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Abstract

Let Γ \D be an arithmetic quotient of a symmetric space of non-compact type. A spine D0 is a Γ -equi-
variant deformation retraction of D with dimension equal to the virtual cohomological dimension of Γ .
We explicitly construct a spine for the case of Γ = SU(2,1;Z[i]). The spine is then used to compute the
cohomology of Γ \D with various local coefficients.
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1. Introduction

Let G be the real points of the Q-rank 1 linear algebraic group SU(2,1), and let D be
the associated non-compact symmetric space. Let Γ be an arithmetic subgroup of the rational
points G(Q). Let (E,ρ) be a Γ -module over R. If Γ is torsion-free, the locally symmetric space
Γ \D is a K(Γ,1) since D is contractible, and the group cohomology of Γ is isomorphic to the
cohomology of the locally symmetric space, i.e., H ∗(Γ,E) ∼= H ∗(Γ \D;E), where E denotes
the local system defined by (E,ρ) on Γ \D. When Γ has torsion, the correct treatment involves
the language of orbifolds, but the isomorphism of cohomology is still valid by using a suitable
sheaf E as long as the orders of the torsion elements of Γ are invertible in R.
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The virtual cohomological dimension (vcd) of G is the smallest integer p such that coho-
mology of Γ \D vanishes in degrees above p, where Γ ⊂ G(Q) is any torsion-free arithmetic
subgroup. Borel and Serre [9] show that the discrepancy between the dimension of D and the
vcd(G) is given by the Q-rank of G, the dimension of a maximal Q-split torus in G. Thus in our
case, D is 4-dimensional, and the virtual cohomological dimension of Γ is 3. There is in fact
a 3-dimensional deformation retract D0 ⊂ D that is invariant under the action of Γ and compact
modulo subgroups of Γ [21]. Such spaces are known as spines.

Spines have been constructed for many groups [1,8,11,13–15,18,20]. In [3], Ash describes
the well-rounded retract, a method for constructing a spine for all linear symmetric spaces. Ash
and McConnell [7] extend [3] to the Borel–Serre compactification and relate the retraction to
a combination of geodesic actions. The well-rounded retract has been used in the computation of
cohomology [2,4–6,13,15,17–20].

The well-rounded retract proves the existence and gives a method of explicitly defining spines
in linear symmetric spaces. There were no non-linear examples until MacPherson and Mc-
Connell [14] constructed a spine in the Siegel upper half-space for the group Sp4(Z).

In this paper, we provide another non-linear example by using the method of [21] to compute
a spine for SU(2,1;Z[i]). Sections 2 and 3 set notation and define the exhaustion functions that
are used to describe the pieces of the spine. In Section 4, we classify certain of configurations
of isotropic line in C3. We show the spine has the structure of a cell complex with cells related
to these configurations in Section 6. Explicit Γ -representatives of cells are fixed, and their stabi-
lizers are computed in Section 8. After subdivision, we obtain a regular cell complex for D0 on
which Γ acts cellularly. In Section 10, we recall some facts about orbifolds and develop machin-
ery to investigate the cohomology of Γ . The results of Section 10 hold in more generality, and
may be of independent interest. We apply these methods in Section 11 to Γ = SU(2,1;Z[i]) to
compute the cohomology of Γ with coefficients in various Γ -modules.

2. Preliminaries

Let G be the identity component of the real points of the algebraic group G = SU(2,1),
realized explicitly as

SU(2,1) =
{

g ∈ SL(3,C)

∣∣∣∣∣g∗
( 0 0 i

0 −1 0
−i 0 0

)
g =

( 0 0 i

0 −1 0
−i 0 0

)}
.

Alternatively, let Q be the (2,1)-quadratic form on C3 defined by

Q(u, v) = u∗
( 0 0 i

0 −1 0
−i 0 0

)
v.

Then G is the group of determinant 1 complex linear transformations of C3 that preserve Q. Let
Γ be the arithmetic subgroup Γ = SU(2,1) ∩ SL3(Z[i]).

Let θ denote the Cartan involution given by inverse conjugate transpose and let K be the fixed
points under θ . Let D = G/K be the associated Riemannian symmetric space of non-compact
type. Let P denote the set of (proper) rational parabolic subgroups of G.
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Let P0 ⊂ G be the rational parabolic subgroup of upper triangular matrices,

P0 =
{(

yζ βζ−2 ζ(r + i|β|2/2)/y

0 ζ−2 iβζ/y

0 0 ζ/y

)∣∣∣∣∣ ζ,β ∈ C, |ζ | = 1, r ∈ R, y ∈ R>0

}
,

and fix subgroups N0, A0, and M0:

N0 =
{(1 β r + i|β|2/2

0 1 iβ

0 0 1

)∣∣∣∣∣β ∈ C, r ∈ R

}
,

A0 =
{(

y 0 0
0 1 0
0 0 1/y

)∣∣∣∣∣y ∈ R>0

}
,

M0 =
{(

ζ 0 0
0 ζ−2 0
0 0 ζ

)∣∣∣∣∣ ζ ∈ C, |ζ | = 1

}
.

P0 acts transitively on D, and every point z ∈ D can be written as p · x0 for some p ∈ P0. Using
Langlands decomposition, there exists u ∈ N0, a ∈ A0, and m ∈ M0 such that p = uam. Since
M0 ⊂ K , z can be written as ua · x0. Denote such a point z = (y,β, r).

Zink showed that Γ has class number 1 [22]. Thus Γ \G(Q)/P0(Q) consists of a single point,
and all the parabolic subgroups of G are Γ -conjugate. The rational parabolic subgroups of G

are parametrized by the maximal isotropic subspaces of C3 which they stabilize. These are
1-dimensional, and so to each P ∈ P , there is an associated reduced, isotropic vector vP ∈ Z[i]3.
(A vector (n,p, q)t ∈ Z[i]3 is reduced if (n,p, q) generate Z[i] as an ideal.) Similarly, given a
reduced, isotropic vector v in Z[i]3, there is an associated rational parabolic subgroup Pv . Notice,
however, that vP is only well-defined up to scaling by Z[i]∗ = {±1,±i}. Thus, the vectors v and
εv will be treated interchangeably for ε ∈ Z[i]∗. If P = γ Q for some γ ∈ Γ , then vP = γ vQ.

Unless explicitly mentioned otherwise, the vector vP will be written as vP = (n,p, q)t . The
isotropic condition Q(vP , vP ) = 0 implies that

|p|2 = 2 Im(nq). (1)

In particular, q �= 0 for P �= P0. Furthermore, since there are no isotropic 2-planes in C3,

Q(vP , vQ) �= 0 for P �= Q. (2)

Because these elements of Γ will be used frequently, set once and for all

w =
(0 0 −1

0 1 0
1 0 0

)
, σ =

(1 1 + i i

0 1 1 + i

0 0 1

)
, σ̌ =

(1 i(1 + i) i

0 1 −i(1 + i)

0 0 1

)
,

τ =
(1 0 1

0 1 0
0 0 1

)
, ε =

(
i 0 0
0 −1 0
0 0 i

)
, and ξ = τwτσwε3.

Note that σ̌ is contained in the group generated by {ε,w,σ }. In particular, σ̌ = wσεwσ−1w.
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3. Construction of the spine

In this section we briefly describe the construction of a Γ -invariant, 3-dimensional cell com-
plex which is a deformation retract of D. This construction is described for the general Q-rank 1
case in [21].

We first define an exhaustion function fP for every rational parabolic subgroup P ⊆ G. These
exhaustion functions are then used to define a decomposition of D into sets D(I ) for I ⊂ P .

3.1. Exhaustion functions

Let z = (y,β, r) ∈ D and P a rational parabolic subgroup of G with associated isotropic
vector (n,p, q)t . Then the exhaustion function fP can be written as

f0(z) ≡ fP0(z) = y, (3)

fP (z) = y

(|n − βp + (i|β|2/2 − r)q|2 + y2|p − iβq|2 + y4|q|2)1/2
. (4)

The family of exhaustion functions defined above is Γ -invariant in the sense that

fγ P (z) = fP

(
γ −1 · z) for γ ∈ Γ. (5)

3.2. Admissible sets

For a parabolic P , define D(P ) ⊂ D to be the set of z ∈ D such that fP (z) � fQ(z) for every
Q ∈P \ {P }. More generally, for a subset I ⊆ P ,

E(I ) = {z ∈ D | fP (z) = fQ(z) for every pair P,Q ∈ I
}
, (6)

D(I ) =
⋂
P∈I

D(P ), (7)

D′(I ) = D(I ) \
⋃
I ′�I

D
(
I ′). (8)

It follows that D′(I ) ⊆ D(I ) ⊂ E(I ) and D(I ) =∐Ĩ⊇I D′(Ĩ ). Let fI denote the restriction
to E(I ) of fP for P ∈ I .

Definition 3.1. Let I ⊆ P , P ∈ I , and z ∈ E(I ). Then z is called a first contact for I if fI(z) is
a global maximum of fI on E(I ).

Definition 3.2. A subset I ⊂ P is called admissible if D(I ) is non-empty and strongly admissi-
ble if D′(I ) is non-empty.

Let D0 ⊂ D denote the subset

D0 =
∐

D′(I ). (9)

|I|>1
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The deformation is defined separately on each D(P ) for P ∈ P . For z ∈ D(P ), we use the
(negative) gradient flow of fP to flow z to a point on D0. This corresponds to using the geodesic
action [9] of AP on z [21].

Let fD0 denote the function on D0 given by

fD0(z) = fI(z) for z ∈ D(I ). (10)

3.3. First contact points

Given the explicit description of the exhaustion functions in coordinates, one can readily
describe the set E({P0,P }). Writing z = (y,β, r) and using (3),

(
f0(z)

fP (z)

)2

= ∣∣n − βp + (i|β|2/2 − r
)
q
∣∣2 + y2

∣∣p − iβq
∣∣2 + y4|q|2. (11)

Proposition 3.3. Let P be a rational parabolic subgroup of G with associated isotropic vector
(n,p, q)t . Every z = (y,β, r) ∈ E({P0,P }) satisfies

y2 = −1

2

∣∣∣∣pq − iβ̄

∣∣∣∣
2

+
√

1

|q|2 −
(

Re

(
n − βp

q
− r

))2

.

Proof. Note that for z ∈ E({P0,P }), (
f0(z)
fP (z)

)2 = 1. Then the result follows from (11) using the

quadratic formula to solve for y2, and simplifying the result using the isotropic condition (1). �
Proposition 3.3 allows us to easily calculate the first contact point for {P0,P }. The

Γ -invariance of the exhaustion functions allows us to translate this for general {P,Q}.

Proposition 3.4. Let I = {P,Q} ⊂ P . Let z be a first contact point for I . Then

fP (z) = fQ(z) = 1√|Q(vP , vQ)| .

In particular, the first contact for {P0,P } is z = (1/
√|q|, i(p/q),Re(n/q)).

4. Configurations of vectors

Definition 4.1. Let J be a subset of vectors in C3. Then J is said to be c-bounded if

∣∣Q(u, v)
∣∣2 � c for every u and v in J .

Set once and for all the following sets J i
j of isotropic vectors in C3.

J 2
1 =

{(1
0

)
,

(0
0

)}
, J 2

2 =
{(1

0

)
,

(
i

1 + i

)}
,

0 1 0 1 + i
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J 3
1 = J 2

1 ∪
{(1

0
1

)}
, J 3

2 = J 2
1 ∪

{(
i

1 + i

1

)}
, J 3

3 = J 2
1 ∪

{(1 + i

1 + i

1

)}
,

J 4
1 = J 3

1 ∪
{(

i

1 + i

1

)}
, J 4

2 = J 3
3 ∪

{( −1
−1 + i

1 + i

)}
,

J 5 = J 4
1 ∪

{(1 + i

1 + i

1

)}
,

J 8 =
{(1

0
0

)
,

(0
0
1

)
,

( −1
1 + i

1 + i

)
,

(−1 + i

1 + i

1

)
,

(1 + i

1 − i

1

)
,

(
i

1 + i

1 + i

)
,

(2i

2
1

)
,

(
i

2
2

)}
.

One easily checks that these sets are not Γ -conjugate, and J 8 is 4-bounded, while the other sets
are 2-bounded.

Proposition 4.2. A 2-bounded set of reduced, integral, isotropic vectors is Γ -conjugate to exactly
one of J 2

1 , J 2
2 , J 3

1 , J 3
2 , J 3

3 , J 4
1 , J 4

2 , or J 5.

Proof. Let J denote such a subset of order 2. Since G has class number 1, we can assume that
one of the vectors of J is (1,0,0)t . Let v = (n,p, q)t be the other vector of J . Let σ , σ̌ , τ ,
and ε be defined as in Section 2. These elements preserve (1,0,0)t (up to scaling by Z[i]∗).
By applying powers of σ and σ̌ to v, we can add any Z-linear combination of (1 + i)q and
(1 + i)iq to p to force it into the square in the complex plane with vertices q , iq , −q , and −iq .
By applying powers of −iε to v, one can force p to lie in the triangle with q , iq , and 0 as vertices
while leaving q fixed. Then by applying powers of τ to v, one can add a Z-scalar multiple of
q to n so that n now has the form dq + ciq , where − 1

2 < d � 1
2 for some c ∈ R. Since v is

isotropic, |p|2 = 2 Im(nq) = 2c|q|2. Since J is 2-bounded, |q|2 � 2, so that in particular, J is
Γ -equivalent to J 2

1 or J 2
2 .

For |J | > 2, we can arrange that J ⊃ J 2
1 or J ⊃ J 2

2 . The 2-bounded condition in each of
these two cases has only finitely many solutions. The proposition then follows from listing the
solutions and identifying Γ -conjugate sets. �
5. Reduction theory

Proposition 5.1. Every point z ∈ D is conjugate under ΓP0 to a point (y,β, r), where − 1
2 <

r � 1
2 and β lies in the square in the complex plane with vertices 0, 1+i

2 , i, and −1+i
2 .

Proof. Consider the elements {σ, σ̌ , τ, ε} ⊂ ΓP0 defined in Section 2. The action of
{σ, σ̌ , τ, ε} leaves D(P0) ∩ D0 stable, and is given explicitly by

σ · (y,β, r) = (y,β + (1 + i), r − Re(β) + Im(β)
)
,

σ̌ · (y,β, r) = (y,β + i(1 + i), r − Re(β) − Im(β)
)
,

τ · (y,β, r) = (y,β, r + 1), and

ε · (y,β, r) = (y,−iβ, r). (12)
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Thus, by applying powers of σ and σ̌ , β can be put in the square in the complex plane with
vertices 1, i, −1, and −i. By applying a power of ε, β can be put in the square in the complex
plane with vertices 0, 1+i

2 , i, and −1+i
2 . Then by applying powers of τ , it can be arranged that

− 1
2 < r � 1

2 without changing the value of β . �
Proposition 5.2. For each z ∈ D0,

1
4
√

5
< fD0(z) � 1.

Proof. Since fD0(z) = fD0(γ · z) for z ∈ D0 and γ ∈ Γ , and every point in D0 is Γ -conjugate
to a point of D(P0), it suffices to determine the range of fD0 on D(P0)∩D0. In fact, it suffices to
determine the range on a subset F ⊆ D(P0)∩D0, provided the Γ -translates of F cover D(P0)∩
D0. The action of {σ, σ̌ , τ, ε} leaves D(P0) ∩ D0 stable, so it suffices to determine the range on
F = D(P0) ∩ D0 ∩ T , where T is the strip in D defined in Proposition 5.1. By construction,
fD0(z) = maxP∈P {fP (z)} and Proposition 3.4 shows that fD0(z) � 1. Thus it suffices to show
that

min
z∈F

{
f0(z)

}
>

1
4
√

5
. (13)

Note that on F , f0(z) � fP (z) for all P ∈ P . By Proposition 3.3, this is equivalent to the condi-
tion that

f0(z)
2 = y2 � −1

2

∣∣∣∣pq − iβ

∣∣∣∣
2

+
√

1

|q|2 −
(

Re

(
n − βp

q
− r

))2

. (14)

Consider the rational parabolic subgroups wP0, P , and Q corresponding to the vectors vw =
(0,0,1)t , vP = (i,1+ i,1+ i)t and vQ = (−1,1+ i,1+ i)t . Divide F into the following regions:

FP =
{
x = (y,β, r) ∈ F

∣∣∣ |β| > 9

10
,

3

10
< r � 1

2

}
,

FQ =
{
x = (y,β, r) ∈ F

∣∣∣ |β| > 9

10
, −1

2
� r < − 3

10

}
,

Fw = F \ {F1 ∪ F2}.
Since β is constrained to lie in the square indicated in Proposition 5.1, one may calculate that

on FP and FQ

− (10 − √
62)

20
< Re(β) <

10 − √
62

20
, (15)

|β − i|2 <
81 − 10

√
62

100
. (16)

Comparing f0 to fP on FP , f0 to fQ on FQ, and f0 to fw on Fw , (14) gives the desired bound
on each piece. Since F = FP ∪ FQ ∪ Fw , this proves the result. �
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6. Admissible sets

Since vP and vQ are integral vectors, Q(vP , vQ) ∈ Z[i]. Propositions 3.4 and 5.2 imply the
following.

Proposition 6.1. Let I be an admissible set. Then

∣∣Q(vP , vQ)
∣∣2 � 4 for every P and Q in I.

In particular, the set of vectors associated to an admissible set is 4-bounded.

Proposition 6.2. Let I = {P,Q} be an admissible subset of P . If |Q(vP , vQ)|2 = 4, then there
exists a strongly admissible set Ĩ ⊂ P of order 8 such that D(I ) = D(Ĩ ) = {z}, where z is the
first contact for I . Let J̃ be the set of isotropic vectors associated to Ĩ . Then J̃ is 4-bounded
and is Γ -equivalent to J 8. A set of isotropic vectors that is not 2-bounded, but is associated to
a strongly admissible set, is Γ -equivalent to J 8.

Proof. Suppose I = {P,Q} is admissible and |Q(vP , vQ)|2 = 4. Since G has class number 1,
I is Γ -conjugate to a set of the form {P0,P }. By Γ -action, one only needs to consider the cases
when vP = (i,2,2)t and vP = (1,0,2)t .

In the case that v = (1,0,2)t we claim that {P0,Pv} is not admissible, and hence D({P0,Pv})
is empty. To see this, it suffices to show that fQ(x) > f0(x) on E({P0,Pv}) for some Q. Propo-
sition 3.3 implies that E({P0,Pv}) is the set where

y2 = −|β|2
2

+
√

r − r2. (17)

In particular, 0 < r < 1. Explicit computation with (3) and (17) shows that on E({P0,Pv}), for
Q = wP0, fQ(z) = f0(z)√

r
> f0(z).

Next, consider the case v = (i,2,2)t . Proposition 3.3 implies that E({P0,Pv}) is the set where

y2 = −|β − i|2
2

+ 1

2

√
1 − 4

(
Re(β) + r

)2
. (18)

Consider the rational parabolic subgroups P1 and P2 with associated isotropic vectors (i,1 + i,

1 + i)t and (−1,1 + i,1 + i)t respectively. Explicit computation with (3) and (18) shows that on
E({P0,Pv}),

fP1(x) = f0(x)

1 − 2r − Re(β)
and fP2(x) = f0(x)

1 + 2r + Re(β)
.

Thus on D({P0,Pv}), where fPi
(z) � f0(z), we see that 2r = −Re(β), and so

D(I ) = D
({P0,Pv,P1,P2}

)
.

In particular, note that |β − i|2 <
√

1 − 4r2 � 1.
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Consider the rational parabolic subgroups Q1, Q2, Q3, and Q4 with associated isotropic
vectors (0,0,1)t , (1 + i,1 − i,1)t , (2i,2,1)t , and (−1 + i,1 + i,1)t respectively. Explicit com-
putation shows that on S,

fQ1(x) = f0(x)

|β|2 , fQ2(x) = f0(x)

|β − (−1 + i)|2 ,

fQ3(x) = f0(x)

|β − 2i|2 , fQ4(x) = f0(x)

|β − (1 + i)|2 .

Since |β − i|2 < 1 and fQj
(x) � f0(x) on D(I), we see that β is forced to equal i. Thus

D(I ) = D
({P0,Pv,P1,P2,Q1,Q2,Q3,Q4}

)= {( 1√
2
, i,0

)}
.

One checks that J 8 is not properly contained in any 4-bounded set to complete the proof. �
Corollary 6.3. The set of isotropic vectors associated to a strongly admissible set of order less
than eight is 2-bounded. Furthermore, there are no strongly admissible sets of order greater than
eight.

Proof. Propositions 6.1 and 6.2 imply the first statement. The second follows from explicit cal-
culation that shows there are no 4-bounded sets that properly contain J 8. �
Proposition 6.4. Let I i

j denote the set of rational parabolic subgroups associated J i
j as defined

in Section 4. Then

I2
1 = {P0,

wP0
}
, I2

2 = {P0,
ξP0
}
,

I3
1 = I2

1 ∪ {τwP0
}
, I3

2 = I2
1 ∪ {σwP0

}
, I3

3 = I2
1 ∪ {τσwP0

}
,

I4
1 = I3

1 ∪ {σwP0
}
, I4

2 = I3
3 ∪ {w−1τ σ̌wP0

}
,

I5 = I4
1 ∪ {τσwP0

}
,

I8 = {P0,
wP0,

wτσwP0,
τ−1σwP0,

τ σ̌wP0,
τwτσwP0,

τ 2σ̌ σwP0,
εwξ4wP0

}
.

Using (3) and Propositions 3.4 and 6.4, one calculates the following first contact points z(I ).

Proposition 6.5. Let φ = 1+√
5

2 . Then

z
(
I2

1

)= (1,0,0), z
(
I2

2

)= ( 1
4
√

2
, i,

1

2

)
,

z
(
I3

1

)= ( 4

√
3

4
,0,

1

2

)
, z

(
I3

2

)= (
√

3

2
,

1 + i

2
,0

)
,

z
(
I3

3

)= ( 1√
√

φ2
√

φ − 2,
1(

φ2 −√φ + i(1 − φ +√φ)
)
,

1
(1 − φ +√φ)

)
,

2 2 2
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z
(
I4

1

)= (
√

−3 + √
3 + √

2 + √
6

2
,

1 + √
3 − √

2

4
(1 + √

3i),
1

2

)
,

z
(
I4

2

)= (√φ − 1,
3 + i

2
(1 − √

2),0

)
,

z
(
I5)= (

√
−1 + 2

√
3

2
,

1 + i

2
,

1

2

)
, z

(
I8)= ( 1√

2
, i,0

)
.

Theorem 6.6. Up to Γ -conjugacy, the strongly admissible sets are exactly

I2
1 , I2

2 , I3
1 , I3

2 , I3
3 , I4

1 , I4
2 , I5, I8.

Proof. Propositions 4.2 and 6.2 and Corollary 6.3 imply that every strongly admissible set must
be one of the ones listed. Thus, it suffices to show that for each set I listed, D′(I ) is non-empty.
In particular, it suffices to show that D′(I ) contains its first contact point. One uses (3) and
Proposition 6.5 to show that for P ∈ P \I , fP (z(I )) < fI(z(I )). For example, z(I2

1 ) = (1,0,0)

and

fP (1,0,0) = 1√|n|2 + |p|2 + |q|2 < 1 for all P ∈P \ I2
1 .

The other cases follow similarly. �
7. Pieces of the spine

Theorem 7.1. Let (y,β, r) denote a point in D. Then

(i) E(I2
1 ) = {y2 = −|β|2

2 + √
1 − r2},

(ii) E(I2
2 ) = {y2 = − 1

2 |1 − iβ̄|2 +
√

1
2 − ( 1

2 − Re(β) − r)2},
(iii) D(I2

1 ) ⊆ E(I2
1 ) ∩ { 1√

5
< y2 � 1, − 1

2 < r � 1
2 , |β|2 < − 2√

5
+ 2},

(iv) D(I2
2 ) ⊆ E(I2

2 ) ∩ {0 � Re(β) + r <

√
3
10 + 1

2 },
(v) D(I3

1 ) = D(I2
1 ) ∩ {r = 1

2 },
(vi) D(I3

2 ) = D(I2
1 ) ∩ {y2 = − 1

2 |1 + i − iβ̄|2 +√1 − (Re(β(1 + i)) + r)2},
(vii) D(I3

3 ) = D(I2
1 ) ∩ {y2 = − 1

2 |1 + i − iβ̄|2 +√1 − (1 − r − Re(β(1 + i)))2},
(viii) D(I4

1 ) = D(I2
1 ) ∩ {r = 1

2 , |β − 1+√
3

4 (1 + √
3i)|2 = 1

2 },
(ix) D(I4

2 ) = D(I2
1 ) ∩ {r = 0, |β − 3+i

2 |2 = 1
2 },

(x) D(I5) = {(
√

−1+2
√

3
2 , 1+i

2 , 1
2 )},

(xi) D(I8) = {( 1√
2
, i,0)}.

Proof. Proposition 3.3 implies (i) and (ii). Similarly, (v)–(xi) follow from computer calculations
and repeated uses of Proposition 3.3.

To show the bounds in (iii), let P = wP0 and consider the rational parabolic subgroups
Q = τP0 and R = τ−1

P0 with associated isotropic vector vQ = (1,0,1)t and vR = (−1,0,1)t

respectively. Then (3) implies that
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fP (z) = y

(|i|β|2/2 − r|2 + y2|β|2 + y4)1/2
, (19)

fQ(z) = y

(|1 + i|β|2/2 − r|2 + y2|β|2 + y4)1/2
, (20)

fR(z) = y

(| − 1 + i|β|2/2 − r|2 + y2|β|2 + y4)1/2
. (21)

For z ∈ D(I2
1 ), fP (z) � fQ(z) and fwP0(z) � fQ(z) and hence (19), (20), and (21) imply that

− 1
2 � r � 1

2 . Since f0(z) = y, Proposition 5.2 implies that 1√
5

< y2 � 1. It follows that |β|2 <

− 2√
5

+ 2 on D(I2
1 ).

To show (iv), note that y2 > 1√
5

on D(I2
2 ) by Proposition 5.2, and hence

Re(β) + r <

√
3

10
+ 1

2
.

Let P = ξP0 and consider the rational parabolic subgroup Q associated to the isotropic vector
vQ = (−1,1 + i,1 + i)t . For z ∈ D(I2

2 ), fP (z) = y and fP (z) � fQ(z) and hence (3) implies
that

∣∣i − β(1 + i) + (i|β|2/2 − r
)
(1 + i)

∣∣2 �
∣∣−1 − β(1 + i) + (i|β|2/2 − r

)
(1 + i)

∣∣2. (22)

Thus (22) and (3) imply 0 � Re(β) + r . �
From the explicit description of representatives of Γ -conjugacy classes of admissible sets

given above and the exhaustion functions given in (3), one can calculate a strict lower bound
of fD0 .

Proposition 7.2. For each z ∈ D0,

1√
2

� fD0(z) � 1.

8. Stabilizers

Proposition 8.1. The stabilizer in Γ of D′(I2
1 ) is {e, ε, ε2, ε3,w, εw, ε2w,ε3w} and is isomor-

phic to Z/4Z × Z/2Z via the morphism which sends ε to the generator of Z/4Z and εw to the
generator of Z/2Z.

Proof. Note that StabΓ (D′(I2
1 )) = StabΓ (I2

1 ). One can calculate that w2 ∈ ΓP0 and hence w ∈
StabΓ (I2

1 ) and acts non-trivially on the ordered pair (P0,
wP0). Thus, StabΓ (I2

1 ) = L ∪ L · w,
where γ ∈ L if and only if γ P0 = P0 and γwP0 = wP0. Since a parabolic subgroup is its own
normalizer, one computes that

L = Γ ∩ P0 ∩ wP0 = {e, ε, ε2, ε3},
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and hence,

StabΓ

(
D′(I2

1

))= {e, ε, ε2, ε3,w, εw, ε2w,ε3w
}
.

It is easily checked that the map given in the proposition is an isomorphism. �
Proposition 8.2. The stabilizer in Γ of D′(I2

2 ) is the cyclic group of order eight generated by ξ .

Proof. Note that StabΓ (D′(I2
2 )) = StabΓ (I2

2 ). Recall that I2
2 = {P0,

ξP0}. One can calculate
that ξ2 = ετσ−1 ∈ ΓP0 and hence ξ is in StabΓ (I2

2 ) and acts non-trivially on the ordered pair
(P0,

ξP0). Thus, StabΓ (I2
2 ) = L ∪ L · ξ , where γ ∈ L if and only if γ P0 = P0 and γ ξP0 = ξP0.

Since a parabolic subgroup is its own normalizer, one computes that

L = Γ ∩ P0 ∩ ξP0 = {e, ξ2, ξ4, ξ6},
and hence StabΓ (D′(I2

2 )) is the cyclic group of order eight generated by ξ . �
Proposition 8.3. The stabilizer in Γ of D′(I3

1 ) is the cyclic group of order twelve generated by
τεw.

Proof. Note that StabΓ (D′(I3
1 )) = StabΓ (I3

1 ). One can easily check that

τ
{
P0,

wP0
}= {P0,

τwP0
}

and wτ−1w
{
P0,

wP0
}= {wP0,

τwP0
}
.

Thus StabΓ (I3
1 ) = Γ1 ∪ Γ2 ∪ Γ3, where

Γ1 = {γ ∈ StabΓ

(
I2

1

) ∣∣ γ τwP0 = τwP0
}
,

Γ2 = {γ ∈ τ · StabΓ

(
I2

1

) ∣∣ γ τwP0 = wP0
}
, and

Γ3 = {γ ∈ wτ−1w · StabΓ

(
I2

1

) ∣∣ γ τwP0 = P0
}
.

One calculates using Proposition 8.1 that

Γ1 = {e, ε, ε2, ε3},
Γ2 = {τw, τεw, τε2w,τε3w

}
, and

Γ3 = {wτ−1,wτ−1ε,wτ−1ε2,wτ−1ε3}.
Explicit matrix multiplication shows that Γ1 ∪ Γ2 ∪ Γ3 is the cyclic group of order twelve gener-
ated by τεw. �
Proposition 8.4. The stabilizer in Γ of D′(I3

2 ) is

StabΓ

(
D′(I3

2

))= {e, εw,wσ̌−1w,wσ̌−1ε3, σ ε3w,σε2}
and is isomorphic to S3.
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Proof. Note that StabΓ (D′(I3
2 )) = StabΓ (I3

2 ). Fix an ordering of I3
2 . Since a parabolic sub-

group is its own normalizer, the group which preserves the ordering is Γ ∩ P0 ∩ wP0 ∩ σwP0.
The proof of Proposition 8.1 shows that Γ ∩ P0 ∩ wP0 = 〈ε〉 and one can easily check that
〈ε〉 ∩ σwP0 = {e}. Thus StabΓ (I3

2 ) is isomorphic to a subgroup of S3. One checks that
{e, εw,wσ̌−1w,wσ̌−1ε3, σ ε3w,σε2} is a set of six distinct elements in StabΓ (I3

2 ). Thus this
set is exactly StabΓ (I3

2 ) and is isomorphic to S3. �
Proposition 8.5. The stabilizer in Γ of D′(I3

3 ) is trivial.

Proof. Since |Q(v0, vw)|2 = 1, |Q(v0, vτσw)|2 = 1, and |Q(vw, vτσw)|2 = 2, if γ ∈ StabΓ (I3
3 ),

then γ I2
1 = I2

1 or γ I2
1 = {P0,

τσwP0}. Thus StabΓ (I3
3 ) = Γ1 ∪ Γ2, where

Γ1 = {γ ∈ StabΓ

(
I2

1

) ∣∣ γ τσwP0 = τσwP0
}

and

Γ2 = {γ ∈ τσ · StabΓ

(
I2

1

) ∣∣ γ τσwP0 = wP0
}
.

One checks using Proposition 8.1 that Γ1 = {e} and Γ2 = ∅. �
Proposition 8.6. The stabilizer in Γ of D′(I4

1 ) is trivial.

Proof. Note that StabΓ (D′(I4
1 )) = StabΓ (I4

1 ). The set of isotropic vectors associated to I3
1 ⊂ I4

1
span a two-dimensional subspace of C3 while the isotropic vectors associated to any other order
three subset of I4

1 span all of C3. Thus if γ ∈ StabΓ (I4
1 ) then γ I3

1 = I3
1 and γ σwP0 = σwP0

Therefore one calculates from Proposition 8.3 that StabΓ (I4
1 ) = StabΓ (I3

1 ) ∩ σwP0 = {e}. �
Proposition 8.7. The stabilizer in Γ of D′(I4

2 ) is cyclic of order two generated by εw.

Proof. Explicit computation show that

εwI3
3 = {P0,

wP0,
w−1τ σ̌wP0

}
,

στwτσ−1I3
3 = {P0,

τσwP0,
w−1τ σ̌wP0

}
, and

στwτσ−1wI3
3 = {wP0,

τσwP0,
w−1τ σ̌wP0

}
.

Then StabΓ (I4
2 ) = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4, where

Γ1 = {γ ∈ StabΓ

(
I3

3

) ∣∣ γw−1τ σ̌wP0 = w−1τ σ̌wP0
}
,

Γ2 = {γ ∈ εw · StabΓ

(
I3

3

) ∣∣ γw−1τ σ̌wP0 = τσwP0
}
,

Γ3 = {γ ∈ στwτσ−1 · StabΓ

(
I3

3

) ∣∣ γw−1τ σ̌wP0 = wP0
}
, and

Γ4 = {γ ∈ στwτσ−1w · StabΓ

(
I3

3

) ∣∣ γw−1τ σ̌wP0 = P0
}
.

By Proposition 8.5, StabΓ (I3
3 ) is trivial. It is easy to check that Γ1 = {e}, Γ2 = {εw}, and Γ3 =

Γ4 = ∅. �
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Proposition 8.8. The stabilizer group of D′(I5) is the cyclic group of order two generated
by σε2.

Proof. Note that StabΓ (D′(I5)) = StabΓ (I5). With the exception of P0, for every P ∈ I5, there
exists a Q ∈ I5 such that |Q(vP , vQ)|2 = 2. Therefore if γ ∈ StabΓ (I5), then γ P0 = P0. This
implies that

StabΓ

(
I5)= ΓP0 ∩ StabΓ

({
wP0,

τwP0,
σwP0,

τσwP0
})

= ΓP0 ∩ wτ−1εwσ−1τ−1
StabΓ

(
I4

2

)
= ΓP0 ∩ wτ−1εwσ−1τ−1{e, εw} from Proposition 8.7.

One easily checks that this intersection is {e, σε2}. �
Proposition 8.9. The stabilizer in Γ of D′(I8) is the group of order 32 generated by ξ2 and εw

given below:

StabΓ

(
D′(I8))= {e, ξ2, ξ4, ξ6, εw, εwξ2, εwξ4, εwξ6, ξ2εw, ξ2εwξ2, ξ2εwξ4,

ξ2εwξ6, ξ4εw, ξ4εwξ2, ξ4εwξ4, ξ4εwξ6, ξ6εw, ξ6εwξ2,

ξ6εwξ4, ξ6εwξ6, εwξ2εw, εwξ4εw, εwξ6εw, ξ2εwξ2εw,

ξ2εwξ4εw, ξ2εwξ6εw, ξ4εwξ2εw, ξ4εwξ4εw, ξ4εwξ6εw,

ξ6εwξ2εw, ξ6εwξ4εw, ξ6εwξ6εw
}
.

It is isomorphic to the group of order 32 with Hall–Senior number 31 [12].

Proof. Note that StabΓ (D′(I8)) = StabΓ (I8). Consider I2
1 ⊂ I8. Since the set of isotropic vec-

tors associated to I2
1 is 1-bounded, if γ ∈ StabΓ (I8), then the set of isotropic vectors associated

to γ I2
1 is 1-bounded. There are 16 such subsets I = γII2

1 ⊂ I8 with this property. Then

StabΓ

(
I8)= ∐

I⊂I8

I is Γ -conjugate to I2
1

ΓI ,

where

ΓI = {γ ∈ γI · StabΓ

(
I2

1

) ∣∣ γ
{
I8 \ I2

1

}= {I8 \ I}}.
One can compute that each ΓI has exactly two elements. Explicit computation of each ΓI gives
the 32 elements listed.

Fix an ordering [I8]. This induces a homomorphism ψ : StabΓ (I8) → S8. The subgroup
of StabΓ (I8) which fixes the ordering is ker(ψ) = Γ ∩ (

⋂
P∈I8 P). One calculates that this

intersection is trivial. Thus StabΓ (I8) is isomorphic to its image ψ(StabΓ (I8)) in S8. In par-
ticular, non-trivial elements of ψ(StabΓ (I8)) written in disjoint cycle notation consist of 2, 4,
or 8-cycles. Thus the exponent of StabΓ (I8) is 8. One computes that the center of StabΓ (I8) is
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cyclic of order four. There are only three groups of order 32 with exponent 8 and center which
is cyclic of order four, namely G26, G31, and G32 in the lists given in [12]. These are distin-
guished by the number of conjugacy classes of maximal elementary abelian subgroups, that is,
subgroups which are isomorphic to (Z/2Z)r for some r . G26, G31, and G32 have one, two, and
three conjugacy classes of maximal elementary abelian subgroups, respectively. One calculates
that StabΓ (I8) has two conjugacy classes of maximal elementary abelian subgroups. �
9. Structure of the spine

9.1. Cell structure and action of the stabilizers

From the previous computations, one can get a very explicit description of the cellular
structure of the spine. For example, to find the strongly admissible sets of order three that
are on the boundary of I2

1 , one needs to find all rational parabolic subgroups Q such that
I = I2

1 ∪ {Q} is Γ -conjugate to either I3
1 , I3

2 , or I3
3 and hence reduces to a simple calcula-

tion of the Q inner-products of vQ with (1,0,0)t and (0,0,1)t . More precisely, define a map
Q : {ordered subsets of P} → Mat(Z) as follows: Given an ordered subset [I] = (P1, . . . ,Pn) ⊂
P , let Q([I]) be the n × n matrix whose (i, j)-component is |Q(vPi

, vPj
)|2.

Proposition 9.1. Let I be strongly admissible set. Then

Q
([I])=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
0 1
1 0

)
if I is Γ -conjugate to I2

1 ,(
0 2
2 0

)
if I is Γ -conjugate to I2

2 ,(
0 1 1
1 0 1
1 1 0

)
if I is Γ -conjugate to I3

1 or I3
2 ,(

0 1 2
1 0 1
2 1 0

)
if I is Γ -conjugate to I3

3 ,

(
0 1 1 2
1 0 1 1
1 1 0 1
2 1 1 0

)
if I is Γ -conjugate to I4

1 ,

(
0 1 1 2
1 0 2 1
1 2 0 1
2 1 1 0

)
if I is Γ -conjugate to I4

2 ,

⎛
⎝ 0 1 1 1 2

1 0 1 2 1
1 1 0 1 1
1 2 1 0 1
2 1 1 1 0

⎞
⎠ if I is Γ -conjugate to I5,

⎛
⎜⎜⎜⎜⎝

0 1 2 1 1 2 1 4
1 0 1 2 2 1 4 1
2 1 0 1 1 4 1 2
1 2 1 0 4 1 2 1
1 2 1 4 0 1 2 1
2 1 4 1 1 0 1 2
1 4 1 2 2 1 0 1
4 1 2 1 1 2 1 0

⎞
⎟⎟⎟⎟⎠ if I is Γ -conjugate to I8.

Table 1 summarizes the strongly admissible sets up to Γ -conjugacy and gives their stabilizers.
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Table 1
Stabilizer groups of strongly admissible sets

S.A.S. Stabilizer Generators

I2
1 Z/2Z × Z/4Z 〈εw, ε〉

I2
2 Z/8Z 〈ξ 〉

I3
1 Z/12Z 〈τεw〉

I3
2 S3 〈εw,σε2〉

I3
3 trivial 〈e〉

I4
1 trivial 〈e〉

I4
2 Z/2Z 〈εw〉

I5 Z/2Z 〈σε2〉
I8 〈εw, ξ2〉 G31

Fig. 1. The sets associated to the two Γ -conjugacy classes of strongly admissible sets of order two are shown here. D(I2
1 )

is homeomorphic to a polytope with dodecagon, hexagon and quadrilateral faces, while D(I2
2 ) has only quadrilateral

faces.

In Fig. 1, the dodecagon faces are type I3
1 , the hexagon faces are type I3

2 , and the quadrilat-
eral faces are type I3

3 . The edges that bound a hexagon or dodecagon are type I4
1 . The edges

where two quadrilaterals meet are type I4
2 . The vertices of edges of type I4

1 are type I5, and
the others are type I8. The incidence table is given in Table 2, where the entry below the diag-
onal means that each column cell has that many row cells in its boundary, and the entry above
the diagonal means the column cell appears in the boundary of this many row cells. The entries
below the diagonal can be read off from Figs. 2–4, while the entries above the diagonal can
be easily computed from Proposition 9.1, since the Γ -conjugacy class of a strongly admissible
can be distinguished by the pairwise Q-inner products of its associated isotropic vectors, except
to distinguish I3

1 and I3
2 , we must also compute the dimension of the span of their isotropic

vectors.
To understand how the cells in Fig. 1 are glued together to form the spine, one must remember

that the spine is in a four-dimensional symmetric space. Each 2-cell is a boundary face of exactly
three 3-cells that only meet along this face. In particular, there are two other 3-cells of type I2

1
that are glued to each dodecagon face of D(I2

1 ). There are two other 3-cells of type I2
1 that are

glued to each hexagon face of D(I2). There is one other 3-cells of type I2 and one 3-cell of
1 1
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Table 2
Incidence types

I2
1 I2

2 I3
1 I3

2 I3
3 I4

1 I4
2 I5 I8

I2
1 ∗ ∗ 3 3 2 5 4 8 16

I2
2 ∗ ∗ 0 0 1 1 2 2 8

I3
1 2 0 ∗ ∗ ∗ 1 0 2 0

I3
2 4 0 ∗ ∗ ∗ 1 0 2 0

I3
3 12 8 ∗ ∗ ∗ 2 4 6 32

I4
1 40 8 12 6 2 ∗ ∗ 4 0

I4
2 16 8 0 0 2 ∗ ∗ 1 16

I5 32 8 12 6 3 2 1 ∗ ∗
I8 4 2 0 0 1 0 1 ∗ ∗

Fig. 2. Strongly admissible sets of order 4.

Fig. 3. Strongly admissible sets of order 3.

type I2
2 that is glued to each quadrilateral face of D(I2

1 ). In particular, two 3-cells of type I2
2 are

never glued to each other along a 2-cell face.
Looking at the incidence table we see that there are two quadrilaterals, one hexagon, and

one dodecagon glued to each edge of type I4
1 . Thus, given a dodecagon face and a hexagon

face of D(I2
1 ), the four other 3-cells emanating from these two faces can be paired so that each

pair is glued to each other along a quadrilateral face. Given a dodecagon face and an adjacent
quadrilateral face of D(I2

1 ), the four other 3-cells emanating from these two faces can be paired
so that one pair is glued to each other along a quadrilateral face and the other pair is glued to
each other along a hexagon. Similarly, given a hexagon face and an adjacent quadrilateral face
of D(I2), the four other 3-cells emanating from these two faces can be paired so that one pair
1
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Fig. 4. Strongly admissible sets of order 2.

is glued to each other along a quadrilateral face and the other pair is glued to each other along
a dodecagon.

Looking at the incidence table we see that there are four quadrilateral faces glued to each
edge of type I4

2 . Thus, given two adjacent quadrilateral faces of D(I2
1 ), the four other 3-cells

emanating from these two faces can be paired so that each pair is glued to each other along
a quadrilateral face.

In Figs. 2–4, a 0-cell that is Γ -conjugate to I5 will be denoted by •, and a 0-cell that is Γ -
conjugate to I8 will be denoted by �. A 1-cell that is Γ -conjugate to I4

1 will be denoted with
a solid line, and a 1-cell that is Γ -conjugate to I4

2 will be denoted with a dotted line.
The 1-cell D(I4

1 ) is shown in Fig. 2. The boundary consists of two 0-cells that are both
conjugate to D(I5). By Proposition 8.6, the stabilizer of D(I4

1 ) is trivial.
The 1-cell D(I4

2 ) is shown in Fig. 2. The boundary consists of two 0-cells (one that is conju-
gate to D(I5) and one that is conjugate to D(I8)). By Proposition 8.7, the stabilizer of D(I4

2 ) is
isomorphic to Z/2Z and is generated by εw. This acts on the cell by fixing it pointwise.

The 2-cell D(I3
1 ) is shown in Fig. 3. Its boundary consists of twelve 1-cells (all of which are

conjugate to D(I4
1 )) and twelve 0-cells (all of which are conjugate to D(I5)). By Proposition 8.3

the stabilizer of D(I3
1 ) is isomorphic to Z/12Z and is generated by τεw. It is easily checked that

τεw acts on the figure by rotation by π
6 about the first contact z(I3

1 ) for D(I3
1 ).

The 2-cell D(I3
2 ) is shown in Fig. 3. The boundary consists of six 1-cells (all of which are

conjugate to D(I4
1 )) and six 0-cells (all of which are conjugate to D(I5)). The point z(I3

2 ) is
the first contact for I3

2 . The lines lj represent the gradient flows of the f0 function restricted to
D(I3

2 ) from the first contact to two of the vertices of D(I3
2 ). By Proposition 8.4, the stabilizer of

D(I3
2 ) is isomorphic to S3 generated by εw and σ 2ε2. One can check that εw acts as reflection

about l1 and σε2 acts as reflection about l2.
The 2-cell D(I3

3 ) is shown in Fig. 3. The boundary consists of four 1-cells (two that are
conjugate to D(I4

1 ) and two that are conjugate to D(I4
2 )) and four 0-cells (three that are conjugate

to D(I5) and one that is conjugate to D(I8)). By Proposition 8.5, the stabilizer of D(I3
3 ) is

trivial.
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See Fig. 4 for a picture of the face relations for D(I2
1 ). The outside of the figure is the do-

decagon bottom face seen in Fig. 1. The boundary of D(I2
1 ) consists of twenty-two 2-cells (two

that are conjugate to D(I3
1 ), four that are conjugate to D(I3

2 ), and sixteen that are conjugate
to D(I3

3 )), fifty-six 1-cells (forty that are conjugate to D(I4
1 ) and sixteen that are conjugate to

D(I4
2 )), and thirty-six 0-cells (thirty-two that are conjugate to D(I5) and four that are conjugate

to D(I8)). By Proposition 8.1 the stabilizer of D(I2
1 ) is isomorphic to Z/4Z × Z/2Z generated

by ε and εw. It is easily calculated that ε acts by rotating the figure by −π
2 and εw acts by an

inversion, sending the interior 12-gon to the exterior one.
The other 3-cell D(I2

2 ) is shown in Fig. 4. The labels {a, b, c, d} are added to show the identi-
fications that need to be made. The boundary of D(I2

2 ) consists of eight 2-cells (all of which are
conjugate to D(I3

3 )), sixteen 1-cells (eight that are conjugate to D(I4
1 ) and eight that are conju-

gate to D(I4
2 )) and ten 0-cells (eight that are conjugate to D(I5) and two that are conjugate to

D(I8)). By Proposition 8.2, the stabilizer of D(I2
2 ) is isomorphic to Z/8Z generated by ξ . It is

easily checked that ξ acts on the figure by the composition of an inversion sending the exterior
point to the interior point and a rotation of π

4 .

9.2. The subdivision

From the explicit description of the cells and Γ -action, it is straightforward to subdivide the
spine so that the stabilizer of each cell fixes the cell pointwise.

First consider D(I2
1 ). It must be divided into eight 3-cells that are conjugate via StabΓ (I2

1 ).
One of the 3-cells X is represented by the shaded region in Fig. 4. It is easy to see that the
boundary of X consists of two 2-cells, C1 and C2, that are Γ -conjugate to D(I3

3 ), half of the
2-cell D(I3

2 ) B , one-fourth of the 2-cell D(I3
1 ), A, and three new faces, E1, E2, and D that

lie inside D(I2
1 ) and such that E1 and E2 are Γ -conjugate. Next we turn to subdividing the

boundary faces of X. From the description of the action of the StabΓ (I3
1 ) on D(I3

1 ), it follows
that A must be subdivided into three Γ -conjugate 2-cells A1, A2, and A3. Similarly, because
of the action of StabΓ (I3

2 ) on D(I3
2 ), B must be subdivided into three Γ -conjugate 2-cells B1,

B2, and B3. One can compute that the stabilizers of Ei are trivial, and that the stabilizer of D

fixes D pointwise. The 1-cells of X, both the ones that are Γ -conjugate to D(I4
j ) (j = 1,2) and

the new ones that are introduced for the subdivision, do not need to be subdivided because the
stabilizers are either trivial, or the stabilizer acts on the 1-cell by fixing it pointwise. This yields
X in Fig. 5.

Similarly, D(I2
2 ) must be subdivided into eight 3-cells that are conjugate via StabΓ (I2

2 ). One
of the 3-cells Y can be viewed in Fig. 4 by taking a face C1 that is Γ -conjugate to D(I3

3 ) and
looking at the set of points of D(I2

2 ) that would flow to C1 under the gradient flow for −fI2
2

and

adding the first contact point of I2
2 . Then the boundary of Y consists of five 2-cells, C1, F1, F2,

G1, and G2 such that F1 is Γ -conjugate to F2 and G1 is Γ -conjugate to G2. The calculations
above show that the stabilizer of C1 is trivial, and it is easy to check that the stabilizers of F1,
F2, G1, and G2 are trivial as well. Hence the 2-cells do not need to be subdivided. Similarly, one
checks that the stabilizers of the 1-cells are either trivial or fix the 1-cell pointwise. This yields
Y in Fig. 5.

In the figures, the labels that only differ by a subscript are conjugate under Γ . For each Γ -
conjugacy class, we fix a representative and compute the stabilizers. The results are given in
Table 3.
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Fig. 5. Subdivided cells.

Table 3
Representative cells and their stabilizers

Cell Dimension Stabilizer Generators

X 3 trivial 〈e〉
Y 3 trivial 〈e〉
A1 2 trivial 〈e〉
B1 2 trivial 〈e〉
C1 2 trivial 〈e〉
D 2 Z/2Z 〈εw〉
E1 2 trivial 〈e〉
F1 2 trivial 〈e〉
G1 2 trivial 〈e〉
a1 1 trivial 〈e〉
b1 1 Z/2Z 〈σεwσ−1〉
c1 1 Z/2Z 〈εw〉
d1 1 trivial 〈e〉
e1 1 Z/2Z 〈εw〉
f1 1 Z/2Z 〈εw〉
g 1 Z/4Z 〈ε〉
h 1 Z/4Z 〈ξ2〉
i1 1 trivial 〈e〉
m 0 Z/12Z 〈τεw〉
n 0 Z/2Z × Z/4Z 〈εw, ε〉
o1 0 Z/2Z 〈εw〉
p1 0 G31 〈εw, ξ2〉
q 0 S3 〈εw,σε2〉
r 0 Z/8 〈ξ 〉
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10. Cohomology of Γ \D0 with local coefficients

In this section only, we generalize to the case where D = G/K is a non-compact symmetric
space, where G is the group of real points of a semisimple linear algebraic group G defined
over Q. Let Γ be an arithmetic subgroup of G(Q). Let D0 ⊂ D denote a spine with CW-structure
such that the Γ -stabilizer of a cell fixes the cell pointwise.

In order to set notation, we recall the definition of orbifold and the sheaf associated to the
local system. We then prove that the cohomology of Γ \D with local coefficients is isomorphic
the cohomology of Γ \D0 with local coefficients.

10.1. Orbifolds

The notion of an orbifold was first introduced by Satake in [16]. He called them V-manifolds.
Let M be a Hausdorff topological space. A local uniformizing system (l.u.s.) {U,ΓU ,φ} for an
open set V ⊂ M is a collection of the following objects:

(i) U : a connected open subset of Rn.
(ii) G: a finite group of linear transformations of U to itself such that the set of fixed points of

G is either all of U or at least codimension 2.
(iii) φ: a continuous ΓU -invariant map U → V such that the induced map ΓU\U → V is

a homeomorphism.

Let V ⊂ V ′ ⊂ M be two open sets and let {U,ΓU ,φ} and {U ′,ΓU ′ , φ′} be local uniformizing
systems for V and V ′ respectively. An injection λ : {U,ΓU ,φ} → {U ′,ΓU ′ , φ′} is a smooth in-
jection λ :U → U ′ such that for any γ ∈ ΓU , there exists a γ ′ ∈ ΓU ′ such that λ ◦ γ = γ ′ ◦ λ and
φ = φ′ ◦ λ.

Let L be a family of local uniformizing systems for open sets in M . Then an open set V ⊂ M

is said to be L-uniformized if there exists a local uniformizing system for V in L.

Definition 10.1. An orbifold is a Hausdorff space M and a family L of local uniformizing sys-
tems for open sets in M satisfying the following conditions.

(i) Let V ⊂ V ′ ⊂ M be two open sets and let {U,ΓU ,φ} and {U ′,ΓU ′ , φ′} be local uni-
formizing systems for V and V ′ respectively. Then there exists an injection {U,ΓU ,φ} →
{U ′,ΓU ′ , φ′}.

(ii) The L-uniformized open sets form a basis of open sets for M .

Two families of local uniformizing systems L1 and L2 defining an orbifold M are said to be
equivalent if L1 ∪L2 satisfies the conditions above. Equivalent families define the same orbifold
structure on M . Thus when talking about family of local uniformizing systems for an orbifold M ,
we will mean a maximal family.

A smooth function on M is given locally on L-uniformized sets V by ΓU -invariant smooth
functions on U . Similarly, a smooth p-form on M is given locally on V by ΓU -invariant smooth
forms on U .

Note that a smooth manifold is an example of an orbifold where every group ΓU for
{U,ΓU ,φ} ∈ L is the trivial group. If M̃ is a smooth manifold and Γ is a properly discontin-
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uous group of automorphisms of M̃ , then the quotient Γ \M̃ has a canonical structure of an
orbifold.

10.2. Γ \D as an orbifold

Since Γ acts properly discontinuously on D, X = Γ \D has a canonical structure of an orb-
ifold. Let π denote the projection D → X.

Given a connected open set V ⊂ X with local uniformizing system L, we can and will iden-
tify L with a triple {U,StabΓ (U),π |U } where U is a connected component of Ũ = π−1(V ).
A smooth function on V is given by a StabΓ (U)-invariant smooth function on U . In particu-
lar, for an open subset O ⊂ X, a smooth function on O is given by a Γ -invariant function on
π−1(O).

Since D0 is a spine, there exists a Γ -equivariant deformation retract r̃ :D → D0. Then there
is an induced deformation retract r :X → X0 = Γ \D0.

10.3. Locally constant orbifold (fiber) bundles over Γ \D

Let E be a Γ -module with Γ -action given by ρ : Γ → GL(E). Let D ×Γ E denote the
quotient space D × E/{(x, v) ∼ (γ · x,ρ(γ )v) | γ ∈ Γ }. For a Γ -invariant deformation retract
D0 ⊆ D, we can similarly define D0 ×Γ E. This yields the following maps.

Suppose that E is an N -dimensional vector space. If Γ is torsion-free, then X is a smooth
manifold and D ×Γ E is a flat rank-N vector bundle over X. If Γ has torsion, then X is an
orbifold and D ×Γ E is called a flat orbifold bundle over X.

Consider the presheaf E on X defined as follows. For every open set U ⊂ X,

E(U) =
{
f :π−1(U) → E

∣∣∣ f is locally constant and
f (γ · x) = ρ(γ )f (x) ∀γ ∈ Γ, x ∈ π−1(U)

}

with the obvious restriction maps. Let E denote the sheafification of E . Similarly define the
presheaf E0 on X0 and let E0 denote the sheafification of E0. Note that if Γ is torsion-free, E is
the sheaf associated to the local system X defined by (E,ρ). We will extend this terminology
to X, respectively X0, when Γ is not torsion-free and say that E, respectively E0, is the sheaf
associated to the local system on X, respectively X0, defined by (E,ρ).
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Proposition 10.2. The sheaf E0 on X0 is isomorphic to the push-forward r∗E of the sheaf E

on X.

Proof. Let V0 ⊂ X0 be a contractible open set. Let U0 be a connected component of Ṽ0 =
π−1

0 (V0). Since Γ acts properly discontinuously on D0, by shrinking V0 (and hence shrink-
ing U0) if necessary, one can arrange that ΓU0 ≡ {γ ∈ Γ | γ · U0 ∩ U0 �= ∅} is a finite group.
A section f ∈ E0(V0) is a locally constant map f : Ṽ0 → E such that f (γ · x) = ρ(γ )f (x) for
all γ ∈ Γ . Since V0 is a connected open set, it follows that π0(U0) = V0 and Γ · U0 = π−1

0 (V0),
and hence f is determined by its value vU0 on U0. Furthermore, by the Γ -equivariance of f ,
vU0 ∈ EΓU0 , the subspace of E fixed by ΓU0 .

Recall that r∗E(V0) = E(r−1(V0)). Since π0 ◦ r̃ = r ◦π , there is a connected component U of
π−1(r−1(V0)) such that U = r̃−1(U0). Since Γ acts properly discontinuously on D, ΓU ≡ {γ ∈
Γ | γ · U ∩ U �= ∅} is finite. Thus a section ψ ∈ r∗E(V0) is determined by its value uU on U .
Furthermore, by the Γ -equivariance of ψ , uU ∈ EΓU , the subspace fixed by ΓU .

Thus to show that the sheaves are isomorphic, it suffices to show that for sufficiently small
V0 ⊂ X0, the groups ΓU0 and ΓU defined above are equal. It is clear that ΓU0 ⊆ ΓU . To show the
opposite inclusion, suppose γ ∈ ΓU . Then by definition γ · U ∩ U �= ∅. Let x ∈ γ · U ∩ U . In
particular, x ∈ U , so r̃(x) ∈ U0. Furthermore, since x ∈ γ · U , γ −1 · x ∈ U . Thus r̃(γ −1 · x) ∈ U

and the Γ -equivariance of r̃ implies that r̃(x) ∈ γ · U0 and hence γ ∈ ΓU0 . �
10.4. Cohomology of subspaces

We recall without proof two results of sheaf cohomology. A reference for this section is [10].

Theorem 10.3. (See [10, Theorem 10.6].) Let F be a sheaf on a paracompact space X, and let
A ⊂ X be a closed subspace. Let N be the set of all open neighborhoods of A. Then

lim−→
N∈N

H ∗(N;F |N) ∼= H ∗(A;F |A).

Theorem 10.4. (See [10, Theorem 11.7].) Let X be a paracompact space. Let f :X → Y a closed
map and F a sheaf on X. Suppose that Hp(f −1(y);F |f −1(y)) = 0 for p > 0 and all y ∈ Y . Then
the natural map

f † :H ∗(Y ;f∗F) → H ∗(X;F)

is an isomorphism.

Let r :X → X0 denote the deformation retraction arising from the Γ -equivariant deformation
retraction of the symmetric space D to the spine D0. Let (E,ρ) be a Γ -module and let E and E0
denote the associated local systems on X and X0 respectively. We believe the following results
are known, but since we could not find a reference, we provide a proof.

Theorem 10.5. H ∗(X;E) ∼= H ∗(X0;E0).

Lemma 10.6. For every z ∈ D,



230 D. Yasaki / Journal of Number Theory 128 (2008) 207–234
StabΓ (z) = StabΓ

(
r̃t (z)

)
for t < 1 and

StabΓ (z) ⊆ StabΓ

(
r̃1(z)

)
.

Proof. Let γ be an element of StabΓ (z). Then γ · r̃t (z) = r̃t (γ · z) = r̃t (z). Hence γ ∈
StabΓ (r̃t (z)). Notice that for each z /∈ D0, c(t) = r̃t (z),0 � t � 1, is a reparameterization of
a geodesic, and Γ acts by isometries. Thus every γ ∈ StabΓ (z) fixes the geodesic through r̃1(z)

and z. In particular, StabΓ (z′) = StabΓ (z) whenever z = r̃t (z
′) for some t < 1. �

Proof of Theorem 10.5. We will show that H ∗(N;E|N) ∼= H ∗(r−1(y);E|r−1(y)) for all con-
tractible neighborhoods N of y ∈ X0. Let U ⊂ D be a connected component of π−1(r−1(y)).
Let ỹ denote the unique lift of y in U . Note that U is a finite union of geodesic rays em-
anating from ỹ. By Proposition 10.6, the stabilizer groups StabΓ (x̃) are isomorphic for x̃ in
a connected component of U \ ỹ. Let Ñ ⊆ U be a contractible open subset containing ỹ and let
N = π(Ñ). Then it is clear that H ∗(r−1(y);E|r−1(y))

∼= H ∗(N,E|N). Apply Theorem 10.3 with
X = r−1(y),F = E|r−1(y),A = {y}, and N the family of all contractible open sets containing y.
Then

H ∗(r−1(y);E|r−1(y)

)∼= lim−→
N∈N

H ∗(N;E|N) ∼= H ∗(y;E|y).

In particular, Hp(r−1(y);E|r−1(y)) = 0 for p > 0.
By Theorem 10.4, this implies that H ∗(X;E) ∼= H ∗(X0; r∗E). By Proposition 10.2, r∗E ∼= E0

and the result follows. �
10.5. Computing the cohomology from the cell structure

The cell structure allows us to compute the cohomology H ∗(Γ \D0;E) combinatorially once
Γ -representatives of cells and the stabilizers of those cells have been computed. This result is
known, but rephrased here in a way that is convenient for our computations. We first set up some
notation.

For each p, fix a set Rp of representatives of Γ -conjugacy classes of p-cells of D0. Let
[τ ] denote the representative of the class of τ . For each representative [τ ], fix a distinguished
maximal flag of cells

F[τ ] = τ0 < τ1 < · · · < τp, where τi is an i-cell and τp = [τ ].

For each cell τ , let γτ ∈ Γ be such that γτ · F[τ ] terminates in τ . Note that γτ is well-defined up
to StabΓ (τ).

For each fixed p-cell, let Sσ denote the simplicial complex arising from the poset of cells in
σ with the partial ordering derived from containment. In particular, the vertices of Sσ are the
cells contained in σ and the k-simplices are the (k + 1)-flags σ0 < σ1 < · · · < σk . Define a map
nσ : {p-simplices of Sσ } → {±1} by the equation ∂Sσ =∑F∈Sσ

nσ (F )∂F . Multiply by −1 if
necessary so that nσ (γσ F[σ ]) = (−1)p . Then for each σ , define a map

sgnσ (τ ) = nσ (γτF[τ ] < σ). (23)
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Theorem 10.7. The cohomology H ∗(X0;E) can be computed from the complex

0 →
⊕
σ∈R0

EStabΓ (σ ) →
⊕
σ∈R1

EStabΓ (σ ) → ·· · →
⊕
σ∈R

EStabΓ (σ ) → 0,

where the differential

d :
⊕

σ∈Rp−1

EStabΓ (σ ) →
⊕
σ∈Rp

EStabΓ (σ )

is given by

(dv)σ =
∑

τa (p − 1)-cell ∈∂σ

sgnσ (τ )ρ(γτ )v[τ ].

Here γτ , sgn, and [·] are defined above and the vector v[τ ] is the [τ ]-component of the vector
v ∈⊕σ∈Rp−1

EStabΓ (σ ).

11. Cohomology

Recall that ε, w, σ , τ , and ξ were explicitly defined elements of G given in Section 2.

Theorem 11.1. Let E be a Γ -module with the action of Γ given by ρ :Γ → GL(E). Then
H ∗(Γ \D;E) can be computed from the following cochain complex.

0 → C0 → C1 → C2 → C3 → 0,

where

C0 = Eρ(τεw) ⊕ E〈ρ(ε),ρ(w)〉 ⊕ Eρ(εw) ⊕ E〈ρ(εw),ρ(ξ2)〉 ⊕ E〈ρ(εw),ρ(σε2)〉 ⊕ Eρ(ξ),

C1 = E ⊕ Eρ(σεwσ−1) ⊕ Eρ(εw) ⊕ E ⊕ Eρ(εw) ⊕ Eρ(εw) ⊕ Eρ(ε) ⊕ Eρ(ξ2) ⊕ E,

C2 = E ⊕ E ⊕ E ⊕ Eρ(εw) ⊕ E ⊕ E ⊕ E,

C3 = E ⊕ E.

Then for (κi) ∈ C0, (λi) ∈ C1, and (μi) ∈ C2, the differentials are given by

d0(κ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−κ1 + ρ(ξ2)κ3
ρ(ξ)κ3 − κ5

κ3 − κ5
−κ3 + ρ(ξ)κ3

κ3 − κ4
−κ2 + κ4
κ1 − κ2
κ4 − κ6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

κ3 − κ6
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d1(λ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ1 + ρ(τεw)λ1 + ρ(ξ)λ4

λ2 − λ3 − λ4

λ4 + ρ(ξ)λ4 + λ5 − ρ(ξ2)λ5

−ρ(σε2)λ2 + λ3 − λ5 + ρ(τσwτσ−1)λ5 − λ6 + ρ(ε)λ6

λ1 − ρ(ξ2)λ5 − λ6 + λ7

−λ5 − λ8 + λ9

λ4 + λ9 − ρ(ξ)λ9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

d2(μ) =
(

Aμ1 + Bμ2 − μ3 − ρ(τσεw−1)μ3 − μ4 + μ5 − ρ(ε)μ5

−μ3 − μ6 + ρ(ξ2)μ6 + μ7 + ρ(ξ)μ7

)

where

A = ρ(I) + ρ(τεw) + ρ(τεw)2 and B = −ρ(I) + ρ
(
σεwσ−1)− ρ

(
σεwσ−1εw

)
.

An application of Theorem 11.1 is the following.

Corollary 11.2. The group Γ = SU(2,1;Z[i]) is generated by {ε,w, τ, σ }.

Lemma 11.3. Let H be a subgroup of a group G. If H �= G, then there exists a representation
(E,ρ) of G such that Eρ(H) �= Eρ(G).

Proof. Consider the representation (E,ρ) of functions φ : G/H → C with the left regular action
of G on φ. The characteristic function χeH of the identity coset eH is fixed by H , but not fixed
by G for G �= H . �
Proof of Corollary 11.2. Let ρ :Γ → GL(E) be a representation of Γ . Then the cohomology
H 0(X;E) is equal to the global sections E(X) ∼= EΓ . Since H 0(X;E) is the kernel of d0 given
in Theorem 11.1, H 0(X;E) ∼= E〈ε,w,τ,σ 〉. It is well known that H 0(X;E) ∼= Eρ(Γ ). The result
then follows from Lemma 11.3. �

The following corollary follows immediately from the form of d2 given in Theorem 11.1.

Corollary 11.4. Let E be a Γ -module with action given by ρ : Γ → GL(E). Let E denote the
associated sheaf. Then

rank
(
H 3(Γ \D;E)

)
� rank(E) − rank

(
Eρ(εw)

)
.

Corollary 11.5. Let E be a finite-dimensional complex representation of SU(2,1). Let Eij denote
the iω1 + jω2 weight space of E, where ω1 and ω2 are the fundamental (complex) weights
of sl3C, the complexification of su(2,1). Then

dimH 3(Γ \D;E) �
∑
i>j

i≡j (4)

dimEij +
∑

dim
(
Eii ∩ ker

(
I + ρ(w)

))
.
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Table 4
Cohomology for Symn(V )

n 1 2 3 4 5 6 7 8 9 10

h0 0 0 0 0 0 0 0 0 0 0
h1 0 0 0 0 0 0 0 0 0 0
h2 1 0 0 1 3 1 2 2 5 1
h3 0 0 0 1 0 0 0 1 0 0

n 11 12 13 14 15 16 17 18 19 20

h0 0 0 0 0 0 0 0 0 0 0
h1 0 1 0 0 3 4 2 5 8 11
h2 2 3 7 4 5 4 9 5 7 5
h3 0 1 0 0 0 1 0 0 0 1

Proof. The dimension of H 3(Γ \D;E) = 2 dim(E) − rank(d2). From the form of d2 given in
Theorem 11.1, it follows that

dimH 3(Γ \D;E) � dim(E) − rank(Φ), (24)

where Φ :Eρ(εw) ⊕ E → E is the linear map given by Φ(v) = v1 + v2 − ρ(ε)v2. Let E+ denote
the (+1)-eigenspace of ρ(ε) and E− denote the (−1)-eigenspace of ρ(w). Then (24) implies
that

dimH 3(Γ \D;E) � dim(E+ ∩ E−). (25)

The result follows from translating the eigenvalue condition into a condition on weights of E. �
First consider the trivial representation E = Z. Then H ∗(Γ \D;E) is isomorphic to the sin-

gular cohomology of Γ \D. Proposition 11.1, allows us to explicitly compute the cohomology.

Theorem 11.6. Let Z denote the constant sheaf of integers on Γ \D. Then

Hk(Γ \D;Z) =
{

Z, k = 0,2,

0, k = 1 or k � 3.

Theorem 11.7. Let E = Z[i]3 with the natural action of Γ and let E denote the associated sheaf
on Γ \D. Then

Hk(Γ \D;E) =
{0, k = 0,1,

Z2, k = 2,

Z/2Z, k = 3.

Theorem 11.8. The dimensions hi of the cohomology groups for Γ with coefficients in Symn(V ),
0 � n � 20, where V ≡ C3 is the standard representation is as tabulated in Table 4.
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