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Let ζ be a primitive fifth root of unity and let F be the cyclotomic
field F = Q(ζ ). Let O ⊂ F be the ring of integers. We compute the
Voronoï polyhedron of binary Hermitian forms over F and classify
GL2(O)-conjugacy classes of perfect forms. The combinatorial data
of this polyhedron can be used to compute the cohomology of the
arithmetic group GL2(O) and Hecke eigenforms.
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1. Introduction

Let F/Q be a number field, and let O denote its ring of integers. There exists an algorithm to
compute all of the GLn(O)-equivalence classes of perfect n-ary quadratic forms over F once an initial
perfect form is found [14,16]. This is investigated in the totally real number field case in [13,17,19].
We remark that a different notion of perfection has been investigated in [3,6,20]. In this paper, we
consider the cyclotomic field Q(ζ5).

Although Hermitian forms over number fields are of interest in their own right, our main motiva-
tion for this computation comes from an investigation of a Taniyama–Shimura type correspondence
over F , relating Hecke eigenforms over F with integer eigenvalues and elliptic curves over F . Due to
the work of Wiles et al. such a correspondence is known to exist for F = Q [9]. It is an open problem
for [F : Q] > 1. This has been investigated for F an imaginary quadratic field in [5,7,8,18,21,22] and
for F a real quadratic field in [10,11]. In an ongoing project joint with P. Gunnells, F. Hajir, and D. Ra-
makrishnan, we are investigating the complex quartic field F = Q(ζ5). To this end, we first compute
the Voronoï polyhedron associated to binary Hermitian forms over Q(ζ5). The Voronoï polyhedron
provides a combinatorial structure in which to perform the Hecke eigenvalue computations.
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The results of the computations in this paper could also be used to compute the elliptic points
of GL2(O) using techniques of [23]. Since the forms and their minimal vectors are given explic-
itly here, one could also extract invariants such as an additive analogue of the Hermite constant
for Q(ζ5) [3,20].

The paper is organized as follows. In Section 2, we set notation. In Sections 3–5 we recall the
Voronoï polyhedron and its relation to Hermitian forms over Q(ζ5). The Voronoï polyhedron for Q(ζ5)

is computed in Section 6.

2. Notation

First we set notation and recall and collect a few basic facts from algebraic number theory that
will be used later.

2.1. Field

Let ζ = ζ5 = e2π i/5 be a primitive fifth root of unity, and let F be the cyclotomic field F = Q(ζ ).
Let O ⊂ F denote the ring of integers, and let ·̄ denote complex conjugation. Let k ⊂ F denote the real
subfield k = Q(

√
5 ), and let Ok denote its ring of integers. Then u5 = (1 + √

5 )/2 is a fundamental
unit for k. Let O+

k denote the totally positive elements of O K .
Let ι = (ι1, ι2) denote the (non-complex conjugate) embeddings

ι : F → C × C

given by sending
√

5 to (
√

5,−√
5 ), or equivalently given by sending ζ to (ζ, ζ 3). Denote the non-

trivial embedding by ·′ . Specifically, for α ∈ F , let (α,α′) denote ι(α).

2.2. Binary Hermitian forms over F

Definition 2.1. A binary Hermitian form over F is a map φ : F 2 → k of the form

φ(x, y) = axx̄ + bxȳ + b̄x̄y + cy ȳ,

where a, c ∈ k and b ∈ F such that φ and φ′ , viewed as forms on F ⊗Q R are positive definite.

Note that φ̂ = φ + φ′ takes values in Q. Indeed, φ̂ is precisely the composition Trk/Q ◦φ, and by
choosing a Q-basis for F , φ̂ can be viewed as a quadratic form over Q. In particular, it follows that
φ̂(O2) is discrete in Q.

Using φ̂, we can define minimal vectors and perfection. Specifically, the minimum of φ is

m(φ) = inf
v∈O2\{0}

φ̂(v).

A vector v ∈ O2 is minimal vector for φ if φ(v) = m(φ). The set of minimal vectors for φ is de-
noted M(φ). A Hermitian form over F is perfect if it is uniquely determined by M(φ) and m(φ).

3. Self-adjoint homogeneous cone

3.1. Symmetric space

Let G be the Q-group ResF/Q(GL2) and let G = G(R) the corresponding group of real points.
Let K ⊂ G be a maximal compact subgroup, and let AG be the identity component of the maxi-
mal Q-split torus in the center of G . Then the symmetric space associated to G is a 7-dimensional
space X = G/K AG .
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3.2. Cone of Hermitian forms over C

Every Hermitian form over C can be represented by a Hermitian matrix. Let C be the cone of
positive definite binary complex Hermitian forms, viewed as a subset of V , the R-vector space of
2 × 2 complex Hermitian matrices. Let ·∗ denote complex conjugate transpose. Then the usual action
of GL2(C) on C is given by

(g · φ)(v) = φ(g∗v), where g ∈ GL2(C) and φ ∈ C . (1)

3.3. Cone of Hermitian forms over F

Let V be the Weil restriction ResF/Q H2 of the variety H2 of 2 × 2 complex Hermitian matrices
defined over F . Then V := V(R) 
 V × V and

V(Q) 
 H2(F ) =
{[

a b
b̄ c

]
: a, c ∈ k and b ∈ F

}
.

Let C be the cone C = C × C ⊂ V . Since C is the space of positive-definite Hermitian forms on C2,
we can use ι to view C as the space of forms on F 2. Specifically, for φ = (φ1, φ2) ∈ C and v ∈ F 2, we
define

φ(v) = φ1
(
ι1(v)

) + φ2
(
ι2(v)

)
.

Definition 3.1. Let φ be a Hermitian form over F . A 2 × 2 matrix A with coefficients in F is associated
to φ if φ = ι(A).

Since the map ι is injective, this matrix is unique and will be denoted Aφ . For v ∈ F 2, then φ(v)

is just the trace. Specifically, if φ ∈ V(Q) with associated matrix Aφ , then

φ(v) = Trk/Q(v∗ Aφ v).

3.4. C as a symmetric space

The embedding ι gives an isomorphism

G → GL2(C) × GL2(C). (2)

Under this identification, ι(AG) = {(r I, r I) | r > 0}, where I is the 2 × 2 identity matrix.
Combining (1) and (2), we get an action of G on C . Let φ0 denote the binary Hermitian form

represented by I . Then the stabilizer in Γ of ι(φ0) is a maximal compact subgroup K . The group AG

acts on C by positive real homotheties, and we have

X = C/R>0 
 XC × XC × R,

where XC is the symmetric space for SL2(C).

3.5. C as a self-adjoint homogeneous cone

Let C̄ denote the closure of C in V . Each vector w ∈ C2 gives a rank 1 Hermitian form w w∗ (here
w is viewed as a column vector). Combined with ι, we get a map q : F 2 → C̄ given by

q(v) = (v v∗, v ′v ′ ∗).
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The cone C is a self-adjoint homogeneous cone [1]. In particular, C is endowed with a scalar product,
and the interpretation of C as a space of forms over F is reflected in the scalar product. Specifically,
suppose φ ∈ V(Q) and v ∈ O2. Then 〈φ,q(v)〉 = φ(v).

4. Voronoï polyhedron

In this section we recall properties of the Voronoï polyhedron. This section follows [15], and more
details can be found there.

4.1. Rational structure of V

Fix Λ ⊂ V to be the lattice generated by q(v) for v ∈ O2, and let Λ′ = Λ \ {0}. We will refer to
points of C ∩ V(Q) as Hermitian forms over F .

Let R(v) be the ray R>0 · q(v) ⊂ C̄ . The set of rational boundary components C1 of C is the set of
rays of the form R(v), v ∈ F 2 [1].

Definition 4.1. The Voronoï polyhedron Π is the closed convex hull in C̄ of the points C1 ∩ Λ′ .

4.2. Voronoï decomposition

By construction GL2(O) acts on Π . By taking the cones on the faces of Π , one obtains a
Γ -admissible decomposition of C for Γ = GL2(O) [1]. Since the action of GL2(O) commutes with
the homotheties, this decomposition descends to a GL2(O)-equivariant tessellation of X by ideal
7-dimensional polytopes.

5. Primitivity and minimal vectors

There is another notion of minimal vectors that is explored in [1,14]. In this section, we show that
our notion of minimality agrees with theirs in this case by first defining primitive points for the case
of interest and examining both notions of minimal vectors. This should follow from general results
of [16].

The statements in this section are valid only because the class number of k is 1. The results should
extend more generally to a CM field F with real maximal subfield k of class number 1.

5.1. Primitive points

There are several notions of primitivity that we will need.

Definition 5.1. A vector v = [ α

β

] ∈ O2 is primitive if the ideal (α,β) = O.

Proposition 5.2. Let u, v ∈ O2 be primitive vectors. Then q(u) = q(v) if and only if u = τ v for some torsion
unit τ ∈ O.

Proof. One direction is immediate. Specifically, if τ ∈ O is a torsion unit, then τ τ̄ = τ ′τ̄ ′ = 1, and
thus q(τ v) = q(v) follows from the definition of Λ.

For the converse, if v = [ α

β

]
then u = [ ξα

ηβ

]
for some ξ,η ∈ F . Since q(u) = q(v),

ξ ξ̄ = ηη̄ = 1 and ξ η̄ = ξ̄η = 1.

It follows that u = ξ v for some ξ ∈ F that satisfies ξ ξ̄ = 1. Write ξ as ξ = λ/μ for some λ,μ ∈ O
with (λ,μ) = O. Since ξα ∈ O, it follows that μ | α. Similarly, since ξβ ∈ O, it follows that μ | β .
Since v is primitive, μ is a unit, and hence ξ ∈ O. Then ξ must be a torsion unit because ξ ξ̄ = 1. �
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Definition 5.3. A form φ ∈ Λ ∩ C̄ is primitive form if there exists a matrix A = [ a c
c̄ b

]
with gcd(a,b) = 1

and ι(A) = φ.

Note that if φ = ι(A) is primitive, then c ∈ O and a,b ∈ O+
k .

Lemma 5.4. Let a,b ∈ O×
k be totally positive with gcd(a,b) = 1. Then ab ∈ N F/k(F ) if and only if a ∈ N F/k(F )

and b ∈ N F/k(F ).

Proof. If a and b are norms, then their product is clearly a norm. For the other direction, suppose
m = ab = N F/k(ξ) for some ξ ∈ F . Since gcd(a,b) = 1, it suffices to consider the case where m is
square-free in k. Factor (ξ) as a product of prime ideals (ξ) = ∏

π in F . Since m is square-free, we
must have that each π lies over 5 or a rational prime p such that p ≡ 1 mod 5. It follows that (ξ)

has a factorization in k

(ξ) = ρ℘1℘2 · · ·℘n,

where the ℘i are prime ideals in k and ρ is either trivial or generated by
√

5. Each of these factors
has a generator which is a norm, and so it follows that (a) and (b) have generators which are norms.
Specifically, e1a and e2b are norms for some choice of units e1, e2 ∈ O∗

k . The fundamental unit u5 of k
is positive in one embedding into R and negative in the other. In particular since a, b, e1a, and e2b
are totally positive, e1 and e2 must be even powers of u5. It follows that a and b are themselves
norms. �
Proposition 5.5. Let φ ∈ Λ ∩ C̄ be a primitive rank 1 form. Then there exists a primitive vector v ∈ O2 such
that q(v) = φ .

Proof. Since φ is primitive, there exists a matrix A = [ a c
c̄ b

]
with gcd(a,b) = 1 and ι(A) = φ. Since φ

is rank 1, cc̄ = N F/k(c) = ab. By Lemma 5.4, there exist α,β ∈ F with N F/k(α) = a and N F/k(β) = b.
Since gcd(a,b) = 1, it follows that v = (α,β)t is a primitive vector with q(v) = φ as desired. �
Remark. Since Λ is a lattice, there is another notion of primitivity for φ ∈ Λ. Specifically, φ is primitive
in Λ if φ can be extended to a basis of the lattice. Note that Proposition 5.5 shows that primitive
rank 1 forms correspond to primitive vectors in O2 and primitive vectors in O2 give rise to primitive
rank 1 forms. However, while primitive rank 1 forms are primitive in Λ, there are many vectors
primitive in Λ that are not primitive as forms.

Even when we restrict ourselves to considering vectors that are primitive in Λ and rank 1, if
we relax the condition of gcd(a,b) = 1, we can no longer guarantee that this vector comes from
a primitive vector in O2. For example, 4 + u5 is totally positive, but there does not exist α ∈ F such
that αᾱ = 4 + u5. Thus the point ι(

[ 4+u5 0
0 0

]
) is not in q(O2). However, we do have the following

result, which basically says that although there are rank 1 rational forms which are not in the image
of O2, they are contained in Ok · q(O2).

Proposition 5.6. Let φ ∈ Λ′ ∩ C1 be a rank 1 form. Then there exists α ∈ O+
k and a primitive vector v ∈ O2

such that α · q(v) = φ .

Proof. Write φ as φ = ι(A), where A = [ a c
c̄ b

]
for some a,b ∈ O+

k and c ∈ O. If φ is primitive, the result

follows from Proposition 5.5 with α = 1. If φ is not primitive, choose α ∈ O+
k such that α = gcd(a,b).

Since φ is rank 1, it follows that cc̄ = ab. In particular α2 | cc̄. Since α ∈ Ok , we have that α | c
and α | c̄. Thus we have φ = ι(αA0), where A0 = α−1 A. Since A0 corresponds to a primitive rank 1
form, Proposition 5.5 implies that there exists a primitive vector v ∈ O2 such that q(v) = ι(A0). The
result follows. �
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Proposition 5.7. Let b ∈ O+
k . Then there exists an α ∈ O \ {0} and t ∈ O+

k ∪ {0} such that

b = αᾱ + t.

Proof. The square of the fundamental unit η = u2
5 ∈ Ok is totally positive. Since η = u5ū5, multi-

plication by η acts on O+
k and preserves N F/k(O). In particular it suffices to show the result for

a fundamental domain for the action of η on O+
k . Once can take the positive cone spanned by 1

and η2. It is clear that every point in the cone has the form η2 + t for some t ∈ O+
k except for 1

and 2. The condition is trivially satisfied for 1 and 2. �
5.2. Minimal vectors

There is another notion of minimal vectors and perfect forms described in [14]. Specifically one
can define

m̂(φ) = inf
ψ∈Λ′∩C1

〈φ,ψ〉

and

M̂(φ) = {
ψ ∈ Λ′ ∩ C1

∣∣ 〈φ,ψ〉 = m̂(φ)
}
.

Notice that if ψ ∈ M̂(φ), then ψ is primitive in Λ. It is clear that m̂(φ) � m(φ). If m̂(φ) = m(φ), then

{
q(v)

∣∣ v ∈ M(φ)
} ⊆ M̂(φ).

Proposition 5.8. Let φ ∈ C . Then

m̂(φ) = min
b∈O+

k

m(b · φ).

Proof. For ψ ∈ Λ′ ∩ C1, there exists b ∈ O+
k and v ∈ O2 such that ψ = b · q(v) by Proposition 5.6. It

follows that

〈φ,ψ〉 = 〈
φ,b · q(v)

〉 = Trk/Q(Aφbv v∗) = Trk/Q(v∗b Aφ v).

Then

m̂(φ) = inf
ψ∈Λ′∩C1

〈φ,ψ〉 = inf
v∈O2

b∈O+
k

Trk/Q(v∗b Aφ v) = inf
b∈O+

k

m(b · φ). �

Proposition 5.9. Let φ ∈ C . Then m(φ) = m̂(φ).

Proof. By Proposition 5.8,

m̂(φ) = inf
b∈O+

k

m(b · φ).

In particular m̂(φ) � m(φ), and to prove the result it suffices to show that

m(φ) � m(b · φ) for every b ∈ O+. (3)
k
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By Proposition 5.7, there exists an α ∈ O and t ∈ O+
k such that b = αᾱ + t . We compute

Trk/Q(v∗b Aφ v) = Trk/Q

(
v∗(αᾱ + t)Aφ v

)
= Trk/Q

(
(αv)∗ Aφ(αv)

) + Trk/Q(tv∗ Aφ v).

We have that Trk/Q((αv)∗ Aφ(αv)) � m(φ). Furthermore Trk/Q(tv∗ Aφ v) > 0 since t and v∗ Aφ v are
both totally positive. The result follows. �
6. Voronoï cones for F

In this section, we describe the GL2(O)-conjugacy classes of Voronoï cones. We implement the
method described in [14].

6.1. Perfect forms

We find one perfect form φ, with associated matrix

Aφ = 1

5

[
ζ 3 + ζ 2 + 3 ζ 3 − ζ 2 + ζ − 1

−2ζ 3 − ζ − 2 ζ 3 + ζ 2 + 3

]
.

This is done using Magma [4] as follows.

(i) Fix a list L ⊂ O2 of vectors large enough so that the conditions
{
φ(v) = 1

∣∣ v ∈ L
}

has a unique solution.
(ii) Ensure that φ is positive definite.

(iii) Check that L ⊆ M(φ).

Step (i) is accomplished by including more vectors into the list L until the linear system has a unique
solution. Steps (ii) and (iii) are accomplished by picking a Z-basis for O2 and expressing φ as
a quadratic form on Z8.

The perfect form φ has 240 minimal vectors. It is clear that if v ∈ M(φ) then τ v ∈ M(φ) for
any torsion unit τ ∈ O. There are 24 minimal vectors (modulo torsion units). Let ω denote the unit
ω = ζ + ζ 2. Then the form φ has (modulo torsion units) minimal vectors

[−ζ + 1
ζ 3 + 1

]
,

[−ζ 3 + 1
1

]
,

[
1

−ω

]
,

[
1

−ζ 2

]
,

[
1
0

]
,

[
1
ζ 3

]
,

[
1

−ζ 2 + 1

]
,

[
1
1

]
,

[
1

ζ 3 + 1

]
,

[
1

ζ + 1

]
,

[
1

ζ 3 + ζ + 1

]
,

[
1

−ζ 4

]
,

[
ω−1

ζ 4

]
,

[
ω−1

ζ 4 − 1

]
,

[
ω−1

−1

]
,

[
ω−1

−ζ 3 − 1

]
,

[
ω−1

−ζ 3 − ζ 2 − 1

]
,

[
ω

ω + 1

]
,

[
ω

−ζ 3

]
,

[
ω
0

]
,

[
ω
ζ 2

]
,

[
ω
ω

]
,

[
0
1

]
,

[
0
ω

]
. (4)

By Proposition 5.2, these give rise to 24 distinct points in C̄ . These 24 points are vertices of a top-
dimensional Voronoï cone. We show in Section 6.2 that this is the only top-dimensional Voronoï cone
modulo GL2(O).

Proposition 6.1. There is 1 GL2(O)-conjugacy class of 8-dimensional cones. The corresponding perfect form φ

has (modulo torsion units) 24 minimal vectors.
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6.2. Top cones

The perfect forms correspond to 8-dimensional Voronoï cones. Specifically, each top cone corre-
sponds to a facet F of the Voronoï polyhedron. There is a unique point φF ∈ C ∩ V(Q) [14] such
that

(i) F = {x ∈ Π | 〈x, φF 〉 = 1}, and
(ii) for all x ∈ Π \ F , we have 〈x, φF 〉 > 1.

Let Z F be the minimal vertices of φF , the finite set of points x ∈ Λ′ ∩ C1 such that 〈x, φF 〉 = 1. Then F
is the convex hull of Z F . The form φF is a perfect form, and

{
q(v): v ∈ M(φF )

} = Z F .

For γ ∈ GL2(O), let Θγ = (γ ∗)−1. The action of GL2(O) on perfect forms, minimal vectors, and
minimal vertices are related by the following.

Proposition 6.2. Let F be a top cone and let φF be the corresponding perfect form with minimal vectors M(φF )

and minimal vertices Z F . For γ ∈ GL2(O),

(i) Θγ · φ = φγ ·F , and
(ii) M(Θγ · φ) = γ · M(φ).

In particular, two perfect forms are GL2(O)-conjugate if and only if their minimal vectors or minimal vertices
are GL2(O)-conjugate.

Thus to classify the perfect forms modulo GL2(O), one can instead classify the top-dimensional
Voronoï cones. The top-dimensional cone corresponding to φ, denoted Cφ is has faces given by the
convex hull of {q(v) | v ∈ M(φ)}. The program Polymake [12] is used to compute the convex hull.
There are 118 codimension 1 faces, corresponding to 118 neighboring top-dimensional Voronoï cones
and 118 perfect forms. There are 14 faces with 12 vertices, 80 faces with 9 vertices, and 24 faces
with 7 vertices. Using Magma, the stabilizer Sφ of φ is computed. The group Sφ has order 600 and
Magma type 〈600,54〉.

In order to cut down the number of computations that need to be made, we first classify the faces
of Cφ modulo Sφ , the stabilizer of M(φ). Indeed, let ψ be a perfect form such that Cψ meets Cφ in
a codimension 1 face F . If γ ∈ Sφ , then γ · ψ is the perfect form corresponding to top cone γ · Cψ ,
which meets Cφ in a codimension 1 face γ · F .

It is clear that Sφ conjugate faces must have the same number of vertices. One computes that
there are 3 orbits of faces with 12 vertices. One orbit Sφ · F1 consists of 12 faces, and the other
2 orbits consist of 1 element each, denoted F2 and F3. One shows that F2 is GL2(O)-conjugate to F3
by computing a matrix that sends F2 to F3. There are 4 orbits of faces with 9 vertices. The orbits
Sφ · F4, Sφ · F5, Sφ · F6, and Sφ · F7 consist of 20 faces each. There are 2 orbits of faces with 7 vertices.
The orbits Sφ · F8 and Sφ · F9 consist of 12 faces each.

To show that there is only 1 GL2(O)-class of perfect form, it suffices to show that the perfect
forms φi associated to the top cones that neighbor Cφ at face Fi are each GL2(O)-conjugate to φ. To
this end, we use the following lemma.

Lemma 6.3. Let F , F ′ be two faces of Cφ with associated perfect forms ψ , ψ ′ . If γ ∈ GL2(O)\ Sφ and γ · F = F ′ ,
then both ψ and ψ ′ are GL2(O)-conjugate to φ .

Proof. Since Cφ is a top-dimensional cone, and F and F ′ are codimension 1 faces of Cφ , we must
have that γ · Cφ = Cφ or γ · Cφ = Cψ ′ . Since γ /∈ Sφ , it follows that γ · Cφ = Cψ ′ . Thus Θγ · φ = ψ ′ .
Repeating the argument using γ −1 shows that Θγ −1 · φ = ψ . �
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Table 1
GL2(O)-conjugacy classes of Voronoï cones.

Type # of v Cone rank Stabilizer

A 24 8 〈600,54〉
B1 9 7 〈30,4〉
B2 9 7 〈30,4〉
B3 12 7 〈100,14〉
B4 12 7 〈600,54〉
B5 7 7 〈50,5〉
C1 6 6 〈30,4〉
C2 6 6 〈10,2〉
C3 7 6 〈10,2〉
C4 6 6 〈60,11〉
C5 6 6 〈50,5〉
C6 6 6 〈20,2〉
C7 7 6 〈10,2〉
C8 6 6 〈20,2〉
C9 6 6 〈30,4〉
C10 6 6 〈50,5〉
D1 5 5 〈10,2〉
D2 5 5 〈10,2〉
D3 5 5 〈20,5〉
D4 5 5 〈10,2〉
D5 5 5 〈10,2〉
D6 5 5 〈10,2〉
D7 5 5 〈10,2〉
D8 5 5 〈10,2〉
D9 5 5 〈20,5〉
D10 5 5 〈100,14〉
D11 6 5 〈20,5〉
E1 4 4 〈20,5〉
E2 4 4 〈20,2〉
E3 4 4 〈20,2〉
E4 4 4 〈10,2〉
E5 4 4 〈10,2〉
E6 4 4 〈20,5〉
E7 4 4 〈20,5〉
E8 4 4 〈10,2〉
E9 4 4 〈200,31〉
F1 3 3 〈60,11〉
F2 3 3 〈20,5〉
F3 3 3 〈100,16〉
F4 3 3 〈20,5〉
G1 2 2 〈200,31〉
G2 2 2 Γ∞

6.3. Lower cones

In an analogous way, one classifies the lower-dimensional faces.

Theorem 6.4. There is exactly 1 GL2(O)-class of 8-cones, 5 GL2(O)-classes of 7-cones, 10 classes of 6-cones,
11 classes of 5-cones, 9 classes of 4-cones, 4 classes of 3-cones, and 2 classes of 2-cones.

Table 1 gives the GL2(O)-classes of Voronoï cones along with the number of Π vertices, the rank
of the cone, and the stabilizer in GL2(O) of the cone. The Magma small group type of each stabilizer
is given for the finite groups. In particular, the first component is the order of the group. Let U ∗
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denote the subgroup of upper triangular matrices in GL2(O) such that the top left entry is a torsion
unit.

6.4. Classification of forms

Note that Theorem 6.4 gives a classification of binary Hermitian forms over F based on the
configuration of the minimal vectors. Indeed, by duality, the vertices of the cones that arise above
correspond to GL2(O)-classes of configurations of minimal vectors for forms over F [2]. For example,
there are 4 distinct classes of cones with 3 vertices. Hence there are 4 distinct GL2(O)-types of binary
Hermitian forms over F with exactly 3 minimal vectors. One can distinguish the types by studying
the configuration of minimal vectors.

Let [·] denote the subset of the minimal vectors of the perfect form in the order given in (4). For
example, [5,23] = {e1, e2}. Since F has class number one, every primitive vector in O2 is GL2(O)-
conjugate to e1. Combined with Theorem 6.4, one computes the following.

Theorem 6.5. Let φ be a binary Hermitian form over F . Then M(φ) is GL2(O)-conjugate to exactly one of the
following

[5], [5,20], [5,23], [5,8,23], [5,22,23], [5,20,23], [5,10,23], [5,8,22,23],
[4,5,8,23], [5,8,10,23], [5,8,18,23], [5,18,20,23], [5,15,17,23], [5,19,20,23],

[5,18,19,23], [5,20,23,24], [4,5,8,18,23], [5,8,10,12,23], [5,8,20,22,23],
[4,5,8,9,23], [5,8,18,19,23], [5,8,12,20,23], [5,8,18,22,23], [5,18,19,20,23],

[5,20,22–24], [5,9,15,17,23], [5,8,18,19,20,22], [5,8,10,12,21,23],
[5,8,12,20,21,23], [5,8,18,19,20,22,23], [5,8,20,22–24], [5,8,9,15,17,23],

[5,8,10,22–24], [3–5,8,15,18,23], [4,5,8,18,22,23], [4,5,8,9,15,23],
[5,9,15–17,23], [5,8,10,12,20–24], [3,5,8,18–20,22–24],

[3–5,7,8,10,13,15,18,22–24], [1,4,5,8,9,11,13–17,23], [5,6,9,15–17,23], [1–24]
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