = x3 + 3x+ 3. Let π1 and π2 be zeroes of ϕ1 and ϕ2

respectively. Each of the fields Q3(πi) admits six totally ramified extensions of degree

n1 = 3 and discriminant (πi)
3+j1−1 where j1 = 1. These extensions are generated by

ψi1(x) = x3 + πix+ πi and ψi2(x) = x3 + 2πix+ πi over Q3(πi).

Let αi,k denote a root of ψi,k. Using algorithm 2.1.4 we get that Q3(π1)(α12) ∼=
Q3(π2)(α21) and that the other fields are distinct. So we have found 27 extensions of

degree 9 that have subfields of degree 3. Let Πi be a root of Φi. We have Q3(Π5) ∼=
Q3(π1)(α21) ∼= Q3(π2)(α12), Q3(Π6) ∼= Q3(π1)(α22) and Q3(Π4) ∼= Q3(π2)(α11). The

lattice of subfields (up to isomorphism) is depicted below.
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6

n = 9
j = 4

?

6

n1 = 3
j1 = 1

?
6

n0 = 3
j0 = 1

?

Q3(Π1) Q3(Π2) Q3(Π3) Q3(Π4) Q3(Π5) Q3(Π6)

Q3(π1) Q3(π2)

Q3

Example 3.10.2 (All extensions of degree 10 of Q5). There is one unramified

extension of degree 10; it is generated over Q5 by the roots of ϕ(x) = x10 + 2x8 + 3.

There are two extensions with residue degree 5 and ramification index 2. The un-

ramified part k/Q5 is defined by ϕ(x) = x5 + 3x3 + 3 and the tamely ramified part

K/k by ψi(x) = x2 + 5i where i = 1, 2.

There are 605 extensions with residue degree 2 and ramification index 5. These

extensions K are generated over the unramified field k := Q5(ρ), ρ2 + 2 = 0, by the

polynomials in the following table. The roots of each polynomial generate N distinct

isomorphic extensions. Together, the polynomials in each line generate a total of #K

extensions of absolute discriminant 55+j−1.

j generating polynomials N #K

1 x5 + 5(h1 + h2ρ)x+ 5 h1, h2 ∈ {0, 1, 2, 3, 4}, (h1, h2) 6= (0, 0) 5 120

2 x5 + 5(h1 + h2ρ)x2 + 5 h1, h2 ∈ {0, 1, 2, 3, 4}, (h1, h2) 6= (0, 0) 5 120

3 x5 + 5(h1 + h2ρ)x3 + 5 h1, h2 ∈ {0, 1, 2, 3, 4}, (h1, h2) 6= (0, 0) 5 120

4 x5 + 5(h1 + h2ρ)x4 + 5 h1, h2 ∈ {0, 1, 2, 3, 4} 5 90

(h1, h2) 6∈ {(0, 0), (1, 0), (2, 1), (2, 4), (3, 1), (3, 4), (4, 0)}

4 x5 + 5(h1 + h2ρ)x4 + 5 + 25h0ρ h0 ∈ {0, 1, 2, 3, 4} 1 25

(h1, h2) ∈ {(1, 0), (2, 1), (2, 4), (3, 1), (3, 4)}

4 x5 + 4 · 5x4 + 5 + 25h0 h0,∈ {0, 1, 2, 3, 4} 1 5

5 x5 + 5 + 25(h1 + h2ρ) h1, h2 ∈ {0, 1, 2, 3, 4} 5 125

There are 1210 totally ramified extensions of degree 10 of Q5. Using proposition

3.5.3, we find that they are relative extensions over one of the two tamely ramified

extensions of degree 2 defined by ϕi(x) = x2 + 5i where i = 1, 2. Let πi be a root of

ϕi. The wildly ramified part is generated by the polynomials in the following table
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over Q5(πi). The roots of each polynomial generate N distinct isomorphic exten-

sions. Together, the polynomials in each line generate #K extensions of absolute

discriminant 510+j−1.

j generating polynomials N #K

1 x5 + h1πix+ πi h1 ∈ {1, 2, 3, 4} 5 20

2 x5 + h2πix
2 + πi h2 ∈ {1, 2, 3, 4} 5 20

3 x5 + h3πix
3 + πi h3 ∈ {1, 2, 3, 4} 5 20

4 x5 + h4πix
4 + πi h4 ∈ {1, 2, 3} 5 15

4 x5 + 4πix
4 + (πi + h0π

2
i ) h0 ∈ {0, 1, 2, 3, 4} 1 5

6 x5 + h1π
2
i x+ (πi + h0π

2
i ) h1 ∈ {1, 2, 3, 4}, h0 ∈ {0, 1, 2, 3, 4} 5 100

7 x5 + h1π
2
i x

2 + (πi + h0π
2
i ) h1 ∈ {1, 2, 3, 4}, h0 ∈ {0, 1, 2, 3, 4} 5 100

8 x5 + h1π
2
i x

3 + (πi + h0π
2
i ) h1 ∈ {1, 2, 4}, h0 ∈ {0, 1, 2, 3, 4} 5 75

8 x5 + 3π2
i x

3 + (πi + h0π
2
i + h1π

3
i ) h0, h1 ∈ {0, 1, 2, 3, 4} 1 25

9 x5 + h1π
2
i x

4 + (πi + h0π
2
i ) h1 ∈ {1, 2, 3, 4}, h0 ∈ {0, 1, 2, 3, 4} 5 100

10 x5 + (πi + h2π
2
i + h3π

3
i ) h2, h3 ∈ {0, 1, 2, 3, 4} 5 125

This gives 605 extensions of degree 5 over Q(π1) (resp. Q(π2)). Hence there are 1818

extensions of degree 10 of Q5. Note that there are only 293 non-isomorphic extensions

of degree 10 of Q5.

3.11 Future Developments

This thesis can be regarded as a step towards a generalized, constructive class field

theory for p-adic fields. The methods described above work well for small examples,

i.e., when the number #DEn,j of polynomials Aω with ω ∈ Ω is small.

A complete description of extensions of degree pm would speed up the computation

considerably. Here the methods of Lbekkouri [1997] could be applied. He gives con-

ditions on the coefficients of Eisenstein polynomials over Qp of degree p2, to decide

whether the extensions defined by these are normal.

The number of polynomials can be easily reduced by using additional invariants of

the extensions to be computed in addition to the degree and discriminant.
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The indices of inseparability, introduced by Arf [1939] and refined by Heiermann

[1996], could be easily used, as they can be translated directly into conditions on the

coefficients of the defining polynomials of extensions.

It is ultimately desirable to refine the algorithm so that it returns all extensions of

a p-adic field of a given degree, discriminant and Galois group. Once the description

of extensions of degree p2 has been completed (see section 3.9) it should be possible

to construct totally ramified Galois extensions of Qp using methods similar to those

in the proof of proposition 3.9.6.

These approaches are subjects of ongoing research.
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J. Montes. Poĺıgonos de Newton de orden superior y aplicaciones aritméticas. PhD
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