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Abstract. Let K be a a global field and O be an order of K. We develop

algorithms for the computation of the unit group of residue class rings for
ideals in O. As an application we show how to compute the unit group and

the Picard group of O provided that we are able to compute the unit group

and class group of the maximal order eO of K.

1. Introduction

Let O be an order of a global field and a be an ideal of O. We develop algorithms
to determine the multiplicative structure (O/a)∗ of the residue class ring O/a. As
applications we give algorithms to compute the unit group O∗ and the Picard group
Pic(O) which is the group of invertible fractional ideals of O modulo its subgroup
of principal fractional ideals. Further applications are found in the computation of
Picard groups of group rings [BW05].

For the case whereO is a maximal order there are algorithms for the computation
of (O/a)∗ (see [Coh00, section 4.2] for number fields and [HPP02] for number fields
and function fields). If O is a maximal order (and therefore a Dedekind domain)
the Picard group coincides with the ordinary ideal class group in the number field
case and an S-class group in the function field case. For maximal orders there are
well known algorithms for the computation of the unit group and the class group.

In general the order O is not a Dedekind domain. Since not all ideals of O are
a product of prime ideals the ideal arithmetic is more difficult than in a Dedekind
domain. Furthermore the localization of O at a non-regular prime ideal is not a
principal ideal domain. We show how these difficulties can be overcome.

In the computer algebra systems KASH [DF+97] and Magma [Ca+03] there are
functions for computing the unit group of non-maximal orders of number fields
[Wil93]. Examples show that our approach is much more efficient especially when
the index of the order in its maximal order is large. Furthermore there is an
implementation of an algorithm for determining Picard groups of orders of quadratic
number fields in Magma. To our best knowledge there were no algorithms known
for field extension of higher degrees or for the function field case.

In the following we present an overview over the main ideas and the structure of
this paper. Let a ⊆ O be an ideal and p1, . . . , pr be the prime ideals of O containing
a. We have

(O/a)∗ ∼= (Op1/aOp1)
∗ × . . .× (Opr/aOpr )

∗,

where Opi
denotes the localization of O at pi. Thus it is sufficient to compute the

groups (Opi
/aOpi

)∗ (1 ≤ i ≤ r). We prove in section 4 for an ideal a of O and a
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prime ideal p ⊇ a with pmOp ⊆ aOp ⊆ Op that

(1) (Op/aOp)∗ ∼=
(
O/(a + pm)

)∗ ∼= (O/p)∗ × (1 + p)/(1 + a + pm).

In section 3 we show how to find all prime ideals in O which contain a given
ideal a. Furthermore we give algorithms for the computation of the residue class
field O/p including the canonical epimorphism O → O/p. In section 4 we develop a
first method for the computation of the multiplicative group of residue class rings in
arbitrary orders. It is based on the isomorphism (1) and the canonical isomorphism
ψ : (1 + a)/(1 + b) → a/b which holds for ideals satisfying a ⊇ b ⊇ a2. In section
5 we recall some properties of Picard groups. Most important for our purposes is
the exact sequence

1 −→ O∗ −→ Õ∗ −→
⊕

p

Õ∗p/O∗p −→ Pic(O) −→ Pic(Õ) −→ 1,

where Õ is the integral closure of O in its field of fractions, the direct sum runs
through all prime ideals p of O, Op denotes the localization of O at p, and Õp

denotes the integral closure of Op. We assume that Õ∗ and Pic(Õ) are already
computed. We show in proposition 6.2 that⊕

p

Õ∗p/O∗p ∼=
⊕

p

(Õp/FÕp)∗/(Op/FOp)∗,

where F is the conductor of O, i.e. the largest subset of O which is an ideal of
O as well as Õ. This reduces the computation of O∗ and Pic(O) to residue class
ring computations. If all maps of the above sequence are known we obtain O∗
and Pic(O) using methods for computations with finitely generated abelian groups.
The computation of the conductor F is described in section 6. In section 7 we
define a canonical homomorphism (O/a)∗ → (Õ/aÕ)∗ and show in which cases
this homomorphism is injective. Using this information we give a second algorithm
to compute (O/a)∗ which is especially useful for the case when a is the conductor
of O. In section 8 we explicitly describe how the unit group O∗ and the Picard
group Pic(O) of O can be computed. This is followed by some examples in section
9.

2. Notations

In this section we introduce some notations which we use throughout this paper.
Let Õ be a Dedekind ring and let p be a prime ideal of Õ. For a ∈ Õ we denote by
vp(a) the p-adic exponential valuation of a.

Abelian groups. A finitely generated additive abelian group G is presented by a
column vector g ∈ Gm, whose entries form a system of generators for G, and by
a matrix of relations M ∈ Zn×m, such that vtrg = 0 for v ∈ Zm if and only if vtr

is an integral linear combination of the rows of M . We note that for every a ∈ G
there is a v ∈ Zm satisfying a = vtrg. If g1, . . . , gm is a basis of G, M will usually
be a diagonal matrix. Algorithms for calculations with finite abelian groups can
be found in [Coh00, section 4.1] and [Sim94] for example. If G is a multiplicative
abelian group, then vtrg is an abbreviation for gv1

1 · · · gvm
m . If G is a quotient group

(i.e. G = H/S for some subgroup S of a group H) we often represent the generators
of G by elements of H.



COMPUTING RESIDUE CLASS RINGS AND PICARD GROUPS OF ORDERS 3

Orders. Let R = Z or R = Fq[t] and Q be its field of fractions. Let K/Q be a
finite algebraic extension of degree n. A free R-module O ⊆ K of rank n, which is
a ring, is called an R-order of K.

Example 2.1. Let K be an algebraic number field of degree n. A Z-order O of K is
a ring which is a free Z-module of rank n. Therefore O = Zω1 + · · ·+ Zωn, where
ω1, . . . , ωn ∈ K are integral over Z and form a basis of the Q-vector space K.

An order is said to be the maximal R-order of K if it is maximal among the
R-orders of K. We denote the maximal R-order of K by Õ. Note that Õ is a
Dedekind domain and therefore integrally closed.

Example 2.2. Let R = Fq[t] be the ring of polynomials over the finite field with q el-
ements. Let f ∈ Fq[t][x] be monic and irreducible. The Fq[t]-order O := Fq[t][x]/(f)
is called the equation order of f . Let K be the field of fractions of O. The integral
closure

Õ := {α ∈ K | there exists a monic h ∈ Fq[t][x] with h(α) = 0}

is the maximal Fq[t]-order of K. It is also called the finite maximal order of K.

For an ideal a of O we denote by [O : a] the index of the additive groups.

3. Prime Ideals and Residue Class Fields

Prime Ideals. In this section we describe how to compute the prime ideals p
containing a given ideal a ⊆ O for an arbitrary order O. If O is a Dedekind
domain this task can be solved using well known factorization algorithms. If O is
an equation order we can use the following proposition for the computation of the
generators of the prime ideals over a prime element in R (see [PZ89, section 6.2]).

Proposition 3.1. Let f ∈ R[x] be monic and irreducible. Let O = R[α] =
R[x]/(f(x)). Let q be a prime element of R. Denote the irreducible factors of
f over the residue class field R/(q) by f1, . . . , fg. Then the prime ideals of O that
contain q are pi = qO + fi(α)O.

In general it is not that easy to describe the prime ideals in an R-order O. If
the maximal order Õ of O is known all prime ideals p of O can be obtained as
intersections of O with prime ideals q of the maximal order Õ.

The next question is how to determine all prime ideals of O which contain a given
ideal a. If we know the maximal order Õ we simply compute the intersection of
O with all prime ideals which occur in the factorization of aÕ. If we have another
algorithm to compute prime ideals (e.g. in equation orders) we factor the norm
N(a) of a. A prime ideal p with p ⊇ a has the property that N(p) | N(a). Now we
test the finitely many prime ideals lying over prime divisors of N(a).

Residue Class Fields. For a prime ideal p of an order O we describe the com-
putation of the residue class field O/p. If O is an equation order, i.e., there ex-
ists f ∈ R[x] such that O ∼= R[x]/(f), the description of the residue class fields
follows directly from proposition 3.1. Namely, if P is a prime ideal of R and
f ≡ fe1

1 · · · fes
s mod P with fi (1 ≤ i ≤ s) irreducible over R/P then the residue

class fields of the ideals of O over P are (R/P )[x]/(fi). The corresponding epimor-
phism O → (R/P )[x]/(fi) is given via α 7→ ᾱi, where f(α) = 0 and fi(ᾱi) = 0.
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If O is not an equation order the algorithm is more complicated. Let p be a
prime ideal of O. Let P = R ∩ p and ω = (ω1, . . . , ωn)tr be an R-basis of O. Let
M ∈ Rn×n be a matrix such that (τ1, . . . , τn)tr = Mω is a basis of the R-module
p. The quotient ring O/p can be described by the generators ω1, . . . , ωn and the
relation matrix M . We assume that M = (mi,j)1≤i≤n,1≤j≤n is given in Hermite
normal form (which can always be obtained). Unfortunately, we have to distinguish
between the number field and the function field case. The following two examples
describe how to get representatives for the residue class fields in these cases.

Example 3.2. Let R = Z and p ∈ p ∩ P. In this case the determinant of M is the
number of elements of O/p. The diagonal of M consists of 1’s and p’s since pωi ∈ p
for 1 ≤ i ≤ n. Let I := {i | ai,i = p}. Let ω1, . . . , ωn be a Z-basis of O. Then
canonical representatives for O/p are given by

∑
i∈I ciωi, where ci ∈ {0, . . . , p−1}.

Example 3.3. Let R = Fq[t] and b be a generator of degree k of the principal ideal
P := p ∩ Fq[t]. The diagonal entries of M = (mi,j) consist of polynomials with
degree bounded by k − 1. Let dj := max1≤i≤n{deg(mi,j)} ≤ k − 1. For 1 ≤ j ≤ n
let

wj : Fq[t]≤dj → Fdj+1
q , adj t

dj + · · ·+ a1t+ a0 7→ (adj , . . . , a1, a0),

where Fq[t]≤dj
= {f ∈ Fq[t] | deg(f) ≤ dj}. Then

N :=

w1(m1,1) . . . wn(m1,n)
...

. . .
...

w1(mn,1) . . . wn(mn,n)


is an Fq-relation matrix for the generators

(ω1, ω1 · t, . . . , ω1 · td1 , . . . , ωn, . . . , ωn · tdn)

of the quotient ring O/p.

Now we know representatives for the residue class field. Using a probabilistic
approach one quickly finds a primitive element β for (O/p)

/
(R/P ):

Lemma 3.4. Let F be an extension of Fq of degree m. Let β ∈ F . The probability
that F = Fq(β) is at least 1/2.

Proof. The number of elements of Fqm generating a proper subfield of Fqm is at
most ∑

l prime
l<m, l|m

qm/l ≤ (log2m)qm/2.

Therefore the probability that a randomly chosen element of Fqm belongs to a
proper subfield of Fqm is at most

(log2m)qm/2

qm
=

log2m

qm/2
≤ log2m

2m/2
≤ m

2m
=

1
2

for m ≥ 8.

The result is verified easily for 1 < m < 8. �

Let χβ be the minimal polynomial of β over R/P . Now O/p = (R/P )[x]/(χβ).
The epimorphism O → (R/P )[x]/(χβ) can be constructed using linear algebra.
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4. Residue Class Rings I

Let O be an arbitrary order of a global field K and let a be an ideal of O.
We present an algorithm for computing generators and relations of (O/a)∗. In the
following we denote by Op the localization of O at a prime ideal p and use the
fact that there is a canonical embedding O ↪→ Op. We use the following theorem
([Neu92, Satz 12.3, p. 77]) to split up the problem.

Theorem 4.1. Let a be a proper ideal of an order O and p1, . . . , pr be the prime
ideals containing a. Then

O/a ∼= Op1/aOp1 × . . .×Opr
/aOpr

.

As it is not easy to conduct calculations in the localization Op we carry out our
calculations in O modulo a suitable power of p. If a ⊆ p there always exists an
integer m such that pOp ⊇ aOp ⊇ pmOp (e.g. see [Eis95, theorem 2.13]). Using
theorem 4.1 and the fact that p is the only ideal with p ⊃ a + pm, we get

(2) Op/aOp = Op/(a + pm)Op
∼= O/(a + pm) ∼= (O/pm)/

(
(a + pm)/pm

)
.

This allows us to compute O/pm first and then to factor out the ideal (a+ pm)/pm

of O/pm. The following proposition gives an estimate for the needed size of m. In
lemma 7.4 we give an explicit exponent m for ideals a with aÕp ∩ Op = a.

Proposition 4.2. Let a be an ideal of O and p be a prime ideal of O with p ⊇ a.
Let p = char(O/p). Then

(i) vp([Op : aOp]) ≤ vp([O : a]).
(ii) For m ≥ vp([Op:aOp])

vp([Op:pOp]) we have aOp ⊇ pmOp.

Proof. Let m ∈ Z with pOp ⊇ aOp ⊇ pmOp.
(i) Using (2) we have Op/aOp

∼= O/(a+ pm). As additive groups this is isomorphic
to (O/a)/((a + pm)/a) and therefore [O : a] = [Op : aOp][a + pm : a].
(ii) Op/aOp is an Artinian ring. We consider

Op/aOp ⊇ (aOp + pOp)/aOp ⊇ (aOp + p2Op)/aOp ⊇ · · · ⊇ aOp/aOp.

This can be expanded to a composition series

Op/aOp ⊇ b1 = (aOp + pOp)/aOp ⊇ b2 ⊇ · · · ⊇ bs−1 ⊇ bs = aOp/aOp.

Since Op is a local ring each quotient bi/bi+1 is isomorphic to Op/pOp and therefore
s = vp([Op : aOp])/vp([Op : pOp]). For m ≥ s we get pmOp ⊆ aOp. �

Let p1, . . . , pr be the prime ideals of O for which a ⊆ pi (1 ≤ i ≤ r). These prime
ideals can be computed using the techniques described in section 3. Let m1, . . . ,mr

be integers such that piOpi ⊇ aOpi ⊇ pmi
i Opi . With (2) we obtain for 1 ≤ i ≤ r:(

Opi/aOpi

)∗ ∼= (O/(a + pmi
i )
)∗
.

Hence our next goal is the computation of
(
O/(a+pmi

i )
)∗. The proof of the following

lemma can be found in [Coh00] or [HPP02].

Lemma 4.3. Let p be a prime ideal of O.
(i) For every m ∈ N we have

(O/pm)∗ ∼= (O/p)∗ × (1 + p)/(1 + pm).
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(ii) Let b be an ideal in O with p ⊇ b ⊇ pm for some m ∈ N. Then

(O/b)∗ ∼= (O/p)∗ × (1 + p)/(1 + b).

(iii) Let a and b be ideals of an order O such that a ⊇ b ⊇ a2. Then the map
ψ : (1+a)/(1+b)→ a/b, [1+γ] 7→ [γ] is a group-isomorphism, where [1+γ]
and [γ] denote the class modulo [1 + b] and [b], respectively.

Together with the methods for the computation of residue class fields from section
3 this yields an algorithm for the computation of the multiplicative group (O/pm)∗

and the discrete logarithm therein analogous to the algorithms for the maximal
order case presented in [Coh00] and [HPP02]. Using (2) it follows that

(Op/aOp)∗ ∼=
(
O/(a + pm)

)∗
∼= (O/p)∗ × (1 + p)/(1 + a + pm)
∼= (O/p)∗ ×

(
(1 + p)/(1 + pm)

)/(
(1 + a + pm)/(1 + pm)

)
.

Denote by N a relation matrix of (1 + p)/(1 + pm) and let A be the matrix whose
rows contain the representation of generators of (1 + a + pm)/(1 + pm) by the
generators of (1 + p)/(1 + pm). Then

(
N
A

)
is a relation matrix of(

(1 + p)/(1 + pm)
)/(

(1 + a + pm)/(1 + pm)
)
.

We determine A as follows. Lemma 4.3 yields sets of generators aj for the groups(
1 + (a + pm)2

j)/(
1 + (a + pm)2

j+1)
for 0 ≤ j < log2(m). The group (1 + a +

pm)/(1+ pm) is generated by the images of a0 ∪ · · · ∪ ablog2(m)c in (1+ p)/(1+ pm).
The following algorithm is the result of the discussion in this section.

Algorithm 4.4.
Input: An ideal a of an order O
Output: Generators and relations (g,M) of (O/a)∗

• Set P = {p1, . . . , pr} ← {p ⊆ O prime | a ⊆ p}.
• For all pi ∈ P :

– Determine mi such that pmi
i ⊆ aOpi .

– Compute generators and relations (gi, Ni) of (O/pmi
i )∗.

– Compute generators ai,0 ∪ · · · ∪ ai,blog2(mi)c of (1 + a + pmi
i )/(1 + pmi

i ).
– Let Ai be the matrix containing representations of the elements in ai,0∪
· · · ∪ ai,blog2(mi)c by the generators gi of (O/pmi

i )∗.

–
(
gi,Mi

)
←
(
gi,
(
Ni

Ai

))
are generators and relations of (Opi/aOpi)

∗.

• For all i obtain generators hi = (hi,1, . . . , hi,ni)
tr using the Chinese remainder

theorem such that for all 1 ≤ j ≤ ni:

hi,j ≡ gi,j mod pmi
i

hi,j ≡ 1 mod pmk

k for all k 6= i.

• Return 
 h1

...
hr

 ,

 M1 0
. . .

0 Mr


 .
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5. Picard Groups

We give an overview of some properties of the Picard group of an order O. For
a more detailed exposition of these results including proofs see [Neu92, Kapitel I,
§12].

A fractional ideal of an order O is a finitely generated O-submodule of the field
of fractions K. A fractional ideal a is called invertible, if there exists a fractional
ideal b such that ab = O.

Definition 5.1 (Picard Group). Let O be an order. Denote by J(O) the group of
invertible fractional ideals of O. This group contains the group P (O) of fractional
principal ideals aO where a ∈ K∗. The group Pic(O) = J(O)/P (O) is called the
Picard group of O.

Example 5.2. Pic(Õ) is the ideal class group of the maximal order Õ. Let K be a
number field with maximal order Õ. Then ClK = Pic(Õ) is the class group of K.

Example 5.3. Let T be a non-empty subset of the set of places of a rational function
field Fq(t). Let R := {a ∈ Fq(t) | vp(a) ≥ 0, p /∈ T}. Let O be an R-order with field
of fractions K. Let S be the set of all places of K that lie over the places contained
in T and set Õ := {b ∈ K | vq(b) ≥ 0, q /∈ S}. Õ is called the S-maximal order of
K (also see [Ros02, chapter 14]). The ideal class group Pic(Õ) of Õ is called the
S-class group of K.

Localization yields a useful criterion for the invertibility of a fractional ideal. Let
p be a prime ideal of O. We denote by Op the localization of O at p.

Lemma 5.4. A fractional ideal a of an order O is invertible if and only if for every
prime ideal p 6= 0 the ideal aOp of the localization of O at p is a fractional principal
ideal.

Consider the map J(O)→
⊕

p P (Op), a 7→ (aOp)p. In [Neu92, Kapitel I, §12] it
is proved that this is a homomorphism and that (apOp)p 7→

⋂
apOp is its inverse.

Hence we obtain:

Lemma 5.5.
J(O) ∼=

⊕
p

P (Op).

Thus Pic(O) =
⊕

p P (Op)/P (O). For any order O ofK we have P (O) ∼= K∗/O∗.
This gives the exact sequences

1 −→ K∗/O∗ −→
⊕

pK
∗/O∗p −→ Pic(O) −→ 1

↓ α ↓ β ↓ γ
1 −→ K∗/Õ∗ −→

⊕
pK

∗/Õ∗p −→ Pic(Õ) −→ 1

The maps α and β are induced by the embeddings O → Õ and Op → Õp, re-
spectively. The map γ is induced by J(O) → J(Õ), a 7→ aÕ. Obviously α and β

are surjective with ker(α) = Õ∗/O∗ and ker(β) =
⊕

p Õ∗p/O∗p. It follows that γ is
surjective. Application of the snake lemma yields:

Theorem 5.6. Let O be an order and Õ be its maximal order. Then there is a
natural exact sequence

1 −→ O∗ −→ Õ∗ −→
⊕

p

Õ∗p/O∗p −→ Pic(O) −→ Pic(Õ) −→ 1.
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6. The Conductor of an Order

We want to compute Pic(O) using theorem 5.6. For this we need to know⊕
p Õ∗p/O∗p including the homomorphisms in the exact sequence. The conductor of

an order is an useful tool for this computation.

Definition 6.1. Let O be an order of K, and Õ be the integral closure of O in K.
Then

F := {β ∈ K | βÕ ⊆ O}
is called the conductor of O.

It can easily be seen that F is an ideal of O and of Õ. A prime ideal 0 6= p of
O is called regular if the localization Op of O at p is a discrete valuation ring. The
prime ideals of O containing the conductor F are exactly the non-regular prime
ideals. Thus Õ∗p/O∗p is trivial for all p not containing F . We obtain:

Proposition 6.2.
Õ∗p/O∗p ∼= (Õp/FÕp)∗/(Op/FOp)∗

We will apply this isomorphism in the computation of
⊕

p Õ∗p/O∗p.

Computing the Conductor. It is well known how to compute the conductor of
an order, but we have not found a reference in the literature. Since the presentation
is short and the computation is an important step of our algorithm we explain it
here. We assume that an R-basis of the maximal R-order Õ is known. Let Q be
the field of fractions of R. Let ω1, . . . , ωn be an R-basis of Õ and τ1, . . . , τn be an
R-basis of O. Then we define bi,j,k ∈ Q by the following equations:

ωiωj =
n∑

k=1

bi,j,kτk.

We have β ∈ F if and only if βωj ∈ F for 1 ≤ j ≤ n. For β :=
n∑

i=1

aiωi we obtain

βωj =
n∑

i=1

aiωiωj =
n∑

i=1

ai

( n∑
k=1

bi,j,kτk

)
=

n∑
k=1

(
n∑

i=1

aibi,j,k

)
τk.

Therefore β ∈ F if and only if
n∑

i=1

aibi,j,k ∈ R for all 1 ≤ j, k ≤ n.

For 1 ≤ j ≤ n define the matrices

Mj :=

b1,j,1 · · · bn,j,1

...
. . .

...
b1,j,n · · · bn,j,n

 .

Hence β ∈ O if and only if Mj(a1, . . . , an)tr ∈ Rn for 1 ≤ j ≤ n. Set

M :=

M1

...
Mn

 .
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Let d be the greatest common divisor of all d̃ ∈ R with d̃M ∈ Rn2×n. Thus
β ∈ F if and only if M(a1, . . . , an)tr ∈ dRn2

. Let H ∈ Rn×n be the row Hermite
normal form of dM . Hence β ∈ F if and only if H(a1, . . . , an)tr ∈ dRn. Since the
ideal F is integral dH−1 ∈ Rn×n and we have that F = Rβ1 + . . . + Rβn, where
(β1, . . . , βn) = (ω1, . . . , ωn)dH−1.

7. Residue Class Rings II

For ideals a ⊆ Op we examine how the multiplicative group (Op/a)∗ can be
described as a subgroup of (Õp/aÕp)∗. The next proposition describes the cases
where this is possible.

Proposition 7.1. Let a ⊆ Op be an ideal. Then there is a canonical homomor-
phism

Ψ : (Op/a)∗ → (Õp/aÕp)∗, a+ a 7→ a+ aÕp.

If furthermore aÕp ∩ Op = a then Ψ is injective.

Proof. Let a+a = b+a. This implies a−b ∈ a ⊆ aÕp. Therefore a+aÕp = b+aÕp.
a + aÕp is invertible in (Õp/aÕp)∗ since it is invertible in (Op/a)∗ and a ⊆ aÕp.
Therefore the map Ψ is well defined. Since Ψ is well defined it follows from its
definition that it is a homomorphism.

Suppose a + aÕp = 1 + aÕp for some a ∈ Op. This implies a − 1 ∈ aÕp ∩ O.
Together with the assumption that aÕp ∩ Op = a this proves the injectivity. �

Let a be an ideal of Op with aÕp ∩Op = a. Let h1 + a, . . . , hu + a be generators
of (Op/a)∗. Using the above proposition we get

(Op/a)∗ = 〈h1 + a, . . . , hu + a〉 ∼= 〈h1 + aÕp, . . . , hu + aÕp〉 ⊆ (Õp/aÕp)∗.

In general we only have a ⊆ aÕp∩Op. The following corollary is useful in this case.

Corollary 7.2. Let b be an ideal of Op with b ⊆ a and bÕp ∩ Op = b. Let
h1 + a, . . . , hu + a be generators of (Op/a)∗. Then 〈h1 + bÕp, . . . , hu + bÕp〉 is a
subgroup of (Õp/bÕp)∗. The homomorphism

Φ : 〈h1 + bÕp, . . . , hu + bÕp〉 → (Op/a)∗, hi + bÕp 7→ hi + a (1 ≤ i ≤ u)

is surjective and

〈h1 + a, . . . , hu + a〉 ∼= 〈h1 + bÕp, . . . , hu + bÕp〉/ ker(Φ).

We use the conductor to determine such an ideal b for a given ideal a.

Lemma 7.3. Let F be the conductor of an order O. Let a be an ideal of O. Then

a ⊇ (Fa)Õ ∩ O = Fa.

Proof. FaÕ = FÕa = Fa ⊆ a. �

In the proof of the next lemma we construct a minimal m such that a ⊇ pm.

Lemma 7.4. Let a ⊆ p be an ideal in Op with aÕp ∩Op = a. Then there exists an
m such that p ⊇ a ⊇ pm.
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Proof. We remark that Õp is a Dedekind domain with finitely many maximal ideals
P1, . . . ,Pr. In a Dedekind domain the product and the intersection of coprime
ideals coincide. Let

pÕp =
r∏

i=1

Pei
i and aÕp =

r∏
i=1

Pmi
i

be the factorization of pÕp and aÕp respectively. We obtain

a = aÕp ∩ Op =
r∏

i=1

Pmi
i ∩ Op =

r⋂
i=1

(Pmi
i ∩ Op) ⊇

r⋂
i=1

pdmi/eie = pm,

where m = max{dmi/eie | 1 ≤ i ≤ r}. For 1 ≤ i ≤ r equality holds in the inclusion

Pmi
i ∩ Op ⊆ P

bmi
ei
cei ∩ Op = p

bmi
ei
c

if and only if ei | mi. Thus m is minimal with p ⊇ a ⊇ pm. �

We return to the computation of (Op/a)∗ for an ideal a of Op. Let F be the
conductor ofO. By lemma 7.3 b := Fa satisfies the assumptions of corollary 7.2. By
lemma 7.4 we find m ∈ N such that a ⊇ b ⊇ pm. The multiplicative group (Op/a)∗

is generated by a representative of a generator of (Op/p)∗ and the generators of the
groups

(1 + p)/(1 + p2), . . . , (1 + pm−1)/(1 + pm),
see lemma 4.3. Denote these generators by h1 + a, . . . , hu + a. With corollary 7.2
we get

(Op/a)∗ = (Op/p)∗ × (1 + p)/(1 + a)
∼= 〈h1 + bÕp, . . . , hu + bÕp〉

/
ker(Φ)

As p ⊆ a ⊆ b the kernel ker(Φ) is the subgroup of 〈h1+bÕp, . . . , hu+bÕp〉 generated
by the generators of 1+a. There exists n ∈ N such that b ⊇ a2n

(e.g. n = dlog2me).
The image of the group 1+a in 〈h1 +bÕp, . . . , hu +bÕp〉 is generated by the images
of the generators of the groups

(1 + a)/(1 + a2), . . . , (1 + a2n−1
)/(1 + a2n

).

Together with the first part of section 4 this yields a second method for the com-
putation of (O/a)∗ for an ideal a of an order O. The method for the computation
of (O/a)∗ presented in this section is especially interesting when the multiplicative
group of the residue class ring of the respective ideal aÕ in the maximal order Õ
has to be computed anyway and if a = aÕ ∩ O. As we will see this is the case in
the computation of the Picard group and the unit group of O. Another advantage
is that the implementation of this method is easier since the machinery for residue
class rings in maximal orders can be applied to obtain the relations via corollary
7.2.

8. Computing Picard Groups

Let p be a prime ideal ofO. For an ideal a ofOp the structure of the multiplicative
group (Õp/aÕp)∗ is well known:

(Õp/aÕp)∗ ∼=
∏
q|p

(Õq/aÕq)∗ ∼=
∏
q|p

(Õq/q
mq)∗,
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where mq is maximal with respect to qmq | aÕq. The products are taken over all
prime ideals q of Õp containing pÕp. We use the isomorphism

Õ∗p/O∗p ∼= (Õp/FÕp)∗/(Op/FOp)∗

from proposition 6.2 to compute Õ∗p/O∗p as follows:
Assume that a vector g of generators and a relation matrix M for (Õp/FÕp)∗

are known. Denote by N the matrix whose rows contain the representation of a set
of generators of (Op/FOp)∗ in the generators of (Õp/FÕp)∗. Then generators and
relations of (Õp/FÕp)∗/(Op/FOp)∗ are given by (g, ( M

N )).
Let a be an ideal of O with p ⊇ apm. For the computation of

(Õp/aÕp)∗/(Op/aOp)∗

it is sufficient to compute (Õp/aÕp)∗ and a set of representatives h1, . . . , ht of gen-
erators of (Op/p

mOp)∗ in Op, as the representatives of generators of (Op/p
mOp)∗

are also representatives of generators of (Op/aOp)∗ and as

(Õp/aÕp)∗/(Op/aOp)∗ = (Õp/aÕp)∗/〈h1, . . . , ht〉.

We compute the group
⊕

p⊆O
Õ∗p/O∗p =

⊕
F⊆p⊆O

Õ∗p/O∗p using the following algorithm.

Algorithm 8.1.
Input: an order O
Output: Generators and relations (g,M) of

⊕
p Õ∗p/O∗p

• Compute the conductor F of O. [Section 6]
• Derive a factorization q

eq1
1 · · · · · qeqr

r = FÕp.
• Set P ← {p1, . . . , pu} = {qi ∩ O | 1 ≤ i ≤ r}.
• For all p ∈ P :

• Find m with FOp ⊇ pmOp.
• Compute generators and relations (g1, . . . , gs, R) of (Õp/FÕp)∗, such

that gi ≡ 1 mod
∏

q∈P\{p}
qeqÕ for 1 ≤ i ≤ s.

• Compute generators [h1], . . . , [ht] of (Op/p
mOp) with the property that

hi ≡ 1 mod
∏

q∈P\{p}
qeq for 1 ≤ i ≤ t.

• Compute generators and relations (gp,Mp) of (Õp/FÕp)∗/〈h1, . . . , ht〉.

• Return


 gp1

...
gpu

 ,

 Mp1 0 0

0
. . . 0

0 0 Mpu




As we have mentioned before we use the exact sequence from theorem 5.6 to
compute O∗ and Pic(O). There are efficient algorithms for the computation of
ideal class groups and unit groups of Õ.

Algorithms for the computation of the unit group Õ∗ and the class group of a
number field K are described in [Coh93, section 4.9] and [PZ89, chapter 5].

An algorithm for the computation of the unit group of the finite maximal order
of a global function field is given in [Sch96]. Florian Hess has developed a method
for computing divisor class groups of global function fields [Hes99, Hes02]. From
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the divisor class group one easily obtains the ideal class group of the S-maximal
orders [Hes99, section 6.3].

Now that we have a method for determining generators and relations for the
group

⊕
p Õ∗p/O∗p the only unknown groups in the exact sequence from theorem 5.6

are O∗ and Pic(O).

Computing the Unit Group. The group O∗ is the kernel of the map

Õ∗ −→
⊕

p

Õ∗p/O∗p ∼= (Õp/FÕp)∗/(Op/FOp)∗

from the exact sequence in theorem 5.6. This kernel can be easily computed using
the homomorphism Õ∗ → (Õp/FÕp)∗.

Computing the Picard Group. We can obtain the group Pic(O) from the exact
sequence

Õ∗ −→
⊕

p

Õ∗p/O∗p −→ Pic(O) −→ Pic(Õ) −→ 1

using algorithms for computations with finitely generated abelian groups [Coh00,
section 4.1]. In order to use these algorithms we need to figure out how the residue
classes in

⊕
p Õ∗p/O∗p are mapped to the ideals in Pic(O). In section 5 we considered

the map ⊕
p

P (Op)→ J(O), (apOp)p 7→
⋂
apOp.

This induces a map⊕
p

Õ∗p/O∗p ∼=
⊕

p

(Õp/FÕp)∗/(Op/FOp)∗ → Pic(O) = J(O)/P (O).

The Chinese remainder theorem yields a representative a ∈ Õ∗p of the class [(ap)p] in⊕
p Õ∗p/O∗p. The representative a is mapped to a = (aÕ)∩O. By the exact sequence

in theorem 5.6 a is not principal if the class of a is not trivial in
⊕
Õ∗p/O∗p.

9. Examples

All algorithms described in this paper have been implemented in the computer
algebra system Magma [Ca+03]. The Magma package containing the functions is
available at the authors homepages. The computations were conducted on a PC
with an AMD Athlon XP 1800 processor with 512 MB RAM running Linux.

In the first two examples we compute the Picard group and the unit group of
two different orders.

Example 9.1. Let O = Z[ 3
√

2000] be an order and K = Q( 3
√

2) its field of fractions.
K has unit rank one and class number one. The conductor of O is F = (100). We
obtain

(Õ/F)∗ ∼= C2
2 × C20 × C40 × C120,

(O/F)∗ ∼= C2 × C10 × C20,

(Õ/F)∗/(O/F)∗ ∼= C8 × C120

Pic(O)/ClK ∼= C24.
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Since the class group of K is trivial Pic(O) ∼= C24. The whole computation took
0.4 seconds. The element

11519200001 + 22664172850 3
√

2000− 1871423004 3
√

2000
2

is a fundamental unit of O. It has index 40 in Õ∗.

Example 9.2. Let f = x3− 12x2− 6324x+459510 ∈ Z[x]. Let α be a root of f and
set O = Z[α]. This order has the same quotient field as in the previous example.
We get

(Õ/F)∗ ∼= C2
6 × C24 × C504 × C78624,

(O/F)∗ ∼= C2 × C2
4 × C4368,

(Õ/F)∗/(O/F)∗ ∼= C2
6 × C18 × C378

Pic(O)/ClK ∼= C3 × C2
6 × C18.

Since the class group of K is trivial Pic(O) ∼= C3 × C2
6 × C18.

We found

O∗ = 〈−1, 7288929967700235250060920700777236349−
37518645348677758942690319612626524α−
1124394744425860633724435069919117α2〉

with [Õ∗ : O∗] = 126. The whole computation took 0.3 seconds.

The following example is interesting because the class group of K is not trivial.
Furthermore the group extension by the class group is non-split.

Example 9.3. Let O = Z[x]/(f) with f = x5 − 1389x4 + 512066x3 − 11859166x2 +
83453925x−211865821 and K its field of fractions. We remark that K is isomorphic
to Q[x]/(x5 + 2x4 + 12x3 + 14x2 − 12x− 16). Let Õ be the integral closure of O in
K. The index of O in Õ is 5082900972974240768 = 210 · 11 · 451251861947287. We
get

(Õ/F)∗ ∼= C8
2 × C8 × C2

36100148955782880,

(O/F)∗ ∼= C4
2 × C4 × C36100148955782880,

(Õ/F)∗/(O/F)∗ ∼= C5
2 × C36100148955782880

Pic(O)/ClK ∼= C4
2 .

The ideal class group ClK of Õ is isomorphic to C12. Finally we obtain Pic(O) ∼=
C3

2 × C24. The computations were finished within 2 seconds. The unit group of O
is generated by

〈−1, ε1209755521 ε−46343618
2 , ε2102554561 ε5162720762 〉,

where ε1, ε2 are certain fundamental units of Õ.

The last example shows that the algorithm also works for global function fields.

Example 9.4. Let f = x2 + 4t11 + 2t9 = x2 − t8(t3 + 3t)) ∈ F5[t][x] and K =
F5(t)[x]/(f). Let O = F5[t][x]/(f) be the equation order of f . Let S be the set
of infinite places of K, i.e. the set of all places over p∞ = (1/t). The S-maximal
order

O = {α ∈ K | vp(α) ≥ 0 for all places p /∈ S}
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is the finite maximal order of K. The S-class group ClS of K is isomorphic to C10.
We obtained

(Õ/F)∗ ∼= C5
5 × C100,

(O/F)∗ ∼= C5 × C20,

(Õ/F)∗/(O/F)∗ ∼= C3
5 × C25,

Pic(O)/ClK ∼= C3
5 × C25.

We get Pic(O) ∼= C4
5 × C50. The unit groups of the order and its integral closure

coincide. The whole computation took 0.4 seconds.
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