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Abstract. Let Γ̄ be the Picard modular group of an imaginary quadratic
number field k and let D be the associated symmetric space. Let Γ ⊂ Γ̄

be a congruence subgroup. We describe a method to compute the integral

cohomology of the locally symmetric space Γ\D. The method is implemented
for the cases k = Q(i) and k = Q(

√
−3), and the cohomology is computed for

various Γ.

1. Introduction

Let Γ̄ = SU(2, 1;Ok) be the Picard modular group of an imaginary quadratic
number field k and let D be the associated symmetric space. Let Γ ⊂ Γ̄ be a congru-
ence subgroup. Although D is 4-dimensional, the virtual cohomological dimension
of Γ̄ is 3. Hence the cohomology Hi(Γ\D) vanishes for i > 3.

If Γ is torsion-free, then Γ\D is an Eilenberg-MacLane space for Γ. It follows
that the group cohomology of Γ with trivial complex coefficients is isomorphic to
the complex cohomology of the locally symmetric space,

(1) H∗(Γ;C) ' H∗(Γ\D;C).

In fact, (1) remains true while using complex coefficients when Γ has torsion, but
is not true in general for integral coefficients.

A deep result of Franke [7] describes a relationship between cohomology and
automorphic forms. The cohomology groups H∗(Γ;C), or more generally H∗(Γ;M)
for any complex finite dimensional rational representation of SU(2, 1), decompose
into cuspidal cohomology and Eisenstein cohomology. The cuspidal cohomology of
Γ can be represented by cuspidal automorphic forms. It is possible to compute the
space of cuspidal Picard modular forms with the Hecke action using the Jacquet-
Langlands correspondence [5]. However, these methods will not compute the torsion
classes in the integral cohomology of the group or the locally symmetric space. In
this paper, we use topological methods to compute the torsion classes in the integral
cohomology of the locally symmetric space Γ\D.

There is a 3-dimensional cell complex W , known as a spine, that can be used to
compute the integral cohomology of the locally symmetric space Γ\D. The existence
of such a W for general Q-rank 1 groups is known [9], but there are few explicit
examples for non-linear symmetric spaces. We outline a method of computing W
for SU(2, 1;Ok), where k is an imaginary quadratic number field with class number
1. The structure of the spine is computed in [10] for the Gaussian case k = Q(i)
and is computed here for the Eisenstein case k = Q(

√
−3). Falbel and Parker [6] do

2000 Mathematics Subject Classification. Primary 11F75.
Key words and phrases. Picard modular group, locally symmetric space, cohomology of arith-

metic subgroups, spine.
1



2 DAN YASAKI

similar computations for the Eisenstein-Picard modular group, but with a different
purpose. They exhibit fundamental domain for the action of Γ̄ on D. Using the
structure and combinatorics of the fundamental domain, they deduce a presentation
for Γ̄.

The outline of the paper is as follows. We first recall the Picard modular group
and associated symmetric space in Section 2. A method of computing the spine W
is given in Section 3. Section 4 outlines the method of [2] and its implications in
the context of our cell complex. The cell complex is computed in [10] for the Picard
modular group over the Gaussian integers. We compute the cell complex and give
the stabilizers for Picard modular group over the Eisenstein integers in Section 5.
Finally, Section 6 gives the cohomology computation results.

I would like to thank Paul Gunnells for many helpful comments and patiently
explaining his paper to me. I also thank T.N. Venkataramana, who helped with
understanding [3].

2. Preliminaries

Let k be an imaginary quadratic field with discriminant D and ring of integers
O. Thus k = Q(

√
D) and D is either square-free and D ≡ 1 mod 4 or D = 4D′,

where D′ is square-free and D′ ≡ 2 mod 4 or D′ ≡ 3 mod 4. Then O is generated
by 1 and ω = (D +

√
D)/2. For d = 1, 2, 3, 7, 11, 19, 43, 67, 163, Q(

√
−d) has class

number h(k) = 1 and O is a principal ideal domain. Fix an imaginary quadratic
field k with class number 1.

2.1. The unitary group. Let V be a 3-dimensional k-vector space with an integral
structure given by an O-lattice L ⊂ V . Let Q : V × V → k be a non-degenerate
Hermitian form on V which is O-valued on L and whose signature is (2, 1) on VR.
Then Γ = SU(Q, V ) is a semisimple algebraic group defined over Q whose group of
real points is isomorphic to SU(2, 1). The Picard Modular Group of k is

Γ̄ = G(Z) = {γ ∈ G(Q) | γL = L}.

For this paper, fix an embedding of k in C and a k-basis of V with respect to
which Q is represented by

Q(u, v) = u∗Cv, where C =

 0 0
√
D
−1

0 1 0

−
√
D
−1

0 0

.
In particular,

G = G(R) = {g ∈ SL(3,C) | g∗Cg = C} .

2.2. Symmetric space. Let θ denote the Cartan involution given by inverse con-
jugate transpose and let K be the fixed points under θ. Let D = G/K be the as-
sociated Riemannian symmetric space of non-compact type. The symmetric space
D = G/K has many useful realizations.

Using horospherical coordinates (y, β, r) we can view the symmetric space as
R>0 × C × R as follows. Let P0 ⊆ G be the rational parabolic subgroup of upper
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triangular matrices.

P0 =


yζ βζ−2 ζ

y

(
r − |β|2

2
√
D

)
0 ζ−2 − βζ√

Dy

0 0 ζ/y


∣∣∣∣∣∣∣∣ ζ, β ∈ C, |ζ| = 1, r ∈ R, y ∈ R>0

 .

P0 acts transitively on D, and every point X ∈ D can be written as pK for some
p ∈ P0. When p is written as above, the point X = pK is independent of ζ, and so
we will denote such a point X = (y, β, r).

A line l in V is said to be negative if

Q(v, v) < 0, where v is any vector on l.

Let L denote the set negative lines in V . The group G acts transitively on L,
and the stabilizer of a negative line is a maximal compact subgroup of G. Thus
we can identify D with L. A negative line is the span of a vector with non-zero
third component, and so each line can be identified with a vector (z, u, 1)t. This
identification gives the Siegel domain realization of D,

D =

{
(z, u) ∈ C2

∣∣∣∣∣ |u|2 < 2 Im(z)√
|D|

}
.

In coordinates, one computes that

(2) z = r + iy2 − |β|
2

2
√
D

and u =
−β̄√
D
.

2.3. The cusps. The cusps correspond to rational isotropic lines in V . These lines
are in 1-1 correspondence with the rational parabolic subgroups. In particular,
every rational parabolic subgroup stabilizes a rational isotropic line. We associate
to each rational parabolic subgroup P an isotropic vector vP = (n, p, q)t ∈ O3 from
the line stabilized by P such that the ideal (n, p, q) = O. Note that this vector is
well-defined up to multiplication by O∗. Thus for the rest of the paper, we identify
vectors in O3 that differ by O∗. The isotropic condition Q(vP , vP ) = 0 implies that
vP = (n, p, q)t satisfies

(3) |p|2 =
1√
D

(nq − nq).

Let P denote the set of proper rational parabolic subgroups ofG. These parabolic
subgroups are conjugate to P0 via elements of G(Q). There is a natural action of
Γ̄ on P given by conjugation and denoted

gP := gPg−1.

The quotient Γ̄\P is a finite set whose cardinality is the class number of Γ̄. Zink has
shown that h(Γ̄) = h(k) [11]. In particular, since h(k) = 1, every rational parabolic
subgroup is conjugate to P0 via an element of Γ̄.
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2.4. The spine. There is a Γ̄-invariant decomposition of D into codimension 0
sets using exhaustion functions. The union D0 of the boundaries of these sets
forms a contractible Γ̄-equivariant retraction of D that is known as a spine. This
construction is described for the general Q-rank 1 case in [9] and is analogous to
Ash’s well-rounded retraction [1] for linear symmetric spaces.

There is a collection of subsets of rational parabolic subgroups S called strongly
admissible subsets that give a decomposition of the spine

D0 =
∐
I∈S
|I|>1

D′(I).

The group Γ̄ preserves this decomposition. In particular,

γ · D′(I) = D′(γI)

for every γ ∈ Γ̄.
The decomposition of D0 may be refined to a regular cell complex W that has

the property that the stabilizer of each cell fixes the cell pointwise. Thus, the
cohomology of Γ̄\D can be described by finite combinatorial data.

2.5. Congruence subgroups. Let N ∈ O and let k̄ = O/NO. Let V̄ = k̄3

and P2 = P(V̄ ). By P2, we mean the set of vectors (x1, x2, x3) ∈ V that are
primitive in the sense that the ideal (x1, x2, x3) = O. When N is prime, this is the
usual projective space over the residue field k̄. The equivalence class of the vector
(x1, x2, x3) will be denoted [x1 : x2 : x3]. We view these triples as row vectors, and
so Γ̄ acts on V̄ and P2 on the right.

Let Γ1(N) ⊂ Γ̄ denote the stabilizer of the vector (0, 0, 1) ∈ V , and let Γ0(N) ⊂ Γ̄
denote the stabilizer of the point [0 : 0 : 1] ∈ P. Let Γ(N) denote the kernel of the
map µ : Γ̄→ SL3(k̄).

3. Computing the spine

In any given example, one must understand the exhaustion functions to compute
the spine. The functions are parametrized by rational parabolic subgroups can be
thought of as height functions with respect to the various cusps. The family of
exhaustion functions are Γ̄-invariant in the sense that

(4) fγP (X) = fP (γ−1 ·X) for γ ∈ Γ̄.

These exhaustion functions for k = Q(i) are described in detail in [10]. Here,
we give the exhaustion functions in coordinates for an imaginary quadratic field
k = Q(

√
D) with class number one.

3.1. The exhaustion functions. Let X = (z, u) ∈ D and let P be a rational
parabolic subgroup of G with associated isotropic vector vP = (n, p, q)t. Then the
exhaustion function fP can be written as

f0(X) := fP0
(X) =

√
−
√
|D|
2
Q(X,X) = y(5)

fP (X) =
f0(X)

|Q(
√
DX, vP )|

=
y

|qz̄ +
√
Dpū− n|

.(6)

These exhaustion functions are used to define the decomposition of D0 into sets
D′(I) for I ⊂ P. Let D(I) ⊂ D be the set of X ∈ D such that fP (X) ≥ fQ(X)
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for every P ∈ I and Q ∈ P \ I and fP (X) = f ′P (X) for every P, P ′ ∈ I. Define
D′(I) ⊂ D(I) to be the subset where the inequality is strict, fP (X) > fQ(X) for
every P ∈ I and Q ∈ P \ I. In other words, D′(I) consists of the points that are
higher with respect to P ∈ I than any other cusps. The subset I is admissible if
D(I) 6= ∅ and strongly admissible if D′(I) 6= ∅.

3.2. First contacts.

Definition 3.1. For a finite subset I ⊂ P, the first contact for I is the subset of

{X ∈ D | fP (X) = fQ(X) for every P,Q ∈ P}

where the exhaustion functions fP attain their maximum.

Proposition 3.2. Let P 6= P0 be a rational parabolic subgroup and let vP =
(n, p, q)t be the associated isotropic vector. Then the first contact for {P0, P} is
the point X = (z, u), where

z =
n

q
+

i

|q|
and u =

p

q
.

In particular, for the first contact X we have

f0(X)2 =
1

|q|
=

1√
|D||Q(v0, vP )|

.

More generally, the first contact X̂ for rational parabolic subgroups {Q,R} satisfies

fQ(X̂)2 =
1√

|D||Q(vQ, vR)|
.

Proof. To find the first contact for {P0, P}, we need to find the point X = (z, u)
such that f0(X) is maximal on the set

|z̄ +
√
Dpū/q − n/q| = 1/|q|.

Using (2) to express z in its real and imaginary parts,

|r − iy2 −
√
D|u|2/2 +

√
Dūp/q − n/q| = 1/|q|,

we see that we can pick r such that the real part of the expression is 0. Thus it
suffices to consider points where

|y2 +
√
|D||u|2/2− Im(

√
Dūp/q) + Im(n/q)| = 1/|q|.

Since vP is isotropic, the left side of the equation is

|y2 +
√
|D||p|2/(2|q|2) +

√
|D||u|2/2− Im(

√
Dūp/q)| = 1/|q|,

and hence the first contact point occurs at the minimum of√
|D||u|2/2− Im(

√
Dūp/q) =

√
|D|(|u|2/2− Re(ūp/q))

One can compute that this implies that the first contact occurs when u = p/q.

Plugging back in, we get that y = 1/
√
|q| and r = Re(n/q), or equivalently,

z =
n

q
+

i

|q|
as desired.

For the second statement, suppose Q and R are distinct rational parabolic sub-
groups. Let X̂ denote the first contact for {Q,R}. There exists γ ∈ Γ̄ such that
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γQ = P0, γR = P for some P . Note that γ · X̂ is the first contact for {P0, P}. By
the Γ̄-invariance of the exhaustion functions, it follows that

fQ(X̂)2 = fP0
(γ · X̂)2 =

1√
|D||Q(vP0

, vP )|
.

Since Γ̄ preserves Q, |Q(vP0 , vP )| = |Q(vQ, vR)| and the result follows. �

3.3. Candidates. We will now compute a finite list subsets of rational parabolic
subgroups from which a complete set of Γ̄-representative of strongly admissible sets
can be chosen.

First, compute all the possible admissible sets of order 2 as follows. Since h(Γ̄) =
1, every admissible set is Γ̄-conjugate to an admissible set containing P0. Let
I = {P0, P} be such an admissible set. Then by Proposition 3.2, if P has associated
isotropic vector vP = (n, p, q)t then |q| ≤ 1/µ2. Since q ∈ O, this is a finite list
of possibilities for q. Furthermore, using Γ̄P0 = Γ̄ ∩ P0, we can move a point
X = (z, u) to a point X ′ = (z′, u′), where u′ lies in a fundamental domain for C
modulo translation by O and f0(X) = f0(X ′). In particular, we can arrange that
the u-component of the first contact of I lies in a fundamental domain for C modulo
translation by O. Since the first contact of {P0, P} has u = p/q, it follows that
there are finitely many choices for p. Finally, since vP is isotropic and there are
only finitely many choices for p and q, (3) implies there are finitely many choices
for n.

Once we have a finite list of candidates for Γ̄-representatives of admissible sets
of order two, we check if it is possible to find candidates of order greater than two
that contain these candidates. We repeatedly use Proposition 3.2. In particular, if
I is admissible, then

|Q(vQ, vR)| ≤ 1√
|D|µ2

for every Q,R ∈ I.

Given such an I, we can check if it is admissible by seeing if D(I) 6= ∅.
We see that the isotropic vectors provide a convenient way to study admissible

sets. If the value of |Q(vP , vQ)| is small enough, this invariant is enough to classify
the Γ̄-conjugacy class of {P,Q}.

Proposition 3.3. If I = {P,Q} is a subset of rational parabolic subgroups such
that |Q(vP , vQ)|2 = 1/|D|, then I is Γ̄-equivalent to {P0, Pw}, where Pw is the
rational parabolic subgroup that stabilizes the line through (0, 0, 1)t.

Proof. Since the class number is 1, every rational parabolic subgroup is Γ̄-conjugate
to P0. Without loss of generality, we can assume that vP = (1, 0, 0)t. Then since
|Q(vP , vQ)|2 = 1/|D|, vQ is of the form v = (n, p, 1) for some n, p ∈ O. We can
multiply by any matrix in Γ̄N0 = Γ̄ ∩N0 without changing (1, 0, 0)t. In particular,1 −p̄

√
D |p|2ω

0 1 −p
0 0 1

np
1

 =

n′0
1

 .

Note that since (n′, 0, 1)t is isotropic, (3) implies that n′ ∈ R. It follows that n′ ∈ Z
and 1 0 −n′

0 1 0
0 0 1

 ∈ Γ̄N0 .
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Thus we can arrange that {u, v} is a Γ̄-translate of a set of the form

{(1, 0, 0)t, (0, 0, 1)t}.

�

4. Cohomology

We follow [2] closely and refer to that paper for the details. Many of the compli-
cations arising from orientation issues disappear in our case since we subdivide to
get a cell complex such that the stabilizer of each cell fixes the cell pointwise. For
the remainder of the paper, let Γ be a congruence group of level N (Γ(N),Γ1(N),
or Γ0(N)) and let Γ̄ = SU(2, 1;O).

4.1. Cell complex. The decomposition of the spine has a refinement W into a
regular cell complex such that the stabilizer of each cell fixes the cell pointwise. We
use W to compute the integral cohomology of Γ\D.

Definition 4.1. Let σ be a cell of W . Then the type of σ is the Γ̄-conjugacy class
of σ.

4.2. Orientation. Let φ be an oriented cell of W and let γ ∈ Γ̄. Since Γ̄ acts by
diffeomorphisms, γ takes the orientation of φ to some orientation of γφ. Let γ∗φ
denote the cell γφ with this choice of orientation.

Let WT denote the Γ̄-orbit of cells of type T . For each type T , fix a representative
cell φT ∈WT . Fix orientations on the standard cells φT . We use these orientations
to fix orientations of all the cells of W . In particular, if φ is a cell of type T and
φ = γφT , then we give φ the orientation γ∗φ. Note that because the stabilizer of a
cell fixes the cell pointwise, this gives a well-defined orientation to each cell of W .

4.3. Incidence function. We now define the incidence function on W . If ψ is a
facet of φ, then the orientation of φ induces an orientation of ψ. This orientation of
ψ may or may not agree with the orientation determined above. Let [φ, ψ] be ±1
depending on whether this orientation on φ does or does not agree with the orienta-
tion of ψ. This is precisely the (φ, ψ)-component of the cellular boundary operator
on W . The incidence function [·, ·] is Γ̄-invariant in the sense that [γ∗φ, γ∗ψ] = [φ, ψ]
for all γ ∈ Γ̄.

For every subgroup Γ ⊂ Γ̄, the quotient Γ\W has the structure of a regular
cell complex with identifications. Since the incidence function defined above is
Γ̄-invariant, it is in particular Γ-invariant. Thus we can use [·, ·] to compute the
cellular cohomology of Γ\W . If φ is a cell of W , we will write φ to denote its
Γ-conjugacy class, or equivalently the corresponding cell in Γ\W .

4.4. Cells as orbits. Let X denote the homogeneous space Γ\Γ̄. The following
proposition allows us to identify cells of the quotient Γ\W with right Γ̄T -orbits in
X.

Proposition 4.2 ([2, Proposition 3.3]). There is a one-to-one correspondence be-
tween

(i) Cells in WT and cosets Γ̄/Γ̄T .
(ii) Cells of the quotient Γ\WT and Γ-orbits of WT .
(iii) Cells of the quotient Γ\WT and double cosets in Γ\Γ̄/Γ̄T .
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Figure 1. The 3-cells for SU(2, 1;Z[i]).

Proof. The first statement is a standard fact about stabilizers. Since the stabilizer of
a cell fixes the cell pointwise, the cell structure onW descends to give a cell structure
on Γ\W , and the second statement follows. Combining the two statements gives
that the cells of Γ\WT are parametrized by Γ\Γ̄/Γ̄T . �

In light of this proposition, we will now think of a cell of Γ\W as a ΓT -orbits of
X or a double coset in Γ\Γ̄/Γ̄T .

The facets of φT , denoted FφT , can be expressed as translates of the various
representative cells φT ′ . In particular, there exist finite subsets B(T, T ′) ⊂ Γ̄ such
that

FφT =
⋃
T ′

⋃
α∈B(T,T ′)

αφT ′ .

Note that the α’s are not uniquely determined, but the cosets αΓ̄T ′ ∈ Γ̄/Γ̄T ′ are
determined for each pair (T, T ′).

The cell φT corresponds to the double coset ΓeΓ̄T , and the face αφT ′ corresponds
to the double coset ΓαΓ̄T ′ . In terms of orbits, if O is the Γ̄T -orbit corresponding
to φT , then the orbit corresponding to αφT ′ is the Γ̄T ′ -orbit of X that contains
O · α. By translation, we can understand the boundary faces of an arbitrary cell φ
of Γ\W in terms of the α defined above.

Proposition 4.3 ([2, Proposition 3.20]). Let φ be a cell of type T and let O denote
the ΓT -orbit of X corresponding to φ. Then the faces of φ of type T ′ correspond
exactly to the Γ̄T ′-orbits of X containing O · α as α ranges over B(T, T ′).

From Propositions 4.2 and 4.3, it becomes clear that to compute cohomology
in this way, we need the cellular structure of W , the stabilizers Γ̄T , the elements
α ∈ B(T, T ′), and the incidence numbers [φT , ψ]. This is carried out for k = Q(i)
and k = Q(

√
−3) in the following sections.

5. Examples

5.1. k = Q(i). In [10], we compute the space W for k = Q(i). The cells of W
fall into twenty-four equivalence classes modulo Γ̄ consisting of two 3-cells, seven 2-
cells, nine 1-cells, and six 0-cells. Representatives of the 3-cells and their boundary
faces are shown in Figure 1. We refer to [10] for the cell data. The results of the
cohomology computation are tabulated in Section 6.
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Table 1. Incidence types

I2 I31 I32 I4 I8
I21 ∗ 3 3 6 28
I31 2 ∗ ∗ 1 8
I32 12 ∗ ∗ 3 48
I4 24 6 3 ∗ 16
I8 12 6 3 2 ∗

5.2. k = Q(
√
−3). In this section we apply the previous results in the case k =

Q(
√
−3). Let ζ = (1 +

√
−3)/2. Let

w =

0 0 −1
0 1 0
1 0 0

 , τ =

1 0 1
0 1 0
0 0 1

 ,(7)

γ1 =

 ζ5 0 ζ2

−1 ζ2 1
ζ4

√
−3ζ 1

 , γ2 =

−1
√
−3 ζ5

0 1 −1
−1

√
−3 ζ4

 ,(8)

ε =

ζ 0 0
0 ζ−2 0
0 0 ζ

 , and σ =

1
√
−3 ζ

0 1 1
0 0 1

 .(9)

A weak lower bound for the exhaustion functions is found by examining the
values of various exhaustion functions on a set Ω ⊂ D whose Γ̄ translates cover D.
Then Section 3.2 is then used to compute the possible admissible sets. Each was
either rejected or verified using MAPLE. The results are given below.

Proposition 5.1. Every cell of D0 is Γ-conjugate to exactly one of the following:

(i) I2 =


1

0
0

 ,

0
0
1


(ii) I31 =


1

0
0

 ,

0
0
1

 ,

1
0
1


(iii) I32 =


1

0
0

 ,

0
0
1

 ,

ζ1
1


(iv) I4 =


1

0
0

 ,

0
0
1

 ,

1
0
1

 ,

ζ1
1


(v) I8 =


1

0
0

 ,

0
0
1

 ,

1
0
1

 ,

ζ1
1

 ,

ζ21
1

 ,

 ζ
ζ5

1

 ,

√−3ζ5

ζ5

1

 ,

ζ2ζ
1


The incidence table is given in Table 1, where the entry below the diagonal means

that each column cell has that many row cells in its boundary, and the entry above
the diagonal means the column cell appears in the boundary of this many row cells.
The entries below the diagonal can be read off from Figure 2. The entries above the
diagonal can be easily computed from Proposition 5.1, since the Γ-conjugacy class
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•
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∗

I2 ⊆ D0 Subdivision of D(I2).

Figure 2. The 3-cell D(I2) and subdivision for SU(2, 1;Z[ζ]).

of a strongly admissible can be distinguished by the pairwise Q-inner products of its
associated isotropic vectors, except to distinguish I31 and I32 we must also compute
the dimension of the span of their isotropic vectors.

Since the set of isotropic vectors associated with each piece of D0 is known,
computing the stabilizers is a finite computation. Let I be a strongly admissible
set and let J be the associated set of isotropic vectors. If γ ∈ Stab(D(I)), then

γ · D(I) = D(γI) = D(I).

It follows that γ must take each vector of J to another vector of J up to scaling
by O∗.

Proposition 5.2. The stabilizer of I2 is isomorphic to Z/12Z and is generated by
εw. The stabilizer of I31 is isomorphic to Z/3Z⊕Z/6Z and is generated by τw and
ε. The stabilizer of I32 is isomorphic to Z/3Z and is generated by ε2. The stabilizer
of I4 is isomorphic to Z/3Z and is generated by ε2. The stabilizer I8 is the order
24 group, Magma small group number 11 and is generated by γ1 and γ2.

Since the action of Γ̄ on D0 is understood, we can subdivide D(I2) and its
boundary into cells in a Γ̄-equivariant way as shown in Figure 2 to yield a cell
complex W with the property that the stabilizer of each cell fixes the cell pointwise.
The cells of W fall into sixteen equivalence classes modulo Γ̄ consisting of one 3-
cells, seven 2-cells, six 1-cells, and three 0-cells. Representatives are chosen and
stabilizers are recomputed. The results are given in Table 2.

6. Numerical results

A computer was used to compute the Γ̄T -orbits for the various congruence sub-
groups Γ and to create the coboundary matrix. In this process, large sparse matrices
were produced, up to 97, 542× 89, 478 for Γ0(−2 + 13

√
−3) ⊂ SU(2, 1;Z[ζ]). Then

MAGMA [4] was used to compute the elementary divisors. The computations were
only carried out in a few cases for Γ1(N) and Γ(N) because the index grows so

1This is the order 24 with Magma small group library number 11.
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Table 2. Stabilizers of representative cells

Cell Dimension Stabilizer Generators

X 3 Z/3Z ε2

A 2 Z/3Z ε2

B 2 Z/3Z ε2

C 2 Z/3Z ε2

E 2 Z/3Z ε2

F 2 Z/3Z ε2

G 2 Z/3Z ε2

a 1 Z/3Z ε2

b 1 Z/3Z ε2

c 1 Z/3Z ε2

d 1 Z/3Z ε2

e 1 Z/3Z ε2

f 1 Z/6Z ε
m 0 G(24, 11)1 γ1, γ2
n 0 Z/12Z εw
o 0 Z/3Z⊕ Z/6Z ε2, τεw

rapidly. In fact, Holzapfel [8] has an explicit formula for the index [Γ(N) : Γ̄] for
N ∈ Z, which shows that the index grows like N8. Tables 3-5 summarize the nu-
merical results for k = Q(i) and Table 6 summarizes the results for k = Q(

√
−3).

We remark that although the cohomology in degree 1 is predominately 0 in the
range that was computed, by a result of Blasius and Rogawski [3], we expect in-
finitely many congruence subgroups to yield non-trivial cohomology. Their result,
however, is for principal congruence subgroups, not those of the form Γ0(N), and
we already see some non-trivial cohomology in H1 for the former.
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Table 3. The integral cohomology for Γ0(N) ⊂ SU(2, 1;Z[i])

N H1 H2 H3

2 0 Z Z2

3 0 Z2 Z⊕ Z/2Z
4 0 Z2 ⊕ Z/2Z Z6

5 0 Z7 Z5

6 0 Z4 ⊕ Z/2Z Z5 ⊕ Z/2Z
7 0 Z10 ⊕ Z/4Z Z⊕ Z/12Z
8 0 Z11 ⊕ (Z/2Z)3 ⊕ Z/4Z Z12

9 0 Z25 ⊕ (Z/3Z)2 Z5 ⊕ (Z/2Z)2

10 0 Z34 Z17

11 0 Z39 ⊕ Z/15Z Z⊕ Z/30Z
12 0 Z36 ⊕ Z/2Z⊕ Z/8Z Z13 ⊕ Z/13Z
13 0 Z79 Z5 ⊕ (Z/3Z)2

14 0 Z58 ⊕ Z/12Z Z5 ⊕ Z/12Z
15 0 Z148 ⊕ Z/2Z Z11 ⊕ (Z/2Z)3

16 0 Z94 ⊕ (Z/2Z)3 ⊕ (Z/4Z)4 ⊕ (Z/8Z)2 Z23 ⊕ Z/2Z
17 0 Z166 ⊕ (Z/2Z)2 Z5 ⊕ (Z/2Z)2 ⊕ (Z/4Z)2

18 0 Z142 ⊕ Z/3Z⊕ Z/6Z Z17 ⊕ (Z/2Z)3

19 0 Z211 ⊕ Z/15Z Z⊕ Z/90Z
20 0 Z238 ⊕ (Z/2Z)5 Z41 ⊕ (Z/2Z)2

21 0 Z294 ⊕ (Z/2Z)2 ⊕ Z/16Z Z3 ⊕ (Z/2Z)2 ⊕ Z/48Z
22 0 Z238 ⊕ Z/30Z Z5 ⊕ Z/30Z
23 0 Z372 ⊕ Z/132Z Z⊕ Z/132Z
24 0 Z312 ⊕ (Z/2Z)5 ⊕ Z/4Z⊕ Z/8Z Z25 ⊕ (Z/2Z)2 ⊕ Z/8Z

1 + i 0 Z Z
2 + i 0 Z3 Z2

3 + 2i 0 Z7 Z2 ⊕ Z/3Z
4 + i 0 Z9 ⊕ Z/2Z Z2 ⊕ Z/2Z⊕ Z/4Z

5 + 2i 0 Z21 ⊕ Z/7Z Z2 ⊕ Z/7Z
6 + i 0 Z37 ⊕ Z/3Z Z2 ⊕ Z/9Z

5 + 4i 0 Z45 ⊕ Z/5Z Z2 ⊕ Z/2Z⊕ Z/10Z
7 + 2i 0 Z75 ⊕ Z/13Z Z2 ⊕ Z/13Z
6 + 5i 0 Z103 ⊕ Z/5Z Z2 ⊕ Z/15Z
8 + 3i 0 Z151 ⊕ Z/3Z Z2 ⊕ Z/2Z⊕ Z/18Z
8 + 5i 0 Z225 ⊕ Z/11Z Z2 ⊕ Z/2Z⊕ Z/22Z
9 + 4i 0 Z271 ⊕ Z/4Z Z2 ⊕ Z/2Z⊕ Z/24Z
10 + i 0 Z291 ⊕ Z/25Z Z2 ⊕ Z/25Z

10 + 3i 0 Z343 ⊕ Z/9Z Z2 ⊕ Z/27Z
8 + 7i 0 Z369 ⊕ Z/14Z Z2 ⊕ Z/2Z⊕ Z/28Z
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Table 4. The integral cohomology of Γ1(N) ⊂ SU(2, 1;Z[i])

N H1 H2 H3

2 0 Z⊕ Z/2Z Z2

3 0 Z13 ⊕ (Z/2Z)2 ⊕ Z/4Z Z3

4 Z2 Z24 ⊕ (Z/2Z)3 ⊕ (Z/4Z)2 ⊕ Z/8Z Z11

5 0 Z115 ⊕ (Z/2Z)5 ⊕ (Z/10Z)2 ⊕ Z/20Z Z23

6 0 Z102 ⊕ (Z/2Z)5 ⊕ Z/6Z⊕ (Z/12Z)2 Z19

7 0 Z538 ⊕ (Z/2Z)2 ⊕ (Z/14Z)2 ⊕ Z/28Z Z23

8 Z6 Z460 ⊕ (Z/2Z)5 ⊕ (Z/4Z)4 ⊕ Z/8Z⊕ Z/16Z Z71 ⊕ Z/2Z
2 + i 0 Z10 ⊕ Z/2Z Z3

3 + 2i 0 Z91 ⊕ Z/2Z Z11

4 + i 0 Z184 ⊕ (Z/2Z)2 Z15 ⊕ Z/2Z

Table 5. The integral cohomology for Γ(N) ⊂ SU(2, 1;Z[i])

N H1 H2 H3

1 + i 0 Z Z2

2 0 Z2 ⊕ (Z/2Z)2 Z5

3 0 Z243 ⊕ (Z/2Z)7 ⊕ (Z/6Z)7 ⊕ Z/12Z Z55

4 Z6 Z484 ⊕ (Z/2Z)7 ⊕ (Z/4Z)12 ⊕ (Z/8Z)2 Z95 ⊕ Z/2Z

Table 6. The integral cohomology for Γ0(N) ⊂ SU(2, 1;Z[ζ])

N H1 H2 H3

5 0 Z8 ⊕ Z/6Z Z⊕ Z/4Z
11 0 Z56 ⊕ (Z/2Z)2 ⊕ Z/60Z Z⊕ Z/20Z
17 0 Z208 ⊕ Z/3Z⊕ Z/24Z Z⊕ Z/48Z
23 0 Z508 ⊕ (Z/2Z)2 ⊕ Z/264Z Z⊕ Z/88Z

2 +
√
−3 0 Z7 Z2

3 +
√
−3 0 Z15 Z2 ⊕ Z/2Z

−2 + 5
√
−3 0 Z21 ⊕ Z/3Z Z2 ⊕ Z/3Z

5 +
√
−3 0 Z47 ⊕ Z/5Z Z2 ⊕ Z/5Z

−3 + 7
√
−3 0 Z67 ⊕ Z/3Z Z2 ⊕ Z/6Z

6 +
√
−3 0 Z85 ⊕ Z/7Z Z2 ⊕ Z/7Z

−4 + 9
√
−3 0 Z167 ⊕ Z/5Z Z2 ⊕ Z/10Z

−2 + 9
√
−3 0 Z197 ⊕ Z/11Z Z2 ⊕ Z/11Z

8 +
√
−3 0 Z235 ⊕ Z/6Z Z2 ⊕ Z/12Z

3 + 7
√
−3 0 Z271 ⊕ Z/13Z Z2 ⊕ Z/13Z

−3 + 11
√
−3 0 Z408 ⊕ Z/8Z Z2 ⊕ Z/16Z

2 + 9
√
−3 0 Z405 ⊕ Z/17Z Z2 ⊕ Z/17Z

7 + 5
√
−3 0 Z511 ⊕ Z/9Z Z2 ⊕ Z/18Z

−6 + 13
√
−3 0 Z687 ⊕ Z/21Z Z2 ⊕ Z/21Z
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