THE SPACE OF PERSISTENCE DIAGRAMS FAILS TO HAVE
YU’S PROPERTY A

GREG BELL, AUSTIN LAWSON, NEIL PRITCHARD, AND DAN YASAKI

ABsTrRACT. We define a simple obstruction to Yu’s property A that we call
k-prisms. This structure allows for a straightforward proof that the space of
persistence diagrams fails to have property A in a Wasserstein metric.

1. INTRODUCTION

A persistence diagram is one way to visualize the persistent homology of a
dataset [5]. Persistent homology allows the power of algebraic topology to be lever-
aged against problems in diverse disciplines [4, 8].

The space of persistence diagrams can be equipped with several natural metrics,
which provide the key feature of persistence diagrams, known as stability: datasets
that are close give rise to persistence diagrams that are close. In this brief note,
we investigate the coarse geometric properties of persistence diagrams in a family
of these natural metrics.

Coarse geometry arose out of the study of metric properties of finitely generated
groups. Since Gromov’s seminal paper [6], coarse geometry has established itself
as an interesting subject in its own right. Yu defined a simple condition of discrete
metric spaces called property A that implies the existence of a uniform embedding
in Hilbert space [13]. Nowak provided a simple example of a space that fails to
have property A yet still admits a uniform embedding into Hilbert space [10].

In Theorem 2.6 we provide a simple obstruction to property A that we call k-
prisms. This structure allows for an isometric embedding of the simplest version
of Nowak’s example into the metric space in question. We show that the space of
persistence diagrams has k-prisms, hence it cannot have property A. The relevance
of this result is that discrete spaces with property A admit a uniform embedding into
Hilbert space [13]. Yet, in order to apply kernel methods to persistence diagrams,
the standard approach is to embed them into Hilbert space in a controlled way.
The first results in this direction appeared in [2]. Similar results [1, 9, 12] appeared
around the same time as the first version of this article was posted. The notion of
k-prisms was first applied to Cayley graphs of the integers with infinite generating
sets [11].

While we do not attempt to answer the broader question of whether persistence
diagrams admit a uniform embedding into Hilbert space, after the initial version
of this paper appeared, Bubenik and Wagner [1] resolved several of our questions
from Section 3. We have left these questions intact in this revised version since that
paper references them. The authors wish to thank Boris Goldfarb for bringing our
attention to possible connections between this question and applications to machine
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learning. The authors also wish to thank the anonymous referee for many helpful
remarks and for making us aware of [2].

2. AN OBSTRUCTION TO PROPERTY A

We include the definition of property A (for a discrete metric space) for com-
pleteness, but this definition is not used in a substantial way in this paper.

Definition 2.1 ([13]). A (discrete) metric space X is said to have property A if for
all R > 0 and all € > 0, there exists a family {A;}, .y of finite, non-empty subsets
of X x N such that

#(AzAAy)

(1) for all z,y € X with d(z,y) < R, we have Sanay S6 and
(2) there exists a B > 0 such that for every z € X, if (y,n) € A,, then
d(z,y) < B.

Here #A is the cardinality of A and A, AA, denotes the symmetric difference.

Example 2.2 ([10, Theorem 5.1]). Let {0,k}" be the set of vertices of an n-
dimensional cube at scale k endowed with the ¢;-metric. Endow the disjoint union
[12°,{0,k}"™ with a metric such that the distance from {0,k}" to {0,k}"*" is at
least n+ 1. We denote this union of k-scale cubes by Cy; it is a locally finite metric
space that fails to have property A.

In order to utilize Example 2.2, we define the notion of k-prisms. We show that
a metric space with k-prisms contains an isometric copy of Cj.

Definition 2.3. Let k be a positive integer. We say that a metric space (X, d) has
k-prisms if for any finite set F' C X there exists a function T': F — X such that
(1) T(F)NF = 0
(2) d(T(x),T(y)) = d(z,y) for all z,y € F'; and
(3) d(z,T(y)) = k+d(z,y) for all x,y € F.

Remark 2.4. Motivated by working with Cayley graphs [11], we take the k in this
definition to be an integer, but there is no harm in allowing & > 0 to be any real
number. We also observe that a metric space with k-prisms will have nk-prisms for
alln € N.

Lemma 2.5. Let X be a metric space with k-prisms for some k > 1. Then,

(1) the space X contains an isometric copy of {k,2k,3k,...} and
(2) for any x € X and any n € N, the space X contains an isometric copy of
{0,k}" with x as a vertex.

Proof. We prove (1). The proof of (2) is similar.

Fix a point 29 € X, and let F = {zp}. Since X has k-prisms, there is a point
x1 € X such that d(zg,z1) = k. For n > 1, define x,, recursively as follows.
Let F be the set F' = {xg,21,...,2,-1}. Since X has k-prisms, use T' from the
definition to define x,, = T'(z,,—1). We observe that d(z,_1,z,) = k, and in general
d(z;,z;) = |i — jlk. The sequence {zg,x1,...} is the required isometric copy. O

Theorem 2.6. Let X be a metric space. If X has k-prisms for some k > 1, then
X fails to have property A.
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FIGURE 1. Determining the distance between diagrams.

Proof. Let {xg, 1, ...} be an isometric copy of {k, 2k, 3k, ...} in X given by Lemma 2.5(1).
Use Lemma 2.5(2) to construct copies of {0, k}"™ with vertices along this sequence.
Since {xg,x1,...} is an isometric copy of {k,2k,...}, we can arrange these cubes
in such a way that the distance between {0,k}" and {0,k}""" is at least n + 1.
Thus, X contains an isometrically embedded copy of the space Cy, described in
Example 2.2. ([

3. THE SPACE OF PERSISTENCE DIAGRAMS FAILS TO HAVE PROPERTY A

The notion of a persistence diagram appears in many places. We follow the
development given by Chazal, de Silva, Glisse, and Oudot [3] except that we allow
more general spaces instead of focusing on the extended half-plane.

For a set S, denote by Ag the diagonal,

As ={(s,5) € S*|sc S}.

Definition 3.1. Let S be a set. A diagram on S is a function D: S? — Z¢ such
that D(p) = 0 for all but finitely many p € S?, and D(p) = 0 for all p € Ag. For
p € S2, the value D(p) is the multiplicity of p. The associated labeled diagram on
S is the set D C 52 x Zsq given by

D ={(z,i)|i=0,1,...,D(x)}.
If p is a metric on S?, we write o(Z,§) to mean o(z,y), where & = (x,i) and
7 = (y,7) are elements of a labeled diagram on S. We write ||Z|| to mean
2] = (2, )| = inf{e(z, 2) | z € As}.
Definition 3.2. Let S be a set. A partial matching of labeled diagrams Dx and
Dy on S is a subset m C Dx x Dy such that

(1) for every @ € Dx, the cardinality #{(Z,7) € m | § € Dy} is at most 1; and
(2) for every § € Dy, the cardinality #{(Z,§) € m | & € Dx} is at most 1.

Definition 3.3. Let m be any partial matching of labeled diagrams Dx and Dy
on a set S. Let ¢ be a metric on S?. Let m; (1) denote the projection to the i-th
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coordinate of the partial matching m (¢ € {1,2}). The (m, o)-distance, denoted
Wm,Q(Dx, Dy), is

WaoDe.Dy)= S 3+ S i+ S o).
#€Dx \m1 (1) §€Dy \ma () (&,9)em
The Wasserstein p-distance, denoted W,(Dx, Dy ), is the minimum of Wy, ,(Dx, Dy)
over the (finite) collection of all partial matchings .

Theorem 3.4. Let Dg be the set of all diagrams on a set S. If o is a metric on
S2%, then W, is a metric on Dg.

Proof. It is clear that W, is symmetric. The fact that W, is positive definite follows
from the requirement that D(p) = 0 for all points p € Ag. The triangle inequality
follows from Proposition 3.6. O

Definition 3.5. Let BX, By, and EZ be labeled diagrams. Let mx 7z be a partial
matching of f)x and lNDZ, and let mzy be a partial matching of f)z and l~)y.
The composition of mx,z and mzy is the subset mxy C l~)X X By consisting
of elements (7, 7) such that there exists 2 € Dy such that (%,3) € mx,z and
(2,9) € mz,y.

It is clear that the composition of partial matchings is a partial matching.

Proposition 3.6. Let S be a set and let (S%,0) be a metric space. Let Dx, Dy,
and Dy be diagrams on S. Then

Wo(Dx,Dy) < Wy(Dx,Dz) + W,y(Dz, Dy).

Proof. By definition, there exist a partial matching mx z of labeled diagrams D X
and Dy associated to diagrams Dy and Dy that realizes W,(Dx, Dz) and a partial

matching 7z y of labeled diagrams D 7 and lN)y associated to diagrams Dz and Dy
that realizes W,(Dz, Dy). Let m be the composition of mx z and mzy. Then,

WaoDx, D)= S il S il Y e@ i)
zeDx\m () GEDy \ w2 () (z,9)€em

We examine more closely the terms in each sum. Suppose (Z,¢) € m. Then there
exists Z € Dy such that (Z, 2) € mx,z and (Z,7) € mzy. By the triangle inequality
for g, we have

o(z,9) < o(%,2) + 0(2, ).

Thus
(1) Soe@n < > e@H+ Y. ez).
(z,9)em (z,2)emx, z (2,9)€mz,y
EGWl(ﬁlzyy) EEWQ(mX,Z)

If # € Dx \ m1(7), then # is unmatched in /. Then either

(1) # is unmatched in M x 7z so that & € Dx \ m1(x z); or
(2)  is matched in 7 x z so there exists Z € Dy with (&, 2) € mx z, but Z is
unmatched in Mz y so that 2 € m1(zy).
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For every  and Z in a labeled diagram on X, the triangle inequality implies

(2) 2] < o(%, 2) + [1Z]-

Thus

(3) > @l < > 1+ Dl
#eDx\mi () FeDx\m1(mx,z) (z,2)€mx,z

2€7‘l’1(’ﬁlz1y)

< Y @+ Y. e@aH+ Y Al

ieﬁx\Tn(ﬁwaz) (jsé)e":nX,Z (i,g)eﬁ”bx,z
Z¢mi(mzy) Z¢gmi(mz.y)

Similarly, if § € Dy \ m2(m), then g is unmatched in m. Then either
(1) g is unmatched in My y so that § € Dy \ me(1z,y); or
(2) y is matched in myy so there exists Z € Dy with (2,9) € mzy, but Z is
unmatched in mx z so that Z € Dy \ m2(Mx z).
Thus,

(4) > lal< Yoo lml+ Y emaH+ D Al

€Dy \ma (1) §eDy \m1(Fz,y) (z.9)€mz,y (2,9)€mz,y
Z¢ma(x,z) Z¢ma(x,z)

Combining the inequalities (1), (3), and (4), we have
Wi o(Dx, Dy) <

> o@2)+ DR I S N -1

(#,2)emx,z 5065)(\#1(771){,2) (#,2)emx,z
Z¢gmi(Mmz,y)

+ Y eGED+ > lal+ Yz

(2,9)€mz,y ﬂEEy\ﬂ'l (mz,y) SE’Q)EZ;LZ,Y
Zgﬂg(mxyz)

Thus,
W’r?L,g(DXy DY) < W’ﬁlxyz,g(DXa DZ) + W’rhz,y,g(DZv DY):
and the result follows. O

Definition 3.7. Let £ > 1 be an integer. A set S is k-diagrammable if there exists a
metric o on S? in which the k-shell around the diagonal, {x € S? | o(x, As) = k}, is
unbounded. Such a metric is called a diagram metric. We call a set S diagrammable
if it is k-diagrammable for some k.

Lemma 3.8. Let Dg be the set of all diagrams on a k-diagrammable set S with
diagram metric 0. Then the space (Dg, W,) has k-prisms.

Proof. Consider a finite set of diagrams F C Dg. Fix a non-diagonal point p € 52
that is not in any of the diagrams,

peSQ\<U{x|D<x>¢0}UAs>.

DeF
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Since S is k-diagrammable, we may assume p to have been chosen such that
o(p, As) =k, and

. ~ /
(5) min{o(p,z) | Z € D,D € F} > D%z;é(f{k + W,(D,D")}.

Let 1,: S? = Z>0 be the indicator function

1 ifx=p,
]lp(x):{

0 otherwise.

Let T': F — Dg be given by D +— D + 1,,. We show that 7" satisfies the conditions
of Definition 2.3. It is clear that F N T(F) = 0.

Next, we show that T is an isometry onto its image. Fix D and D’ in F. Suppose
m is a partial matching for which W, (D, D") = W, ,(D, D’). The partial matching
m U {((p,1), (p,1))} between T'(D) and T(D’) clearly yields W,(T(D),T(D’)) =
W,(D,D’).

We claim that for every pair of diagrams D, D’ in F, W,(D,T(D')) = k +
W,(D, D).

Take a partial matching m such that Wy, ,(D, D) = W,(D, D'). Then m defines
a partial matching between D and T'(D’). Thus,

W,o(D,T(D")) < Wi o(D,T(D')) = Win o(D, D) + |[pl| = Wo(D, D') + k.
If m’ is any partial matching between D and T'(D’) such that (Z,p) € m/, then
Wﬁl’,g(Dv T(D/)) 2 Q(i'7ﬁ) 2 WQ(D7 D/) +k,

where the second inequality follows from (5). Thus, W,(D,T(D")) = W,(D, D")+k,
as required. O

Finally, we consider persistence diagrams on the set S = R. Let ||Z — || oo denote
the sup metric on R2. We recall that for persistence diagrams D and D’ and a real
number g > 0, we can calculate the Wasserstein g-metric as

W4D,D") =
1/a
: = =N PR T
i d (Y E-alie Y mewml Y -l
(&,9)em (w1,22)€D\m1 () (y1,y2)€D" \72(10)
Hence, we see by taking o(z,y) = ||z — y||%,, we can realize W9 as (W,)'/?. Notice

this function is a metric on diagrams. Moreover, for any k > 0 we see
o((,x + k"), Ag) = o((z, + k'/9), (,2)) = (k"/1)7 = k.

The collection of these points {(z,z + k/%)} is unbounded. Hence, for each ¢ > 0
the collection of persistence diagrams with diagram metric o as prescribed above is
k-diagrammable for any k& > 0. Thus we obtain the following.

Theorem 3.9. The space of persistence diagrams over R in the Wasserstein g-
metric (0 < g < co) does not have property A. a

There is another common metric on the space of persistence diagrams called the
bottleneck distance [3]. We remark that Theorem 3.9 does not cover this case and
so the following questions are quite natural [1].
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Question 3.10. Does the space of persistence diagrams over R>q with the bottleneck
distance have property A?

Indeed, we are not even able to answer the simpler question (see [7]).

Question 3.11. Does the space of persistence diagrams over R, with the bottleneck
distance have infinite asymptotic dimension?

Finally, because the space C}, does embed uniformly in Hilbert space, the exis-
tence of k-prisms does not seem to prevent a uniform embedding in Hilbert space.
Thus, the following question remains open.

Question 3.12. Does the space of persistence diagrams (in a Wasserstein or Bottle-
neck metric) embed uniformly in Hilbert space?
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