
MAT 253

Discrete Structures

UNCG

Dan Yasaki

Key words and phrases. discrete structures

Contents

List of Figures . v

List of Tables . vii

List of Symbols . ix

Preface . xi

Chapter 1. Logic and Proofs . 1
1.1. Propositional logic . 1
1.2. Propositional equivalence . 16
1.3. Predicates and quantifiers . 22
1.4. Introduction to proofs . 30

Chapter 2. Basic Structures . 41
2.1. Sets . 41
2.2. Set operations . 47
2.3. Functions . 56
2.4. Sequences and summations . 70

Chapter 3. Number Theory and Applications 81
3.1. Divisibility and modular arithmetic 81
3.2. Integer representations and applications 89
3.3. Primes and greatest common divisors 98
3.4. Solving congruences . 113
3.5. Cryptography . 120

Chapter 4. Induction . 129

iii

iv Contents

4.1. Mathematical induction . 129
4.2. Strong induction . 136

Chapter 5. Counting . 141
5.1. Basics of counting . 141
5.2. Pigeonhole Principle . 151
5.3. Permutations and combinations . 155

Chapter 6. Relations . 161
6.1. Relations and their properties . 161
6.2. Equivalence relations . 169

Appendix A. Programming assignments . 177

Bibliography . 195

Index . 197

List of Figures

1.1.1. xkcd: Communicating. 2

1.1.2. xkcd: Formal Logic. 8

1.1.3. xkcd: Correlation. 11

1.1.4. xkcd: Protocol. 13

1.2.1. xkcd: Honor Societies. 17

1.3.1. xkcd: Existence Proof. 25

1.4.1. xkcd: Principle of Explosion. 34

1.4.2. xkcd: Proofs. 35

1.4.3. xkcd: Python. 37

2.2.1. Venn Diagrams for Union and Intersection. 48

2.2.2. Venn Diagrams for Set Differences. 49

2.2.3. Venn Diagram for Symmetric Difference. 49

2.2.4. Venn Diagram for Complement. 50

2.3.1. Function from A to B. 56

2.3.2. xkcd: Number Line. 60

2.3.3. Inverse of a function from A to B. 66

2.3.4. Composition of two functions. 68

2.4.1. xkcd: Tabletop Roleplaying. 74

3.2.1. xkcd: 1 to 10. 90

3.3.1. xkcd: Factoring the Time. 99

3.3.2. Sieve of Eratosthenes. 101

v

vi List of Figures

3.3.3. xkcd: Haiku Proof. 103
3.3.4. xkcd: Goldbach Conjectures . 104
3.5.1. xkcd: Code Talkers. 120
3.5.2. Rivest, Shamir, and Adleman. 122
3.5.3. xkcd: Alice and Bob. 125
3.5.4. xkcd: Security. 126

4.1.1. xkcd: Win By Induction. 131
4.2.1. xkcd: Set Theory. 139

5.1.1. The positive rationals are countable. 144

6.1.1. xkcd: Approximations. 162
6.1.2. Composition of two relations. 167
6.2.1. xkcd: Soda Sugar Comparisons. 170

List of Tables

1.1.1. Truth Tables for Negation and Conjunction. 5
1.1.2. Truth Tables for Disjunction and Exclusive Disjunction. 7
1.1.3. Truth Tables for Conditional and Biconditional. 8
1.1.4. Truth Tables for Converse, Contrapositive, and Inverse. 10
1.1.5. Precedence Order for Logical Operators. 10
1.3.1. Quantifiers. 25

3.3.1. Number of primes up to bound. 102
3.5.1. Caesar cipher lookup table. 121

vii

List of Symbols

¬p Negation: Not p, (see page 4)
p ∧ q Conjunction: p and q, (see page 4)
p ∨ q Disjunction: p or q, (see page 5)
p⊕ q Exclusive or: p or q but not both, (see page 6)
p→ q Conditional: if p then q, (see page 6)
p↔ q Biconditional: p if and only if q, (see page 7)
∀xP (x) Universal Quantification: for all x, P (x), (see page 23)
∀ Universal quantifier, (see page 23)
∃xP (x) Existential quantification: there exists an x such that

P (x), (see page 24)
∃ Existential quantifier, (see page 24)
S ≡ T S is equivalent to T , (see page 26)
a ∈ A In: a is an element of A, (see page 41)
Z Integers, (see page 41)
Q Rational numbers, (see page 42)
R Real numbers, (see page 42)
∅ Empty set, (see page 42)
A ⊆ B Subset: A is a subset of B, (see page 42)
A ⊂ B Proper subset: A is a proper subset of B, (see page 42)
|A| Cardinality: cardinality of A, (see page 44)
P(A) Power set: the power set of A, (see page 44)
A×B Cartesian product: product of A and B, (see page 45)

ix

x List of Symbols

A ∪B Union: A union B, (see page 47)
A ∩B Intersection: A intersect B, (see page 48)
A−B Difference: A minus B, (see page 48)
A \B Difference: A minus B, (see page 48)
A Complement: complement of A, (see page 50)
f : A→ B Function: f from A to B, (see page 56)
im(f) Image or Range: image of f , (see page 57)
f(S) Image: image of S under f , (see page 57)
bxc Floor: floor of x, (see page 59)
dxe Ceiling: ceiling of x, (see page 60)
f−1 Inverse: f inverse, (see page 66)
g ◦ f Composition: g of f , (see page 67)
{an} Sequence, (see page 70)
n∑

i=1

ai Summation, (see page 74)

a | b Divides: a divides b, (see page 81)
a - b Does not divide: a does not divide b, (see page 81)
a div d Quotient: a div d, (see page 83)
a mod d Remainder: a mod d, (see page 83)
a ≡ b (mod m) Congruent: a is congruent to b modulo m, (see page 83)
[a] Congruence class: congruence class of a, (see page 84)
Zm Integers mod m, (see page 85)
(akak−1 . . . a1a0)b Base b expansion, (see page 89)
gcd(a, b) Greatest common divisor of a and b, (see page 103)
φ(n) Euler phi function, (see page 104)
lcm(a, b) Least common multiple of a and b, (see page 104)
P (n, r) Number of r-permutations of n elements, (see page 155)
C(n, r) Number of r-combinations of n elements, (see page 157)
aRb Related: a is related to b, (see page 163)
[a]R Equivalence class: equivalence class of a, (see page 172)
[a] Equivalence class: equivalence class of a, (see page 172)

Preface

This document grew from lecture notes following the seventh edition of
Discrete Mathematics and its Applications by Rosen [5]. I used various
versions of the notes in conjunction with the book over the years whenever I
taught MAT 253 Discrete Structures. I will continue to develop this document
incorporating feedback from readers. This version was last modified: February
16, 2021. The most current version is available on my webpage.

https://www.uncg.edu/mat/faculty/d_yasaki/

MAT 253 core course in the mathematics curriculum designed for mathe-
matics majors as an early introduction to discrete mathematical structures,
rigorous proof techniques, and mathematical programming.

Catalogue description: A rigorous introduction to discrete mathematical
structures, proof techniques, and programming. Topics include sets, functions,
sequences, relations, induction, propositional and predicate logic, modular
arithmetic, and mathematical programming.

Student learning outcomes: Upon successful completion of this course,
students will be able to:

• define the fundamental discrete mathematical structures.

• identify and describe various types of relations.

• explain how RSA encryption allows for secure message transcription.

• translate pseudocode algorithms into Python scripts.

• compute the number of solutions to several arrangement problems.

• analyze simple algorithms and identify values of variables at various
stages of completion.

xi

https://www.uncg.edu/mat/faculty/d_yasaki/

xii Preface

• combine definitions and results produced in class to create rigorous
proofs of basic statements about discrete mathematical structures.
• evaluate an argument for logical validity.

The choice of programming language is Python 3.X You can use Python
on the central Linux server of UNCG. It is also installed on the computers in
all ITS computer labs. You can download it for free at

http://www.python.org/download/

In a typical semester, we cover most of the sections 1–5 of the Python Tutorial
available at

http://docs.python.org/py3k/tutorial/

In writing this text, I wanted to produce an streamlined, yet inviting
introduction to discrete structures. The text is interspersed with fun, yet
(mostly) relevant xkcd comics. The prerequisites for the book are minimal;
pre-calculus and an open mind. Foundations are built from definitions.

� The Bourbaki dangerous bend symbol is used to highlight subtle ideas
that may be missed on a first reading.

It is best to pair these notes with additional resources. Some free resources
are identified below.

A major goal of this course is to teach you to communicate mathematics
clearly. This involves learning precise statements of definitions, and learning
to write clear, concise proofs. Here are two books that may help.

• Book of Proof by Richard Hammock: This book is an introduction to
the standard methods of proving mathematical theorems.

http://www.people.vcu.edu/~rhammack/BookOfProof/
It has been approved by the American Institute of Mathematics’ Open
Textbook Initiative.
• The Art of Proof by Matthias Beck and Ross Geoghegan: This book is
an excellent introduction to writing good proofs. This book is not open
source, but our library has a Springer subscription that includes this
book. Go to the UNCG Library Catalog to find this book. You can
download a free copy by entering your UNCG iSpartan credentials.

Another component of the course is mathematical programming. The
language chosen for this course is Python 3. There are several additional re-
sources you may find helpful. Choose based on your programming background
and desired difficulty level.

• Python 3 Tutorial: This tutorial does not attempt to be comprehensive
and cover every single feature, or even every commonly used feature.
Instead, it introduces many of Python’s most noteworthy features, and

http://www.python.org/download/
http://docs.python.org/py3k/tutorial/
http://www.people.vcu.edu/~rhammack/BookOfProof/

Preface xiii

will give you a good idea of the language’s flavor and style. After reading
it, you will be able to read and write Python modules and programs,
and you will be ready to learn more about the various Python library
modules described in The Python Standard Library. This will be the
main source of information for the programming assignments in the
Appendix.

https://docs.python.org/3/tutorial/

• Non-Programmer’s Tutorial for Python 3: The Non-Programmers’ Tu-
torial For Python 3 is a tutorial designed to be an introduction to the
Python programming language. This guide is for someone with no
programming experience.
https://en.wikibooks.org/wiki/Non-Programmer%27s_Tutorial_

for_Python_3

• Python for Non-Programmers: If you’ve never programmed before, the
tutorials on this page are recommended for you; they don’t assume that
you have previous experience.
https://wiki.python.org/moin/BeginnersGuide/NonProgrammers

• Python for Programmers: The tutorials on this page are aimed at people
who have previous experience with other programming languages (C,
Perl, Lisp, Visual Basic, etc.).

https://wiki.python.org/moin/BeginnersGuide/Programmers

• The Python Wiki: This Wiki is a community place to gather and
organize all things about Python. Feel free to exercise your editorial
skills and expertise to make it a useful knowledge base and up-to-date
reference on all Python-related topics.

https://wiki.python.org/moin/FrontPage

• Learn Python the Hard Way: This book instructs you in Python by
slowly building and establishing skills through techniques like practice
and memorization, then applying them to increasingly difficult problems.
By the end of the book you will have the tools needed to begin learning
more complex programming topics.

https://learnpythonthehardway.org/book/

I thank Office of the Provost and the University Libraries for the Open
Educational Resources Mini-Grant in summer 2018 that allowed me the extra
time to adjust the course syllabus to accommodate this text.

Thanks to Cliff Smyth and Sebastian Pauli for piloting the use of these
notes in their courses. Thanks to others that found typos and mistakes,
including H. Parlaman.

Please submit errata and suggestions for improvement:

https://goo.gl/forms/1KyKylptFg3K6SX62

https://docs.python.org/3/tutorial/
https://en.wikibooks.org/wiki/Non-Programmer%27s_Tutorial_for_Python_3
https://en.wikibooks.org/wiki/Non-Programmer%27s_Tutorial_for_Python_3
https://wiki.python.org/moin/BeginnersGuide/NonProgrammers
https://wiki.python.org/moin/BeginnersGuide/Programmers
https://wiki.python.org/moin/FrontPage
https://learnpythonthehardway.org/book/
https://goo.gl/forms/1KyKylptFg3K6SX62

xiv Preface

Dan Yasaki
February 16, 2021

Chapter 1

Logic and Proofs

Contrariwise, if it was so, it might be; and if it
were so, it would be; but as it isn’t, it ain’t. That’s
logic.

Lewis Carroll (1832–1898)

In this chapter, we discuss logic and proofs. The rules of logic specify the
meaning of mathematical statements. These rules help us understand and
reason with these statements to construct arguments to justify the truth of
certain statements. Once we prove a mathematical statement true, we call it
a theorem . The argument of justification is called a proof .

Clear reasoning and communication of ideas is important in all disciplines.
We restrict ourselves to a small, but important corner of mathematics where
we can completely describe the theory with minimal prerequisites. The skills
you gain are applicable to many other situations.

1.1. Propositional logic

Goals. To introduce the basic terminology of propositional logic, including
logical operators; to show how to construct truth tables.

While we may wish to understand all statements, this is too daunting
of a task. Human language is just too subtle and nuanced. Instead, we
develop a theory for understanding certain types of simpler statements
known as propositions. There is a overlap between these simple statements
and statements that are used outside of this context. For the most part
the meanings agree, but there are instances where the intended meanings

1

2 1. Logic and Proofs

Figure 1.1.1. xkcd: Communicating. (https://xkcd.com/1860/)
You’re saying that the responsibility for avoiding miscommunication
lies entirely with the listener, not the speaker, which explains why you
haven’t been able to convince anyone to help you down from that wall.

are different. Because of this, we will be precise about what we mean
mathematically.

In this section, we develop a framework to study propositions. The rules
of logic give precise meaning to propositions and help us understand the
validity of arguments.

1.1.1. Propositions.

Definition 1.1.1. A proposition is a declarative statement (a statement
that declares a fact) that is either true or false but not both. The truth
value of a proposition is often denoted T for true and F for false.

Let’s first look at some statements that are not propositions. These fall
outside the scope of our study of propositional logic.

Example 1.1.2 (Question). Consider the statement “Where is the book-
store?” This is an interrogative, not declarative, statement. Questions are
not propositions.

Example 1.1.3 (Command). Consider the statement “Tie your shoe.” This
is an imperative, not declarative, statement. Commands are not propositions.

Example 1.1.4 (Paradox). Consider the statement “This statement is false.”
This is a declarative statement, but it is not a proposition. This is more

https://xkcd.com/1860/

1.1. Propositional logic 3

subtle. Suppose the statement is true. The statement is asserting it is false.
The only way for that to be true would be for the statement to be false.
In that case, the assertion that it is false would be true. . . . This sort of
self-referential statement that does not allow for a single truth value is not a
proposition.

The last example is a bit more subtle. Here, the statement is not a
proposition because there are variables in the statement that are not quantified.
We will see how to deal with such things in detail in §1.3.

Example 1.1.5 (Unquantified). Consider the statement “x+ 1 = 3.” This is
a declarative statement, but it is not a proposition. Why? The truthfulness
of the sentence depends on the value of the variable x, so it does not have a
well-defined truth value. For example, it is true when x = 2, but it is false
when x = 3. This sort of ambiguous statement is not a proposition.

Now, let’s look at some statements that are propositions.

Example 1.1.6. Consider the statement “Washington DC is the capital of
the United States.” This is a proposition since it is a declarative statement
that is true.

Note that propositions are allowed to be false.

Example 1.1.7. The statement “Charlotte is the capital of NC,” is a propo-
sition since it is a declarative statement that is that is false.

Example 1.1.8. Consider the statement “3 · 5 = 8.” This is a proposition
since it is a declarative statement that is false.

We also allow statements that declare facts for which we may not know
the truth value.

Example 1.1.9. Consider the statement “Bob is taller than Alice.” This is
a proposition since it is a declarative statement that is either true or false,
but not both. It does not bother us that we don’t know if it is true or false.
The statement is a proposition because it declares a fact that is either true
or false.

We will often use propositional variables to represent propositions.
For example, let p = “2 + 3 = 5,” and let q = “My name is Dan.” In this
case, the proposition p is true. We also have that the proposition q is true,
provided we agree on the convention that first person pronouns refer to me,
the author.

1.1.2. Compound propositions. Using logical operators, we will be able
to use existing propositions to create compound propositions.

4 1. Logic and Proofs

Definition 1.1.10. Let p be a proposition. The negation of p, denoted
¬p, is the proposition

¬p = “It is not the case that p.”

It is read as “Not p” and has the opposite truth value from p.

Table 1.1.1 gives the truth table for negation. If p is true, then ¬p is false.
If p is false, then ¬p is true.

Example 1.1.11. Consider the proposition p = “2 + 3 = 5.” The negation
¬p is the proposition

¬p = “It is not the case that 2 + 3 = 5.”

More directly, ¬p can be expressed as “2 + 3 6= 5.” The original proposition
is true, so the negation is false.

Example 1.1.12. Consider the proposition q = “23 = 5.” The negation ¬q
is the proposition

¬q = “It is not the case that 23 = 5.”

More directly, ¬p can be expressed as “23 6= 5.” The original proposition is
true, so the negation is false.

Definition 1.1.13. Let p and q be propositions. The conjunction of p
and q, denoted p ∧ q, is the proposition “p and q.” It is true when p and q
are both true and false otherwise.

The conjunction is often referred to as and . Table 1.1.1 gives the truth
table for conjunction. If p is true and q is true, then p∧ q is true. If p or q are
false (including the case where both p and q are false), then the conjunction
p ∧ q is false.

Example 1.1.14. Let p be the proposition “1 + 2 = 3,” and let q be the
proposition “3 + 4 = 7.” Since p and q are both true, the conjunction p ∧ q is
true. The conjunction can be expressed as

p ∧ q = “1 + 2 = 3 and 3 + 4 = 7.”

Example 1.1.15. Let p be the proposition “5 < 3,” and let q be the propo-
sition “4 = 7.” Both p and q are false. The conjunction p ∧ q is false. The
conjunction can be expressed as

p ∧ q = “5 < 3 and 4 = 7.”

Example 1.1.16. Let p be the proposition “5 < 5,” and let q be the propo-
sition “10 = 5 · 2.” The conjunction p ∧ q is false because p is false. The fact
that q is true is not enough to make the conjunction true. The conjunction
can be expressed as

p ∧ q = “5 < 5 and 10 = 5 · 2.”

1.1. Propositional logic 5

Table 1.1.1. Truth Tables for Negation and Conjunction.

p ¬p
T F
F T

p q p ∧ q
T T T
T F F
F T F
F F F

Negation Conjunction
(not p) (p and q)

Example 1.1.17. Consider the propositions a = “Alice is tall,” and b =
“Bob is tall”. The conjunction a ∧ b of a and b is the proposition

a ∧ b = “Alice is tall, and Bob is tall.”

More directly, a ∧ b can be expressed as “Alice and Bob are tall.” The
conjunction a ∧ b is true if Alice and Bob are both tall; it is false if either
one is not tall.

Definition 1.1.18. Let p and q be propositions. The disjunction of p
and q, denoted p ∨ q, is the proposition “p or q.” It is false when p and q
are both false and true otherwise.

The disjunction is often referred to as or . Table 1.1.2 gives the truth
table for conjunction. If at least one of p or q is true, then the disjunction
p ∨ q is true. If p and q are both false, then p ∨ q is false.

A disjunction is true if at least one of the propositions is true.

Example 1.1.19. Consider the propositions s = “Squares have four sides,”
and t = “Triangles have five sides.” The disjunction s ∨ t of s and t is the
proposition

s ∨ t = “Squares have four sides, or triangles have five sides.”

The disjunction is true because squares have four sides. It doesn’t matter
that triangles don’t have five sides. Disjunctions are only false when both
propositions being combined are false.

The disjunction of two true propositions is true.

Example 1.1.20. Let g be the proposition “I live in Greensboro,” and let j
be the proposition “I was born in Japan.” Then g and j are both true. The
disjunction g ∨ j is true and can be expressed as

g ∨ j = “I live in Greensboro, or I was born in Japan.”

The only way the disjunction of two propositions is false is if both
propositions are false.

6 1. Logic and Proofs

Example 1.1.21. Let s be the proposition “UNCG’s mascot is Rudy the
Rodeo Clown,” and let m be the the proposition “The UNCG motto is Sleep.”
The disjunction can be expressed as

s ∨m = “UNCG’s mascot is Rudy the Rodeo Clown and motto is Sleep.”

Since the mascot is Spiro the Spartan and the motto is Service, both s and
m are false. Thus the disjunction s ∨m is also false.

Definition 1.1.22. Let p and q be propositions. The exclusive disjunc-
tion of p and q, denoted p⊕ q, is the proposition “p or q but not both.” It
is true when exactly one of p or q is true and false otherwise.

The exclusive disjunction is often referred to as exclusive or or xor .
Table 1.1.2 gives the truth table for conjunction.

The exclusive disjunction of one true proposition and one false proposition
is true.

Example 1.1.23. Let o be the statement “An ostrich is a bird,” and let b
be the statement “A beaver is a bird.” The exclusive disjunction is

o⊕ b = “An ostrich is a bird, or a beaver is a bird but not both.”

The exclusive disjunction is true, because an ostrich is a bird and a beaver is
not a bird.

The exclusive disjunction of two false propositions is false.

Example 1.1.24. The exclusive disjunction of “Dogs are reptiles,” and
“Snakes are mammals,” is “Dogs are reptiles or snakes are mammals, but not
both.” The exclusive disjunction is false, because dogs are not reptiles, and
snakes are not mammals. Exclusive disjunctions are true when exactly one
of the propositions being combined is true.

The exclusive disjunction of two true propositions is false.

Example 1.1.25. The exclusive disjunction of “Dogs are mammals,” and
“Snakes are reptiles,” is “Dogs are mammals or snakes are reptiles, but not
both.” The exclusive disjunction is false, because dogs are mammals and
snakes are reptiles. Exclusive disjunctions are true when exactly one of the
propositions being combined is true.

Definition 1.1.26. Let p and q be propositions. The conditional of p
and q, denoted p→ q, is the proposition “if p then q.” It is false when p is
true and q is false and true otherwise. In the conditional p→ q, p is called
the hypothesis and q is called the conclusion .

The conditional is often referred to as if then . Table 1.1.3 gives the
truth table for the conditional.

1.1. Propositional logic 7

Table 1.1.2. Truth Tables for Disjunction and Exclusive Disjunction.

p q p ∨ q
T T T
T F T
F T T
F F F

p q p⊕ q
T T F
T F T
F T T
F F F

Disjunction Exclusive Disjunction
(p or q) (p xor q)

Example 1.1.27. The conditional of “52 = 10” and “3 ·4 = 12” is “if 52 = 10,
then 3 · 4 = 12.” The conditional is true because the the hypothesis is false.
Similarly, the conditional “if 52 = 10, then 3 · 4 = 13,” is also true.

Example 1.1.28. The conditional “if 3 · 4 = 12, then 52 = 10,” is false
because the the hypothesis is true, but the conclusion is false.

Definition 1.1.29. Let p and q be propositions. The biconditional of p
and q, denoted p↔ q, is the proposition “p if and only if q.” In other words,
p ↔ q is the proposition (p → q) ∧ (q → p). It is true when p and q have
the same truth values and false otherwise.

The biconditional is often referred to as if and only if or iff . Table 1.1.3
gives the truth table for the conditional.

The biconditional p↔ q is true when p and q are both true.

Example 1.1.30. The biconditional “2 + 4 = 6 if and only if 2 · 4 = 8.” is
true because both component propositions are true. Biconditionals are true
exactly when the component propositions have the same truth value.

The biconditional p↔ q is also true when p and q are both false.

Example 1.1.31. The biconditional “2 + 4 = 7 if and only if 2 · 4 = 9” is is
true because both component propositions are false. Biconditionals are true
exactly when the component propositions have the same truth value.

The biconditional p↔ q is false when p is true and q is false, or when p
is false and q is true.

Example 1.1.32. The biconditional “1 = 2 if and only if 3 = 3” is false,
because ”1 = 2” is false and “3 = 3” is true.

8 1. Logic and Proofs

Table 1.1.3. Truth Tables for Conditional and Biconditional.

p q p→ q
T T T
T F F
F T T
F F T

p q p↔ q
T T T
T F F
F T F
F F T

Conditional Biconditional
(if p then q) (p if and only if q)

Figure 1.1.2. xkcd: Formal Logic. (https://xkcd.com/1033/) Note
that this implies you should NOT honk solely because I stopped for a
pedestrian and you’re behind me.

Example 1.1.33. Suppose p be the proposition “I’m in a store,” and let q
be the proposition “I’m singing.” Then we have the following.

¬p = “I’m not in a store.”
p ∧ q = “I’m in a store, and I’m singing.”
p ∨ q = “I’m in a store, or I’m singing.”
p⊕ q = “I’m in a store, or I’m singing but not both.”
p→ q = “If I’m in a store, then I’m singing.”
p↔ q = “I’m in a store if and only if I’m singing.”

Example 1.1.34. Let p be the proposition “Swimming is allowed,” and let
q be the proposition “Sharks have been spotted.”

https://xkcd.com/1033/

1.1. Propositional logic 9

• “Swimming is not allowed,” can be written symbolically as ¬p.
• “Sharks have been spotted, but swimming is allowed,” can be written
as q ∧ p. Note that “but” has been converted logically to “and” in this
context. We will see more trickiness of the English language in §1.1.6.
• “If sharks have not been spotted, then swimming is allowed,” can be
written as ¬q → p.

1.1.3. Truth tables. The truth table for a compound proposition gives
the possible truth values of a compound proposition in terms of the truth
values of the original propositions.

Remark 1.1.35. In general, if a compound proposition involves k proposi-
tional variables, the truth table will have 2k rows.

The truth tables of the standard compound propositions are given in
Tables 1.1.1, 1.1.2, and 1.1.3.

Example 1.1.36. Let’s construct the truth table of the compound proposi-
tion

(p ∨ ¬q)→ (p ∧ q).
There are two propositional variables, so the table will have 22 = 4 rows.

p q ¬q p ∨ ¬q p ∧ q (p ∨ ¬q)→ (p ∧ q)
T T F T T T
T F T T F F
F T F F F T
F F T T F F

1.1.4. Converse, contrapositive, and inverse.

Definition 1.1.37. Let p and q be propositions, and consider the condi-
tional p → q. The converse of p → q is q → p. The contrapositive of
p→ q is ¬q → ¬p. The inverse of p→ q is ¬p→ ¬q.

The truth tables for the converse, contrapositive, and inverse of a condi-
tional statement are given in Table 1.1.4.

Example 1.1.38. Consider the conditional “If I studied, then I passed the
course.”

• The converse is the conditional “If I passed the course, then I studied.”
• The contrapositive is the conditional “If I did not pass the course, then
I did not study.”
• The inverse is the conditional “If I did not study, then I did not pass
the course.”

10 1. Logic and Proofs

Table 1.1.4. Truth Tables for Converse, Contrapositive, and Inverse.

Conditional Converse Contrapositive Inverse
p q ¬p ¬q p→ q q → p ¬q → ¬p ¬p→ ¬q
T T F F T T T T
T F F T F T F T
F T T F T F T F
F F T T T T T T

Table 1.1.5. Precedence Order for Logical Operators.

Operator Precedence

¬ 1

∧ 2
∨ 3

→ 4
↔ 5

Remark 1.1.39. Table 1.1.4 shows that a conditional and its contrapositive
have the same truth values. It also shows that the inverse of a conditional
has the same truth values as the converse.

1.1.5. Logical operators. Negation can be viewed as an operator that
takes a proposition and returns a proposition. Similarly, conjunction, disjunc-
tion, conditional, and biconditional can be viewed as binary operators that
take two propositions and returns a proposition. Like the usual arithmetic
operators we are used to, there is a prescribed order of precedence for the
operators. It is given in Table 1.1.5.

For example, the precedence order means that ¬p ∧ q means the same
thing as (¬p) ∧ q. Omitting the parentheses in this case is standard and
acceptable. We will allow this.

The precedence also means that p∧ q ∨ r means (p∧ q)∨ r. The omission
of parentheses in this case is confusing. We will not allow this in this course.

Another example that will not be allowed is the following. The precedence
gives that p ∧ q → r means (p ∧ q)→ r. In this case also, parentheses should
be added for clarity.

1.1.6. English is hard. The English language is tricky and subtle. There
are many ways to say the same thing, and there are many preconceptions
that people have that must be let go when studying logic. In this section, we
give lots of examples and highlight some of the common misconceptions.

1.1. Propositional logic 11

Figure 1.1.3. xkcd: Correlation. (https://xkcd.com/552/) Correla-
tion doesn’t imply causation, but it does waggle its eyebrows sugges-
tively and gesture furtively while mouthing ‘look over there’.

Example 1.1.40. Let p be the proposition “It is raining,” and let q be the
proposition “I am happy.” Then the following are some of the correct ways
to express p ∧ q.
• It is raining, and I am happy.
• It is raining, but I am happy.
• It is raining, yet I am happy.
• Although it is raining, I am happy.

For propositions p and q, the following are correct ways to express p→ q.

• If p, then q.
• If p, q.
• p implies q.
• p only if q.
• p is sufficient for q.
• A necessary condition for p is q.

• q whenever p.
• q if p.
• q follows from p.
• q unless ¬p.
• A sufficient condition for q is p.
• q is necessary for p.

Note that “p only if q” says that p cannot be true when q is not true.
Similarly, “q unless ¬p” says that if ¬p is false, then q must be true. Looking
at the truth tables, we see that they are restatements of if p, then q.

� Conditionals are independent of cause and effect. The hypothesis and
conclusion may not be related. There is no implied cause and effect or

any other type of relationship between the statements in a true conditional
proposition.

https://xkcd.com/552/

12 1. Logic and Proofs

Example 1.1.41. “If the sun comes up in the morning, then 2 + 2 = 4.”
This conditional is true since the hypothesis and conclusion are true. The
conditional does not say anything about causation.

Let’s look at some English conditionals. We will rewrite them in the
“if p then q” form to make them easier to analyze. Recall the truth table for
p→ q.

p q p→ q
T T T
T F F
F T T
F F T

Example 1.1.42. Consider the proposition “You will pass this course only
if you put in the effort.” Recall the conditional p→ q can be phrased as ”p
only if q.” We can rewrite this as “If you pass this course, then you must
have put in the effort.” Note: It is possible that you fail this course, even if
you put in the effort. This conditional says that if you pass this course, then
we can deduce that you put in the effort.

Example 1.1.43. Consider the proposition “You will pass this course unless
you don’t put in the effort.” Recall the conditional p→ q can be phrased “q
unless not p.” Thus we can rewrite the given proposition as “If you put in
the effort, then you will pass this course.” Note: It is possible to pass the
course even if you do not put in the effort, but if you put in the effort, we
can deduce that you will pass this course.

Example 1.1.44. Consider the proposition “It is necessary to wash the boss’s
car to get promoted.” Recall that the conditional p→ q can be phrased as
“q is necessary for p”. Namely, in order for p to be true, q must be true. The
given proposition is that washing the car is necessary for the promotion. We
can rephrase that as “If you get promoted, then you must have washed the
boss’s car.” A useful way to think of these things is in terms of an obligation
or contract. Note: This proposition makes no claims about what will happen
if you wash the boss’s car. Specifically, if you wash the boss’s car, you should
not expect to be promoted because of that.

Example 1.1.45. Express the following sentence symbolically: “You cannot
ride the roller coaster if you are under 4 feet tall unless you are older than 16
years old.”

Let r, f , and s be the propositions

r = “You can ride the roller coaster,”
f = “You are under 4 feet tall,”
s = “You are older than 16 years old.”

1.1. Propositional logic 13

Figure 1.1.4. xkcd: Protocol. (https://xkcd.com/1323/) Changing
the names would be easier, but if you’re not comfortable lying, try only
making friends with people named Alice, Bob, Carol, etc.

Then we the sentence can be expressed symbolically as

¬s→ (f → ¬r).
Can you convince yourself that the statement can also be expressed as

(f ∧ ¬s)→ ¬r?
We will see how to reconcile this in §1.2.

Example 1.1.46. An island has two tribes, truth-tellers and liars. You
encounter two people, Alice and Bob, on the island. Alice says “Bob is a
truth-teller,” and Bob says, “We are from different tribes.” Let’s figure out
who is from which tribe.

Let a and b be the propositions

a = “Alice is a truth-teller,”
b = “Bob is a truth-teller.”

Then Alice’s statement is b. Bob’s statement is that a and b have opposite
truth values, so his statement is a↔ ¬b. Note that Alice’s statement must
have the same truth value as a because her statement is true if and only if
she is a truth-teller. That means a ↔ b must be true. Analogously, Bob’s
statement has the same truth value as b, so (a↔ ¬b)↔ b must be true.

https://xkcd.com/1323/

14 1. Logic and Proofs

Let’s work out the truth table. We are looking for a row where a ↔ b
and (a↔ ¬b)↔ b are both true.

a b ¬b a↔ ¬b a↔ b (a↔ ¬b)↔ b
T T F F T F
T F T T F F
F T F T F T
F F T F T T

From the last two columns, we see that b↔ a and (a↔ ¬b)↔ b are both
true in the row where a and b are false. In other words, we have that Alice
and Bob are both liars.

Exercises

1. Give the definition for these terms. Be sure to set up any notation that
is required.
(a) proposition
(b) negation of a proposition
(c) conjunction of two propositions
(d) disjunction of two propositions
(e) exclusive disjunction of two propositions
(f) conditional of two propositions
(g) biconditional of two propositions
(h) converse of a conditional
(i) contrapositive of a conditional
(j) inverse of a conditional

2. Complete the following truth table.

p q p ∨ q p⊕ q p ∧ q p→ q p↔ q
T T
T F
F T
F F

3. Identify each of the following as a proposition or not. For each proposition,
give the truth value.
(a) Greensboro is the capital of North Carolina.
(b) Let’s meet at the dining hall at 7pm.
(c) Squares have three sides.
(d) 2 · 5 = 11.
(e) a2 + b2 = c2.

4. Identify each of the following as a proposition or not. For each proposition,
give the truth value.
(a) 1 + 1 = 2

1.1. Propositional logic 15

(b) Buy a bag of chips.
(c) If 2 + 3 = 7, then 11− 4 = 7.
(d) If 11− 4 = 7, then 2 + 3 = 7.
(e) 3 is odd or 253 is odd.
(f) If the sun came up today, then squares have four sides.

5. Identify each of the following as a proposition or not. For each proposition,
give the truth value.
(a) Cats are reptiles.
(b) Dogs are mammals.
(c) If cats are reptiles, then dogs are mammals.
(d) If dogs are mammals, then cats are reptiles.
(e) Cats are reptiles if and only if dogs are mammals.

6. What is the negation of each of these propositions?
(a) There are 60 minutes in an hour.
(b) 169 is a perfect square.
(c) Alice is less than 5 feet tall.
(d) Bob has more than 20 books.
(e) 5 · 6 = 30

7. Let r and w be the following propositions.

r = “It is raining.”
w = “The ground is wet.”

Express each of the propositions as an English sentence.
(a) ¬r
(b) r ∧ w
(c) r → w
(d) ¬r → ¬w
(e) ¬r ∧ ¬w

8. Let p and q be the following propositions.

p = “There are 8 pints in a gallon.”
q = “There are 4 quarts in a gallon.”

Write each of these propositions using p and q and logical operators
(including negations).
(a) There are 8 pints in a gallon, or there are 4 quarts in a gallon.
(b) If there are 8 pints in a gallon, then there are not 4 quarts in a

gallon.
(c) There are not 8 pints in a gallon, or there are 8 pints in a gallon and

4 quarts in a gallon.
(d) There are 8 pints in a gallon if and only if are 4 quarts in a gallon.
(e) There are not 8 pints in a gallon, but there are 4 quarts in a gallon.

16 1. Logic and Proofs

9. Let p, q, and r be the propositions

p = “You have the flu.”
q = “You miss the final exam.”
r = “You pass the course.”

Express each proposition as an English sentence.
(a) p→ (q ∨ r)
(b) (¬q ∧ r) ∨ r
(c) p→ (q ∧ r)
(d) (¬p ∨ ¬q)→ r
(e) (p ∧ q) ∨ (¬q ∧ r)

10. Write each of these statements in the form “if p then q.”
(a) It is necessary to study every day to pass MAT 253.
(b) Alice gets caught whenever she cheats.
(c) To pass MAT 253, it is sufficient to attend class every day.
(d) The warranty is good only if you bought the computer less than 1

year ago.
(e) Bob will get a good job unless he does not learn discrete mathematics.

11. State the converse, contrapositive, and inverse of each of these conditional
statements.
(a) If it is snowing tonight, I will stay home.
(b) The home team wins whenever it rains.
(c) Alice eats a desert only if she eats her vegetables.
(d) When Bob stays up late, it is necessary for him to sleep until noon.
(e) A positive integer is prime only if it has no positive divisors other

than 1 and itself.
12. Construct a truth table for each of these compound propositions.

(a) (p ∧ q)→ r
(b) (p ∨ q)→ ¬r
(c) p→ (q ∧ r)
(d) ¬q → (r ∨ ¬p)
(e) p ∧ (q ∨ ¬r)

1.2. Propositional equivalence

Goals. To show how propositional equivalences are established and to
introduce the most important such equivalences.

1.2.1. Terminology. Some compound propositions are true for a silly
reason. Basically, the compound proposition is true, regardless of the truth
values of the component propositions. For example, “I’ll get to it when I get

1.2. Propositional equivalence 17

Figure 1.2.1. xkcd: Honor Societies. (https://xkcd.com/703/) Hey,
why do YOU get to be the president of Tautology Clu— wait, I can
guess.

to it.” If g is the proposition “I get to it,”, then this compound proposition
is the conditional g → g. Whether g is true or false, the conditional is true.
This is an example of a tautology.

Definition 1.2.1. A tautology is a compound proposition that is true no
matter what the truth values of the propositional variables that occur in it.

Example 1.2.2. Let p be a proposition. Then p→ p is a tautology. To see
this, we compute the truth table for p→ p.

p p→ p
T T
F T

Since p→ p is always true, p→ p is a tautology.

Definition 1.2.3. A contradiction is a compound proposition that is
always false no matter what the truth values of the propositional variables
that occur in it.

Example 1.2.4. Let p be a proposition. Then ¬(p→ p) is a contradiction.
To see this, we compute the truth table for ¬(p→ p).

p p→ p ¬(p→ p)
T T F
F T F

Since ¬(p→ p) is always false, ¬(p→ p) is a contradiction.

Remark 1.2.5. In general, if P is a tautology, then ¬P is a contradiction.

Definition 1.2.6. A contingency is a compound proposition that is nei-
ther a tautology nor a contradiction.

https://xkcd.com/703/

18 1. Logic and Proofs

Example 1.2.7. Let p and q be propositions. The conditional p → q is a
contingency. To see this, compute the truth table for p→ q.

p q p→ q
T T T
T F F
F T T
F F T

Since p → q is true for some choices of p and q and false for some other
choices, p→ q is a contingency.

Example 1.2.8. Let p be a proposition. Then p∧¬p is a contradiction and
p ∨ ¬p is a tautology as shown in the table below. Not that the column for
p ∧ ¬p is all false, and the column for p ∨ ¬p is all true.

p ¬p p ∧ ¬p p ∨ ¬p
T F F T
F T F T

Definition 1.2.9. Two propositions p and q are logically equivalent ,
denoted p ≡ q, if p↔ q is a tautology.

Example 1.2.10. By looking at the truth table in Definition 1.1.37, we see
that a conditional is logically equivalent to its contrapositive. Similarly, the
converse of a conditional is logically equivalent to its inverse.

1.2.2. Important propositional equivalences. The following theorem
can be thought of as telling us how to distribute a “not” across an “and” or
an “or”.

Theorem 1.2.11 (De Morgan’s laws for propositions). Let p and q be
propositions.

(1) ¬(p ∧ q) ≡ ¬p ∨ ¬q
(2) ¬(p ∨ q) ≡ ¬p ∧ ¬q

Proof. We prove ¬(p∨ q) ≡ ¬p∧¬q and leave the other as an exercise. First
compute the truth table.

p q ¬p ¬q p ∨ q ¬(p ∨ q) ¬p ∧ ¬q
T T F F T F F
T F F T T F F
F T T F T F F
F F T T F T T

Since the last two columns are the same, we have ¬(p ∨ q) ≡ ¬p ∧ ¬q as
desired. �

1.2. Propositional equivalence 19

Example 1.2.12. Let’s negate the statement “Jake is wearing khakis and
sounds hideous.” Let

j = “Jake is wearing khakis,”
h = “Jake sounds hideous.”

Then the original statement is j ∧ h. By De Morgan’s law, the negation is

¬(j ∧ h) = ¬j ∨ ¬h.
This is, “Jake is not wearing khakis, or he does not sound hideous.”

There are several other important propositional equivalencies that we
should know.

Theorem 1.2.13 (Proposition Identities I). Let p be a proposition.

Identity laws: p ∧ T ≡ p; p ∨ F ≡ p.
Domination laws: p ∨ T ≡ T; p ∧ F ≡ F.
Idempotent laws: p ∨ p ≡ p; p ∧ p ≡ p.
Double negation law : ¬(¬p) ≡ p
Negation law : p ∨ ¬p ≡ T; p ∧ ¬p ≡ F.

Proof. Exercise. Just compute the truth tables and verify the corresponding
columns are the same. �

Theorem 1.2.14 (Proposition Identities II). Let p and q be propositions.

Commutative laws: p ∨ q ≡ q ∨ p; p ∧ q ≡ q ∧ p.
Absorption laws: p ∨ (p ∧ q) ≡ p; p ∧ (p ∨ q) ≡ p.
Contrapositive law : p→ q ≡ ¬q → ¬p

Proof. Exercise. Just compute the truth tables and verify the corresponding
columns are the same. �

Theorem 1.2.15 (Proposition Identities III). Let p, q, and r be proposi-
tions.

Associative laws:

p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r; p ∧ (q ∧ r) ≡ (p ∧ q) ∧ r.
Distributive laws:

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r); p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r).

Proof. Exercise. Just compute the truth tables and verify the corresponding
columns are the same. �

20 1. Logic and Proofs

We can also use logical equivalences to turn conditionals into disjunctions.

Theorem 1.2.16. Let p and q be propositions. Then

p→ q ≡ ¬p ∨ q.

Proof. We compute the relevant truth table.

p q ¬p ¬p ∨ q p→ q
T T F T T
T F F F F
F T T T T
F F T T T

Since the last two columns are equal, we have p→ q ≡ ¬p ∨ q. �

Once we have proven all of these important logical equivalencies, we can
use them to prove additional equivalencies and simplify compound proposi-
tions without resorting to truth tables.

Example 1.2.17. Recall Example 1.1.45, where we translated “You cannot
ride the roller coaster if you are under 4 feet tall unless you are older than 16
years old.”

Let

r = “You can ride the roller coaster,”
f = “You are under 4 feet tall,”
s = “You are older than 16 years old.”

Then we had two seemingly correct translations

¬s→ (f → ¬r)
and

(f ∧ ¬s)→ ¬r.
Let’s see that these statements are logically equivalent by simplifying each
one. We change each conditional to a disjunction and simplify.

¬s→ (f → ¬r) ≡ s ∨ (f → ¬r)
≡ s ∨ (¬f ∨ ¬r)

(f ∧ ¬s)→ ¬r ≡ ¬(f ∧ ¬s) ∨ ¬r
≡ (¬f ∨ s) ∨ ¬r
≡ (s ∨ ¬f) ∨ ¬r
≡ s ∨ (¬f ∨ ¬r)

1.2. Propositional equivalence 21

Since both statements are equivalent to s ∨ (¬f ∨ ¬r), the statements are
equivalent to each other.

Exercises

1. Give the definition for these terms. Be sure to set up any notation that
is required.
(a) tautology
(b) contradiction
(c) contingency
(d) logically equivalent propositions

2. State precisely De Morgan’s laws for propositions. Be sure to set up any
notation that is required.

3. Use De Morgan’s laws to find the negation of these statements.
(a) Alice will go to graduate school or get a job in industry.
(b) Bob majored in math and computer science.
(c) Carl is tall and thin.
(d) Dan has a laptop and a desktop.
(e) Eve or Frank will pick you up at the airport.

4. Show that each of these conditional statements is a tautology by using
truth tables.
(a) p→ (p ∨ q)
(b) (p ∧ q)→ p
(c) (p ∧ q)→ (p→ q)
(d) (¬p ∧ (p ∨ q))→ q
(e) ¬p→ (p→ q)

5. Complete the following truth table. Is p → q is logically equivalent to
¬p∨ q? Justify. Be sure to say what portion of the computation explains
your response.

p q ¬p ¬p ∨ q p→ q
T T
T F
F T
F F

6. Verify each associative law using a truth table. Which columns show the
logical equivalence?
(a) (p ∨ q) ∨ r ≡ p ∨ (q ∨ r)
(b) (p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

7. Verify each absorption law using a truth table. Which columns show the
logical equivalence?
(a) p ∨ (p ∧ q) ≡ p

22 1. Logic and Proofs

(b) p ∧ (p ∨ q) ≡ p
8. Show that ¬(p⊕ q) and p↔ q are logically equivalent.

9. Show that (p→ q) ∨ (p→ r) and p→ (q ∨ r) are logically equivalent.

10. Show that (p ∧ q)→ r and (p→ r) ∧ (q ∧ r) are not logically equivalent.

11. Show that p↔ q and ¬p↔ ¬q are logically equivalent.

12. Prove the proposition identities in Theorem 1.2.13.

13. Prove the proposition identities in Theorem 1.2.14.

14. Prove the proposition identities in Theorem 1.2.15.

1.3. Predicates and quantifiers

Goals. To introduce predicate logic, especially existential and universal
quantification. Moreover, to explain how to translate between English
sentences (or mathematical statements) and logical expressions.

1.3.1. Predicates. Statements involving variables, such as “x is greater
than 3” are often found in mathematical assertions. Such statements are not
propositions as they are neither true nor false when the value of the variable
is not specified. The statement has two parts. The first part, the variable
x, is the subject . The second part, the predicate, is the property that
the subject can have. In this case, the predicate is “is greater than 3”. We
denote such statements as P (x), and view it as a propositional function
P evaluated at x; i.e., P is a function which outputs a proposition for each
input.

Example 1.3.1. Let P (x) be the statement “x > 3.” Then P (2) is the
proposition “2 > 3,” which is false. The proposition P (4) is the statement
“4 > 3”, which is true.

Example 1.3.2. Propositional functions can have many variables, such as

P (x, y, z) = “x, y, and z live in the same dorm.”

Then P (Alice,Bob,Carl) is the proposition “Alice, Bob, and Carl live in the
same dorm.”

1.3.2. Universal quantification. Quantification expresses the extent to
which a propositional function is true; e.g., all, some, none, many, etc.

1.3. Predicates and quantifiers 23

Definition 1.3.3. The universal quantification of P , denoted ∀xP (x),
is the proposition

“P (x) for all x in the domain.”

The symbol ∀ is the universal quantifier . The domain of P specifies
the possible values for x.

Definition 1.3.4. A counterexample of ∀xP (x) is an element x0 such
that P (x0) is false.

Remark 1.3.5. The universal quantification of a propositional function is a
proposition, since it is a declarative sentence that is either true or false, but
not both.

Proof Technique 1.3.6 (To show ∀xP (x) is false). Suppose P is a propo-
sitional function, and we want to prove the universal quantification ∀xP (x)
is false.

(1) Find a counterexample. Specifically, find x0 in the domain of P such
that P (x0) is false.

(2) Conclude ∀xP (x) is false.

Remark 1.3.7. To prove a universal quantification is false, it suffices to
exhibit a single counterexample.

Example 1.3.8. Let P (x) = “x > 0” with domain R. Then ∀xP (x) is false.
To show this, it is enough to provide a single counterexample. Consider the
real number x0 = −2. Note that −2 6> 0, so P (−2) is false. Thus ∀xP (x) is
false.

Example 1.3.9. Consider the statement “All dogs have brown fur.” This
universally quantified statement is false. My dog Duey provides a counterex-
ample.

Let’s examine this in more detail. Let B(x) = “x has brown fur,” with
domain the set of all dogs. The universally quantified statement “All dogs
have brown fur,” can be written as ∀xB(x). This is false, because we can
produce a counterexample, namely my dog Duey. He is a dog, so he is in the
domain of B. He does not have brown fur, so B(Duey) is false. Thus ∀xB(x)
is false. In other words, not all dogs have brown fur.

24 1. Logic and Proofs

Proof Technique 1.3.10 (To show ∀xP (x) is true). Suppose P is a propo-
sitional function, and we want to prove the universal quantification ∀xP (x)
is true.

(1) Fix a generic element x in the domain of P .
(2) Show P (x) is true for this fixed generic element.
(3) Conclude ∀xP (x) is true.

Example 1.3.11. Let P (x) = “x2 ≥ 0” with domain R. Then ∀xP (x) is
true. To see this, fix a generic real number x. Then x2 is non-negative since
the square of any real number is non-negative. Thus ∀xP (x) is true.

1.3.3. Existential quantification.

Definition 1.3.12. The existential quantification of P , denoted ∃xP (x)
is the proposition

“There exists an element x in the domain such that P (x).”

The symbol ∃ is the existential quantifier .

Definition 1.3.13. A witness of ∃xP (x) is an element x0 in the domain
of P such that P (x0).

Remark 1.3.14. To prove an existential quantification is true, it suffices to
exhibit a single witness.

Proof Technique 1.3.15 (To show ∃xP (x) is true). Suppose P is a propo-
sitional function, and we want to prove the existential quantification ∃xP (x)
is true.

(1) Find a witness. Specifically, find an element x0 in the domain of P such
that P (x0) is true.

(2) Conclude ∃xP (x) is true.

To show an existential quantification false, we need to show that a witness
does not exist. Specifically, to show ∃xP (x) is false, we need to show that
P (x) is false for every x in the domain of P .

Proof Technique 1.3.16 (To show ∃xP (x) is false). Suppose P is a
propositional function, and we want to prove the existential quantification
∃xP (x) is false.

(1) Fix a generic element x in the domain of P .
(2) Show P (x) is false.
(3) Conclude ∃xP (x) is false.

1.3. Predicates and quantifiers 25

Table 1.3.1. Quantifiers.

Statement When true? When false?

∀xP (x) P (x) is true for every x. There is an x0 (counterexam-
ple) for which P (x0) is false.

∃xP (x)
There is an x0 (witness) for
which P (x0) is true. P (x) is false for every x.

Figure 1.3.1. xkcd: Existence Proof. (https://xkcd.com/1856/) Real
analysis is way realer than I expected.

Remark 1.3.17. To prove the existential quantification of P is true, it is
enough to exhibit a single witness. To prove the existential quantification of
P is false, we need to show that the universal quantification of ¬P is true.

Example 1.3.18. Let N(x) = “x was born in NC,” with domain the MAT
253 students.

(1) ∀xN(x)

(2) ∃xN(x)

What are the truth values of the two propositions above? Do you need to
discuss this with your classmates to determine the truth values?

(1) ∀xN(x) says “Every student in MAT 253 was born in NC.” To prove
this statement false, it is enough to produce a counterexample. We need
to just find one student in MAT 253 that was not born in NC. To prove
this statement true, we need to check that every MAT 253 student was
born in NC.

(2) ∃xN(x) says “There is a student in MAT 253 that was born in NC.” To
prove this statement true, it is enough to produce a witness. We need
to find just find one student in MAT 253 that was not born in NC.

https://xkcd.com/1856/

26 1. Logic and Proofs

Now suppose instead we take the domain of N to be all people in
the US, but we want to have the same propositions about our MAT 253
class. Then we need to introduce a new propositional function S(x) =
“x is a MAT 253 student.”

(1) We can write “Every student in MAT 253 was born in NC,” as ∀x(S(x)→
N(x)).

(2) We can write “There is a student in MAT 253 that was born in NC,” as
∃x(S(x) ∧N(x))

Note that we have shown that p→ q is equivalent to ¬p∨ q. That means
that ∀x(¬S(x)∨N(x)) is a valid (though convoluted) way to write that every
student in MAT 253 was born in NC.

1.3.4. Logical equivalence.

Definition 1.3.19. Two statements S and T involving predicates and
quantifiers are logically equivalent, denoted S ≡ T , if they have the same
truth value no matter which predicates are substituted into these statements
and which domain is used.

Theorem 1.3.20 (De Morgan’s laws for quantifiers). Let P be a proposi-
tional function. Then the following logical equivalencies hold.

(1) ¬∀xP (x) ≡ ∃x¬P (x).
(2) ¬∃xP (x) ≡ ∀x¬P (x).

Proof. Let’s prove the first statement and leave the proof of the second as
an exercise.

We want to show
¬∀xP (x) ≡ ∃x¬P (x).

We just need to show that the left side and the right side have the same truth
values, independent of what P or x actually is. The left side is the negation
of ∀xP (x). Thus the left side is true if ∀xP (x) is false. Thus ∀xP (x) must
have a counterexample x0. Then P (x0) is false, which means ¬P (x0) is true.
Thus x0 provides the example showing ∃x¬P (x) is true. Therefore the right
side is true as well.

Similarly, now suppose the left side is false. Then ∀xP (x) is true. It
follows that ¬P (x) is never true, so the existential statement of the right side
is also false. �

Example 1.3.21. Consider the statement “No one is perfect.” Translate it
into a logical expression using predicates and quantifiers. Then use De
Morgan’s laws to rewrite it.

1.3. Predicates and quantifiers 27

The statement is that there does not exist a person that is perfect. Let
P (x) = “x is perfect,” with domain the set of all people. Then the statement
is ¬∃xP (x). By De Morgan’s laws

¬∃xP (x) ≡ ∀x¬P (x),

which says that everyone is imperfect.

Example 1.3.22 (Lewis Carroll).

(1) All lions are fierce.
(2) Some lions do not drink coffee.
(3) Some fierce creatures do not drink coffee.

Let’s write the three statements into logical expression using predicates
and quantifiers.

Let L, F , and C be propositional functions

L(x) = “x is a lion,”
F (x) = “x is fierce,”
C(x) = “x drinks coffee,”

with domain all creatures. Then the sentences can be expressed follows.

(1) ∀x(L(x)→ F (x))

(2) ∃x(L(x) ∧ ¬C(x))

(3) ∃x(F (x) ∧ ¬C(x))

Suppose we know that the first two statements are true. Does this allow
us to deduce the third statement? We will see more examples in the following
section, but let’s examine this particular example more closely first.

Suppose the first two statements are true. The second statement guaran-
tees the existence of a creature, we’ll call him Bob, such that L(Bob) and
¬C(Bob) are both true. Since L(Bob) is true, the conditional in the first
statement tells us that F (Bob) is true. Since F (Bob) and ¬C(Bob) are both
true, Bob provides the example to show the third statement is true.

In other words, since some lions do not drink coffee, there must be a lion
that does not drink coffee. Let’s call him Bob. Then since all lions are fierce,
we have that Bob is fierce. Since Bob is fierce and does not drink coffee, we
know that some fierce creatures do not drink coffee.

Exercises

1. Give the definition for these terms. Be sure to set up any notation that
is required.
(a) universal quantification of a propositional function

28 1. Logic and Proofs

(b) existential quantification of a proposition function
(c) logically equivalent statements involving predicates and quantifiers

2. State precisely De Morgan’s laws for quantifiers. Be sure to set up any
notation that is required.

3. Let P (x) denote the propositional function “x ≤ 10,” with domain R.
What are these truth values?
(a) P (0)
(b) P (−2)
(c) P (253)
(d) ∀xP (x)
(e) ∃xP (x)

4. Let S(x) be the statement “x studies more than 30 hours per week,”
where the domain for x consists of all students in MAT 253. Express
each of these quantifications in English.
(a) ∃xS(x)
(b) ∃x¬S(x)
(c) ∀xS(x)
(d) ∀x¬S(x)

5. Let B(x) be the statement “x has a bird,” let C(x) be the statement
“x has a cat,” and let D(x) be the statement “x has a dog,” where the
domain for x is all MAT 253 students. Express each of these statements
in terms of B(x), C(x), D(x), quantifiers, and logical operators.
(a) There is a student in MAT 253 that has a bird, a cat, and a dog.
(b) Every student in MAT 253 has a dog.
(c) No student in MAT 253 has a bird.
(d) Every student in MAT 253 that has a dog also has a bird.
(e) Some student in MAT 253 has a bird, a cat, or a dog.

6. Determine the truth value of each of these statements if the domain of
all variables consists of all integers.
(a) ∀n(n2 ≥ 0)
(b) ∀n(n2 > 0)
(c) ∃n(n2 > 0)
(d) ∀n(n > 0 ∨ n < 0)
(e) ∃n(n > 0 ∧ n < 0)

7. Translate each of these statements into logical expressions using predicates,
quantifiers, and logical operators.
(a) Something is not right.
(b) Everything is fine.
(c) Every bird can fly.
(d) Some old dogs can learn new tricks.
(e) No one is perfect.

1.3. Predicates and quantifiers 29

8. Prove each of these universally quantified statements false by providing
a counterexample, where the domain for all the variables consists of all
real numbers.
(a) ∀x(x2 > 0)
(b) ∀x(x2 ≥ x)
(c) ∀x((x+ 3)2 = x2 + 32)
(d) ∀x(x2 is rational)
(e) ∀x(

√
x2 = x)

9. Prove each of these existential statements true by providing a witness,
where the domain for all the variables consists of all real numbers.
(a) ∃x(3x is irrational)
(b) ∃x(x2 ≤ 0)
(c) ∃x(1 < x < 2)
(d) ∃x((x+ 3)2 = x2 + 32)
(e) ∃x(πx2 is an integer)

10. Let D(x) = “x is an odd duck”, and let M(x) = “x is a mathematician”,
with domain consisting of all people. Express the statement “Every
mathematician is an odd duck” in terms of D(x), M(x), quantifiers, and
logical operators.

11. Let Q(x) be the statement “2x < 0.001” with domain the set of all real
numbers. What is the truth value of ∃xQ(x)? Explain.

12. Express each of these statements using quantifiers. Use De Morgan’s laws
for quantifiers to find the negation of each of these statements. Form
the negation of the statement so that no negation is to the left of the
quantifier. Finally, express the negation in simple English. (Do not
simply use the phrase “It is not the case that . . . ”)
(a) All dogs are nice.
(b) Some students do not study every day.
(c) All birds can fly.
(d) Some dogs have fleas.
(e) Some integers are rational numbers.
(f) All real numbers are integers.

13. Consider the propositional functions M(x) = “x is a mathematician”,
S(x) = “x is silly”, and C(x) = “x drinks coffee”, with domain the set of
all people.

Express each of the following sentences in terms of M(x), S(x), C(x),
quantifiers, and logical operators.
(a) No mathematician is silly.
(b) All mathematicians drink coffee.
(c) Mathematicians that do not drink coffee are silly.
(d) Some people that drink coffee are not silly.
(e) Not all silly people are mathematicians.

30 1. Logic and Proofs

14. Alice was overheard saying, “I will go out with Bob when pigs fly.” Rewrite
this in the form “if p, then q.” Assuming that Alice speaks the truth, use
propositional logic to explain what, if any, implications this has for Alice
and Bob.

15. Suppose we have the following rules for Alice.
Taylor’s rule: Alice eats her veggies, or she can’t have dessert.
Leslie’s rule: If Alice eats her veggies, then she can have dessert.
Alex’s rule: Alice can have her dessert, when she eats her veggies.
Cameron’s rule: Alice can have her dessert, only if she eats her

veggies.
Alice’s rule: Alice can have her dessert.

If Alice’s parents agree on a rule, what are their names? (They do not
have the same name. There may be more than one correct answer.)

1.4. Introduction to proofs

Goals. To introduce the notion of proof and basic methods of proof, in-
cluding direct proof, proof by contraposition, and proof by contradiction.
Furthermore, to learn how to distinguish between correct and incorrect
arguments, and to understand and construct basic types of proofs.

1.4.1. Direct proof. Recall the conditional p→ q has the following truth
table.

p q p→ q
T T T
T F F
F T T
F F T

It follows that if we want to prove that p→ q is true, we need to show
that the second row (p = T, q = F) does not occur. One approach, called
the direct proof is constructed when we start by assuming p is true. Then
we show that q is true.

Proof Technique 1.4.1 (To show p → q with direct proof). Suppose p
and q are propositions, and we want to prove the conditional “if p then q”
by direct proof.

(1) Assume p is true.
(2) Deduce q is true under the assumption.
(3) Conclude p→ q.

1.4. Introduction to proofs 31

Let’s recall some definitions of certain types of integers so that we have
some objects to play with.

Definition 1.4.2. An integer n is even if there exists an integer k such
that n = 2k.

Proof Technique 1.4.3 (Show n is even). Suppose n is an integer, and
we want to prove n is even.

(1) Find k such that n = 2k.
(2) Show k is an integer.
(3) Conclude n is even, by definition.

Example 1.4.4. The integer 12 is even because 12 = 2 · 6, and 6 is an
integer.

Example 1.4.5. The integer 0 is even because 0 = 2 · 0, and 0 is an integer.

Definition 1.4.6. An integer n is odd if there exists an integer k such that
n = 2k + 1.

Proof Technique 1.4.7 (Show n is odd). Suppose n is an integer, and we
want to prove n is odd.

(1) Find k such that n = 2k + 1.
(2) Show k is an integer.
(3) Conclude n is odd, by definition.

Example 1.4.8. The integer 23 is odd because 23 = 2 · 11 + 1, and 11 is an
integer.

Example 1.4.9. The integer −27 is odd because −27 = 2 · (−14) + 1, and
−14 is an integer.

Remark 1.4.10. Every integer is even or odd. No integer is both.

Example 1.4.11. Following the steps below, we prove that the sum of two
odd integers is even.

(1) First, we rewrite what we want to show in the form “if p, then q.”
Additionally, we will give friendly names to objects.1 Let’s name our
odd integers a and b. Then the statement we wish to prove is:

“If a and b are odd integers, then a+ b is even.”

1Fear of a name only increases fear of the thing itself. –Dumbledore

32 1. Logic and Proofs

(2) When we want to prove a statement of the form “if p, then q” directly,
we assume p is true and try to show q. This is commonly where we set
some notation as well. Let a and b be odd integers.

(3) Next we need to recall what an odd integer is. An integer n is odd if
there exists an integer k such that n = 2k + 1.

(4) Now apply the definition to our situation. Since a is odd, there
exists an integer k such that a = 2k + 1.

(5) Since b is odd, there exists an integer ` such that b = 2`+ 1.
(6) Check back above to be sure that the two integers whose existence is

guaranteed have different names. They need different names because
they need not be the same integer.

(7) Now look back to the goal that we set in 1. Since we want to say
something about a+b, it makes sense to Compute a+b and simplify.

a+ b = 2k + 1 + 2`+ 1

= 2k + 2`+ 2

= 2(k + `+ 1).

(8) The line above should prove a + b is even, provided the bit in the
parentheses is an integer. Make some remark noting that, and we are
done. Since k and ` are integers, we have k+ `+ 1 is an integer,
and so a+ b is even.

Putting that all together yields the following.

Proof. Let a and b be odd integers. Since a is odd, there exists an integer
k such that a = 2k + 1. Since b is odd, there exists an integer ` such that
a = 2`+ 1. Compute a+ b and simplify.

a+ b = 2k + 1 + 2`+ 1

= 2k + 2`+ 2

= 2(k + `+ 1).

Since k and ` are integers, we have k + ` + 1 is an integer, and so a + b is
even. �

Example 1.4.12. Prove that the product of two even integers is even.

Proof. Let m and n be even integers. Then there exist integers k and ` such
that m = 2k and n = 2`. Then

mn = 2k · 2` = 4k` = 2(2k`).

Since k and ` are integers, 2k` is an integer. Thus m+ n is even. �

Example 1.4.13. Let m and n be real numbers. Prove that m2 = n2 if and
only if m = n or m = −n.

1.4. Introduction to proofs 33

Proof. Suppose m and n are integers such that m2 = n2. Then

m2 − n2 = (m+ n)(m− n) = 0.

It follows that m+ n = 0 or m− n = 0. Thus m = −n or m = n. �

Example 1.4.14. Let P (n) be the proposition “1 + 2 + · · ·+ n = n(n+1)
2 .”

Prove P (1) and P (2) are true.

Proof. P (1) is the statement “1 = 1(1+1)
2 .” This is true since the right side

is
1(1 + 1)

2
=

2

2
= 1,

which is equal to the left side.

Similarly, P (2) is the statement “1 + 2 = 2(2+1)
2 .” This is true since the

left side is
1 + 2 = 3,

and the right side is
2(2 + 1)

2
=

6

2
= 3.

�

1.4.2. Proof by contraposition. Recall that the contrapositive of p→ q
is logically equivalent to p → q. That means proving p → q is true is the
same as proving ¬q → ¬p is true. This is called proof by contraposition .

Proof Technique 1.4.15 (To show p→ q by contraposition). Suppose p
and q are propositions, and we want to prove the conditional “if p then q”
by contraposition.

(1) State that it is enough to prove the contrapositive.
(2) Assume q is false, (or equivalently ¬q is true).
(3) Deduce p is false, (or equivalently ¬p is true) under the assumption.
(4) Conclude p→ q.

Example 1.4.16. Let n be an integer. Prove that if n2 is even, then n is
even.

Proof. This is equivalent to proving that if n is odd, then n2 is odd. Suppose
n is odd. Then there exists an integer k such that n = 2k + 1. Then

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1.

Since k is an integer, we have 2k2 + 2k is an integer, and so n2 is odd. �

34 1. Logic and Proofs

Figure 1.4.1. xkcd: Principle of Explosion. (https://xkcd.com/704/)
You want me to pick up waffle cones? Oh, right, for the wine. One sec,
let me just derive your son’s credit card number and I’ll be on my way.

1.4.3. Proof by contradiction. Let s and r be propositions. Recall that
r∧¬r is a contradiction. In particular, r∧¬r is always false. If we can prove
that ¬s → (r ∧ ¬r) is true, then ¬s must be false. In this case, s must be
true. Unwinding that, we get a technique known as proof by contradiction .
Namely, we can prove s is true by producing a direct proof of ¬s→ (r ∧ ¬r);
i.e., to prove s is true, start by assuming ¬s is true and try to reach a
contradiction. This is called proof by contradiction .

Proof Technique 1.4.17 (To prove s is true by contradiction). Suppose
s is a proposition, and we want to prove s by contradiction.

(1) State that we will use proof by contradiction.
(2) Assume s is false, (or equivalently ¬s is true).
(3) Deduce an auxiliary proposition r and its negation ¬r.
(4) Announce the contradiction.
(5) Conclude s is true.

Definition 1.4.18. A real number r is rational if there exists integers p
and q with q 6= 0 such that r = p

q . A real number r is irrational if it is
not rational. The set of rational numbers is denoted Q.

Example 1.4.19. Prove that
√

2 is irrational.

Proof. We procedd by contradiction. Suppose
√

2 is rational. Then there
exists integers p and q, with q 6= 0 such that

√
2 = p

q . Note that we can
arrange that the fraction is in lowest terms by canceling common factors, so
without loss of generality assume that p and q have no common factors.

Then squaring both sides of
√

2 = p
q we get 2 = p2

q2
. Then 2q2 = p2, so

p2 is even. By Example 1.4.16, this implies p is even. Then there exists an

https://xkcd.com/704/

1.4. Introduction to proofs 35

Figure 1.4.2. xkcd: Proofs. (https://xkcd.com/1724/) Next, let’s
assume the decision of whether to take the Axiom of Choice is made by
a deterministic process . . .

integer k such that p = 2k. Then 2q2 = (2k)2 = 4k2. Dividing by 2, we get
q2 = 2k2 so q2 is even. As before, this implies q is even. �

Example 1.4.20. Use a proof by contradiction to show that there is no
rational number r for which r3 + r + 1 = 0.

Proof. Suppose not. Suppose there is a rational number r = a/b such that
r3 + r + 1 = 0, where we write a/b is lowest terms so that a and b have no
common factors. Then (a

b

)3
+
a

b
+ 1 = 0.

Multiplying both sides by b3, we get

a3 + ab2 + b3 = 0.

There are four cases to consider, depending on the parity (even/odd) of a
and b.

a and b both even: Contradiction! We have a/b in lowest terms, but
they have a common factor of 2.

a and b both odd: Then a3, ab2, and b3 are all odd. The sum of three
odd numbers is odd. Contradiction! 0 is even.

a is even b is odd: Then a3 and ab2 are even, and b3 is odd. The sum of
two even integers and an odd integer is odd. Contradiction! 0 is even.

a is odd b is even: Then a3 is odd, and ab2 and b3 are even. The sum of
an odd integer and two even integers is odd. Contradiction! 0 is even.

Thus there is not rational number r such that r3 + r + 1 = 0. �

1.4.4. Existence proofs. Many theorems assert the existence of an object
with certain properties. They are of the form ∃xP (x). One way to prove
such a statement is to find a witness a such that P (a) is true. This is called
an constructive existence proof . See Proof Technique 1.3.15 for details.

https://xkcd.com/1724/

36 1. Logic and Proofs

Example 1.4.21. Prove there is an integer that can be written as the sum
of cubes of positive integers in two different ways.

Proof. It suffices to provide a witness. We can find the following witness by
Python code snippet 1.4.22, for example.

1729 = 103 + 93 = 123 + 13.

�

Python Code Snippet 1.4.22. Here is some Python code to find a witness
for Example 1.4.21. We look in a box for a positive integer that can be
expressed as the sum of cubes of positive integers in two different ways.

empty dictionary to store possible witnesses
sum_dict = {}
pick a bound for the box to search in
box_bound = 13
for i in range(box_bound):

for j in range(i+1,box_bound):
s = i**3 + j**3
if s in sum_dict.keys():

sum_dict[s].append([i,j])
else:

sum_dict[s] = [[i,j]]
for s,w in sum_dict.items():

if len(w) > 1:
print(s,w)

There are some proofs of existence that do not produce a witness. These
are called nonconstructive proofs.

Example 1.4.23. Prove there exist irrational numbers a and b such that ab
is rational.

Proof. We have already seen that
√

2 is irrational in Example 1.4.19. If√
2
√
2 is rational, then a =

√
2, b =

√
2 is our witness, and we are done.

Otherwise,
√

2
√
2 is irrational. In this case,

(
√

2

√
2
)
√
2 =
√

2
2

= 2,

which is rational, so a =
√

2
√
2
, b =

√
2 is our witness. �

Note that this proof does not tell us which case occurs, so it is noncon-
structive.

1.4. Introduction to proofs 37

Figure 1.4.3. xkcd: Python. (https://xkcd.com/353/) I wrote 20
short programs in Python yesterday. It was wonderful. Perl, I’m leaving
you.

1.4.5. Summary guidelines for proofs.

(1) Use complete sentences.
(2) Each sentence should set notation or be a true statement.
(3) Each true statement should be a conclusion that can be drawn from the

previous statements using a definition, computation, or result proved in
class.

(4) Do not assert the truth of statement to be proven at the beginning of a
proof. Preface such statements with “We wish to prove” or something
similar.

(5) Oftentimes, a good first step is just unwinding the definitions.
(6) To prove “if p, then q” directly, start the proof by assuming p is true.

Then deduce that q must be true. See Proof Technique 1.4.1.
(7) To prove “if p, then q” by contraposition, start the proof by assuming q

is false. Then deduce that p must be false. See Proof Technique 1.4.15.
(8) To prove p by contradiction, start the proof by assuming p is false. Then

deduce a contradiction. See Proof Technique 1.4.17.

Here are some examples of what is meant by (2) above.

https://xkcd.com/353/

38 1. Logic and Proofs

• ax
This is not a sentence.
• ax = b has a solution.
This is a sentence, but it is not true or false. We need to know more
about a and b.
• Let a ∈ R, a 6= 0. Then ax = b has a solution.
This is a bit better. The first sentence sets notation, but the second
sentence is still neither true nor false since we have not specified the
universe for b.
• Let a ∈ R, a 6= 0. Then ax = b has a solution for every b ∈ R.
The first sentence sets notation. All of the notation is defined. The
second sentence is true.

Exercises

1. Give the definition for these terms. Be sure to set up any notation that
is required.
(a) even integer
(b) odd integer
(c) rational number

2. Use a direct proof to show that the sum of two odd integers is even.
3. Use a direct proof to show that the sum of two even integers is even.
4. Use a direct proof to show that the product of two odd integers is odd.
5. Use a proof by contradiction to prove that the sum of an irrational number

and a rational number is irrational.
6. Use a direct proof to show the product of two rational numbers is a

rational number.
7. Prove each of these statements is false by providing a counterexample.

(a) The product of two irrational numbers is irrational.
(b) The sum of two irrational numbers is irrational.
(c) Every positive integer can be written as the sum of the squares of

three integers.
(d) If n is an integer, then n2 > n.
(e) If a and b are rational number, then ab is also rational.

8. Let P (n) be the proposition “n2 ≥ n.” Prove P (1) is true.
9. Use a proof by contradiction to prove that if n is an integer and n3 + 5

is odd, then n is even.
10. Prove there is a right triangle with all three sides having rational lengths.
11. Prove there exists a pair of consecutive integers such that one of these

integers is a perfect square and the other is a perfect cube.

1.4. Introduction to proofs 39

12. Go to
http://link.springer.com/book/10.1007%2F978-1-4419-7023-7

while on campus and download The Art of Proof by Matthias Beck and
Ross Geoghegan. Read carefully Chapters 1–7.

http://link.springer.com/book/10.1007%2F978-1-4419-7023-7

Chapter 2

Basic Structures

In this chapter, we look at some fundamental structures in mathematics: sets,
functions, and sequences.

2.1. Sets

Goals. To introduce the basic terminology of set theory.

2.1.1. Basic terminology.

Definition 2.1.1. A set is an unordered collection of objects, called el-
ements or members of the set. We write a ∈ A to denote that a is an
element of the set A.

There are several ways to describe a set.

roster method: List the elements explicitly. e.g., {1, 2, 7}, {1, 2, . . . , 10}.
set builder notation: Characterize the elements of the set by stating

properties they must have to be members. e.g.,

{x | x is an odd positive integer less than 10}.
Example 2.1.2. Is {3} the same thing as 3?

No. Sets are like bags. A bag with an apple in it is different from an
apple. The set {3} is a set with one element 3 in it. The number 3 is not the
same as the set containing just 3.

There are some sets of numbers that we will often use.

• The set of integers, denoted Z, is
Z = {. . . ,−2,−1, 0, 1, 2, . . .}.

41

42 2. Basic Structures

• The set of rational numbers, denoted Q, is

Q =

{
p

q

∣∣∣∣ p, q ∈ Z, q 6= 0

}
.

• The set of real numbers , denoted R, is actually fairly subtle to define.
(Cauchy sequences of rational numbers is one way that you may see in
MAT 395.) For our purposes, your intuitive idea of the real numbers is
sufficient.

We also have special notation for intervals of real numbers.

[a, b] = {x | x ∈ R, a ≤ x ≤ b}
(a, b] = {x | x ∈ R, a < x ≤ b}
[a, b) = {x | x ∈ R, a ≤ x < b}
(a, b) = {x | x ∈ R, a < x < b}

Definition 2.1.3. Two sets A and B are equal , denoted A = B, if they
have the same elements. i.e., ∀x(x ∈ A↔ x ∈ B).

Example 2.1.4. Let A = {1, 2, 2, 5}, and let B = {1, 2, 5}. Then A = B.
Why? For every element x, the truth value of x ∈ A is the same as the truth
value of x ∈ B. Thus A = B by definition.

To show two sets are equal, we use subsets as described later in Proof
Technique 2.1.14. It is more straightforward to show two sets are not equal.
Since set equality is defined as the universal quantification (“for all”) of a
biconditional (“if and only if”), to show two sets are not equal, it is enough
to find any counterexample to the biconditional. In particular, we just need
to produce any element that they do not share.

Proof Technique 2.1.5 (To show A 6= B). Suppose A and B are sets,
and we want to prove A is not equal to B.

(1) Find a particular element a in A that is not a member of B; or find a
particular element b in B that is not a member of A.

(2) Conclude A 6= B.

Definition 2.1.6. The empty set , denoted ∅, is the set with no elements.

Example 2.1.7. The empty set is {}.

2.1.2. Subsets.

Definition 2.1.8. A set A is a subset of a set B, denoted A ⊆ B, if every
element of A is also an element of B. i.e., ∀x(x ∈ A→ x ∈ B). If A ⊆ B,
and A 6= B, we say A is a proper subset of B, denoted A ⊂ B.

2.1. Sets 43

Example 2.1.9. Let A = {a, b, c}, and let B = {a, b, c, d, e, f}. Then A is a
subset of B. Why? For every x, whenever x is in A we have x is in B. Thus
A ⊆ B, by definition.

Furthermore, we have A is a proper subset of B, since we additionally
have that A is not equal to B. Thus A ⊂ B, by definition.

Remark 2.1.10. This notation is reminiscent of the notation for inequality
and strict inequality.

Note that subsets are defined in terms of a universal quantification (“for
all”). To prove universal statements, we use generic elements.

Proof Technique 2.1.11 (To show A ⊆ B). Suppose A and B are sets,
and we want to prove A is a subset of B.

(1) Let x be a generic element of A.
(2) Show that x is in B.
(3) Conclude A ⊆ B.

Theorem 2.1.12. For any set A,

(1) ∅ ⊆ A, and
(2) A ⊆ A.

Proof. We apply Proof Technique 2.1.11 to show ∅ ⊆ A. Since ∅ has no
elements, there is nothing to check. In particular, we need to check that for
each a in ∅, the statement a ∈ A is true. Since there are no elements in ∅,
there is nothing to check.

Next, we apply Proof Technique 2.1.11 to show A ⊆ A. Let x be a generic
element in A. Then x is in A by construction. Thus A ⊆ A. �

It seems like we just ran around in circles in the proof above. Read it
over again, paying attention to what it is we need to show.

For a set A to be a proper subset of set B, we need A to be a subset of
B that is not equal to B.

Proof Technique 2.1.13 (To show A ⊂ B). Suppose A and B are sets,
and we want to prove A is a proper subset of B.

(1) Use Proof Technique 2.1.5 to show A 6= B.
(2) Use Proof Technique 2.1.11 to show A ⊆ B.
(3) Conclude A ⊂ B.

44 2. Basic Structures

By definition, two sets are equal if they have the same elements. This
implies that each one is a subset of the other. We can turn this into a proof
technique for showing two sets are equal.

Proof Technique 2.1.14 (To show A = B). Suppose A and B are sets,
and we want to show A is equal to B.

(1) Use Proof Technique 2.1.11 to show A ⊆ B.
(2) Use Proof Technique 2.1.11 to show B ⊆ A.
(3) Conclude A = B.

2.1.3. Size of a set.

Definition 2.1.15. Let A be a set. If there are exactly n distinct elements
in A, where n is a non-negative integer, we say A is a finite set and that
n is the cardinality of A, denoted |A|.

We discuss sets that are not finite and their cardinality in §5.1. The
notion if infinity is subtle; there are different sizes of infinity.

Example 2.1.16. The empty set ∅ has size 0

|∅| = 0

since {} has no elements.

Example 2.1.17. Let E be the even integers between−5 and 5, not including
−5 and 5. Then we can compute the size of E by writing E using the roster
method and counting.

E = {−4,−2, 0, 2, 4},
so |E| = 5.

Example 2.1.18. Let C be the set of consonants in the English alphabet.
Instead of listing the elements of C in roster method, we note that there are
26 letters in the English alphabet. Of these, 5 are vowels and the rest are
consonants. Thus

|C| = 26− 5 = 21.

2.1.4. Power sets.

Definition 2.1.19. Let A be a set. The power set of A, denoted P(A),
is the set of all subsets of A.

Example 2.1.20. Suppose A = {2, x, π}. The power set of A is the set of
all subsets of A. Let’s work out the subsets systematically, ordered by size.

Size 0: There is only 1 subset of size 0. It is the empty set: ∅.

2.1. Sets 45

Size 1: These singleton sets each contain one element of A. Since there
are 3 elements in A, there are 3 subsets of size 1: {2}, {x}, and {π}.

Size 2: Subsets of A of size 2 can be constructed by omitting one element.
Since there are 3 elements in A, there are 3 subsets of size 2: {2, x},
{2, π}, and {x, π}.

Size 3: There is only 1 subset of size 3. It is the set A itself: {2, x, π}.
Size > 3: Since |A| = 3, there are no subsets of A that have size larger

than 3.

Thus the power set of A is

P(A) = {∅, {2}, {x}, {π}, {2, x}, {2, π}, {x, π}, {2, x, π}}.

Theorem 2.1.21. If a set A has cardinality n, then the cardinality of the
power set of A is |P(A)| = 2n.

Proof. We prove this in §5.1 after we develop techniques on counting. �

2.1.5. Cartesian products.

Definition 2.1.22. Let A and B be sets. The Cartesian product of A
and B, denoted A×B, is the set of ordered pairs (a, b), where a ∈ A and
b ∈ B. That is,

A×B = {(a, b) | a ∈ A ∧ b ∈ B}.

Example 2.1.23. Let A = {0, 1}, and let B = {4, 5, 6}. Then the Cartesian
product A × B is the set of all ordered pairs (a, b), where a is an element
from A and b is an element of B. Thus

A×B = {(0, 4), (0, 5), (0, 6), (1, 4), (1, 5), (1, 6)}.
Analogously, the Cartesian product B×A is the set of all ordered pairs (b, a),
where b is an element of B and a is an element of A. Thus

B ×A = {(4, 0), (4, 1), (5, 0), (5, 1), (6, 0), (6, 1)}.

More generally, we can define the Cartesian product of more than two
set.

Definition 2.1.24. The Cartesian product of sets A1, A2, . . . , An, de-
noted A1×A2×· · ·×An is the set of ordered n-tuples (a1, a2, . . . , an) where
ai ∈ Ai for i = 1, 2, . . . , n. That is,

A1 ×A2 × · · · ×An = {(a1, a2, . . . , an) | ai ∈ Ai for i = 1, 2, . . . , n}.

Remark 2.1.25. We use the notation A2 to denote A×A. Similarly A3 =
A×A×A, and so on.

Example 2.1.26. R2 is the familiar Cartesian plane.

46 2. Basic Structures

Definition 2.1.27. Let A and B be sets. A subset R of a A×B is called
a relation from A to B. A relations from A to itself is called a relation on
A.

Exercises

1. Give the definition for these terms. Be sure to set up any notation that
is required.
(a) set
(b) equal sets
(c) empty set
(d) subset
(e) proper subset
(f) cardinality of a set
(g) power set of a set
(h) Cartesian product of sets
(i) relation

2. Write each set in roster notation.
(a) {n ∈ Z | n is odd and n ≤ 10}
(b) {n ∈ Z | |n| ≤ 3}
(c) the set of positive, even integers less than 6
(d) {x ∈ R | x2 − x− 1 = 0}
(e) {x ∈ R | x is the square of an integer and x < 100}
(f) {x ∈ R | x2 = −1}

3. Use set builder notation to give a description of each of these sets.
(a) {2, 3, 4, 5, 6, 7, 8}
(b) {0, 3, 6, 9, 12}
(c) {−2,−1, 0, 1, 2}
(d) {0, 4, 9, 16, 25, 36}

4. For each of these pairs of sets, determine whether the first is a subset of
the second, the second is a subset of the first, or neither is a subset of
the other.
(a) the set of dogs; the set of mammals
(b) the set of people who speak English; the set of people who speak

Japanese
(c) the set of math majors; the set of computer science majors
(d) the set of people over 6 feet tall; the set of people over 5 feet tall
(e) the set of animals; the set of alligators

5. For each of these sets, determine whether 3 is an element of that set.
(a) {1, 3, 5, 7, 9}
(b) {{3, 5}, {2, 4}}

2.2. Set operations 47

(c) {(0, 3), (3, 0), (3, 3)}
(d) {{3}, {5}}
(e) the set of positive, odd integers less than 20

6. Find A×B, where A = {a, b} and B = {0, 4, 8}.
7. What is the cardinality of each of these sets?

(a) {1, 3, 3, 5, 5, 6, 10, 10}
(b) {{1, 3, 5, 6}, {10, 12, 15}}
(c) ∅
(d) {0, ∅}
(e) {∅, {}}
(f) P({0, 1})

8. Suppose A, B, and C are sets such that A ⊆ B and B ⊆ C. Prove that
A ⊆ C.

9. Let A, A′, B, and B′ be sets. Show that if A ⊆ A′ and B ⊆ B′, then
A×B ⊆ A′ ×B′.

10. Let A = {a, b, c}, and let B = {x, y}. Find the following sets.
(a) A×B
(b) B ×A
(c) A2

(d) B3.
(e) P(A)

11. Determine whether these statements are true or false.
(a) x ∈ {x}
(b) {x} ∈ {x}
(c) x ⊆ {x}
(d) {x} ⊆ {x}
(e) ∅ ⊆ {x}

2.2. Set operations

Goals. To show how set identities are established and to introduce the
most important such identities.

2.2.1. Basic operations.

Definition 2.2.1. Let A and B be sets. The union of sets A and B,
denoted A ∪B, is the set that contains those elements that are in A or in
B or in both. That is

A ∪B = {x | x ∈ A ∨ x ∈ B}.

48 2. Basic Structures

U

A B

Union: A ∪B

U

Intersection: A ∩B

A B

Figure 2.2.1. Venn Diagrams for Union and Intersection.

Example 2.2.2. Let A = {1, 2, 3, 5, 10}, and let B = {2, 3, 4, 5}. To compute
the union A∪B, we combine all of the elements of A together with all of the
elements of B into one set. The union of A and B is

A ∪B = {1, 2, 3, 4, 5, 10}.

Definition 2.2.3. Let A and B be sets. The intersection of A and B,
denoted A ∩ B, is the set that contains those elements that are in A and
also in B. That is

A ∩B = {x | x ∈ A ∧ x ∈ B}.

Example 2.2.4. Let A = {1, 2, 3, 5, 10}, and let B = {2, 3, 4, 5}. To compute
the intersection A ∩B, we take the elements of A that are also elements of
B. In other words, we only keep elements that A and B have in common.
The intersection of A and B is

A ∩B = {2, 3, 5}.

Definition 2.2.5. The difference of A and B, denoted A− B or A \ B,
is the set containing elements that are in A but not in B. That is

A−B = {x | x ∈ A ∧ x 6∈ B}.
Analogously, difference of B and A, denoted B −A or B \A, is

B −A = {x | x ∈ B ∧ x 6∈ A}.

Example 2.2.6. Let A = {1, 2, 3, 5, 10}, and let B = {2, 3, 4, 5}. The
difference of A and B consists of members of A that are not also members of
B, so we take all the elements of A and throw out the ones that are in B.
That gives

A−B = {1, 10}.

2.2. Set operations 49

U

A B

Difference: A−B

U

BA

Difference: B −A

Figure 2.2.2. Venn Diagrams for Set Differences.

U

A B

Symmetric Difference: A⊕B

Figure 2.2.3. Venn Diagram for Symmetric Difference.

Analogously, the difference of B and A consists of members of B that are
not also members of A, so

B −A = {4}.

Definition 2.2.7. The symmetric difference of A and B, denoted by
A ⊕ B, is the set containing those elements in either A or B, but not in
both A and B. That is

A⊕B = {x | x ∈ A⊕ x ∈ B}.

Example 2.2.8. Let A = {1, 2, 3, 5, 10}, and let B = {2, 3, 4, 5}. To compute
the symmetric difference of A and B, we combine the elements of A and B,
and them remove the elements that are members of both A and B. Thus

A⊕B = {1, 4}.

50 2. Basic Structures

U

A

Complement: A

Figure 2.2.4. Venn Diagram for Complement.

Definition 2.2.9. Let U be the universal set. The complement of A,
denoted A, is the difference of U and A. That is

A = {x | x 6∈ A} = U −A.

Example 2.2.10. Let A = {1, 2, 3, 5, 10}, and let B = {2, 3, 4, 5}. Suppose
U = {1, 2, . . . , 10}. Then the complement of A consists of elements in U that
are not in A. We can compute it by taking all of the elements of U and
throwing out the elements of A. That gives

A = {4, 6, 7, 8, 9}.
Analogously, the complement of B is consists of members of U that are not
in B, so

B = {1, 6, 7, 8, 9, 10}.

Definition 2.2.11. Two sets A and B are disjoint if A ∩B = ∅.

Example 2.2.12. Let A = {1, 3, 5, 7}, and let B = {2, 4, 6}. Then A and B
have no elements in common, so A ∩B = ∅. Thus A and B are disjoint.

Example 2.2.13. Prove if A ⊆ B, then A ∩B = A.

Proof. We need to show

(1) A ∪B ⊆ B, and
(2) B ⊆ A ∪B.

The second statement B ⊆ A ∪B is clear from the the definition. Namely,
for any element b in B, we must have b ∈ A ∪B by definition of union.

It remains to show A ∪ B ⊆ B. Let x be a generic element in A ∪ B.
Then by definition, x ∈ A or x ∈ B. Since A ⊆ B, in either case we have
x ∈ B. Thus A ∪B ⊆ B.

Therefore A ∪B = B as desired. �

2.2. Set operations 51

Example 2.2.14. Draw a Venn diagram representing (A−B) ∪ (B −A).
From the definition, (A−B)∪ (B−A) consists of elements of A that are

not in B together with elements of B that are not in A. We shade the part
of A that is not in B and the part of B that is not in A.

U

A B

Example 2.2.15. Draw a Venn diagram representing A ∩ (B ∪ C).
From the definition, we have that A ∩ (B ∪ C) consists of elements that

are in A and in B ∪ C.

A

B C

U

Example 2.2.16. Draw a Venn diagram representing A ∩B ∩ C.
From the definition, we have that A ∩ B ∩ C consists of elements that

are not in A and not in B and not in C.

U

A

B C

52 2. Basic Structures

2.2.2. Set identities.

Theorem 2.2.17. Let A and B be sets. Then

A−B = A ∩B.

One approach is to show A−B ⊆ A ∩B and A ∩B ⊆ A−B. We can
do this with generic elements.

Proof using generic elements. Let x ∈ A−B. Then by definition, x ∈ A
and x 6∈ B. Then x ∈ B. Since x ∈ A and x ∈ B, we have x ∈ A ∩ B.
Therefore A−B ⊆ A ∩B.

Let x ∈ A ∩B. Then by definition x ∈ A and x ∈ B. Then x 6∈ B. Since
x ∈ A and x 6∈ B, we have x ∈ A−B. Thus A ∩B ⊆ A−B.

Therefore A−B = A ∩B. �

Another approach is to use set builder notation and logical equivalences.

Proof using set builder notation and logical equivalences.

A−B = {x | x ∈ A ∧ x 6∈ B}
= {x | x ∈ A ∧ x ∈ B}
= {x | x ∈ A ∩B}
= A ∩B.

�

Another approach is to compute a membership table , a table displaying
the membership of elements in sets. The concept is similar to using truth
tables to display the truth value of propositions. Use 1 to indicate membership
in the set and 0 to denote the element is not in the set.

Below, we use a membership table to prove Theorem 2.2.17.

Remark 2.2.18. When using a membership table to prove a set identity,
remember to specify which columns give the desired result in the conclusion.

Proof using a membership table.

A B B A ∩B A−B
1 1 0 0 0

1 0 1 1 1

0 1 0 0 0

0 0 1 0 0

Since the last two columns are the same, we have A ∩B = A−B. �

2.2. Set operations 53

Theorem 2.2.19 (Set identities I). Let A be a set with universal set U .

Identity laws: A ∩ U = A; A ∪ ∅ = A

Domination laws: A ∪ U = U ; A ∩ ∅ = ∅
Idempotent laws: A ∪A = A; A ∩A = A

Complementation law : A = A

Complement laws: A ∪A = U ; A ∩A = ∅

Proof. Exercise. Either compute membership tables and compare columns
or use generic elements to show each set is a subset of the other. �

Theorem 2.2.20 (Set identities II). Let A and B be sets.

Commutative laws: A ∪B = B ∪A; A ∩B = B ∩A.
Absorption laws: A ∪ (A ∩B) = A; A ∩ (A ∪B) = A.

Proof. Exercise. Either compute membership tables and compare columns
or use generic elements to show each set is a subset of the other. �

Theorem 2.2.21 (Set identities III). Let A, B, and C be sets.

Associative laws: A∪(B∪C) = (A∪B)∪C; A∩(B∩C) = (A∩B)∩C.
Distributive laws: A ∪ (B ∩C) = (A ∪B) ∩ (A ∪C); A ∩ (B ∪C) =

(A ∩B) ∪ (A ∩ C).

We prove the associative law for intersection in several ways and leave
the rest as an exercise. Let A and B be sets. We want to show

(A ∩B) ∩ C = A ∩ (B ∩ C).

Proof using generic elements. We need to show

(1) A ∩ (B ∩ C) ⊆ (A ∩B) ∩ C, and
(2) (A ∩B) ∩ C ⊆ A ∩ (B ∩ C).

Let x ∈ A ∩ (B ∩ C). Then x must be in A and also in B ∩ C. Hence
x must be in A and also in B and in C. Since x is in both A and B, we
conclude that x ∈ A ∩ B. This, together with the fact that x ∈ C tells us
that x ∈ (A ∩B) ∩ C, as desired.

Now we prove the other direction. (The argument is nearly identical.)
Let x ∈ (A ∩ B) ∩ C. Then x ∈ A ∩ B and also in C. Hence x is in A
and B and C. Since x is in B and in C, we have that x ∈ B ∩ C. This,
together with the fact that x ∈ A gives x ∈ A∩ (B∩C), as desired. Therefore
A ∩ (B ∩ C) = (A ∩B) ∩ C �

54 2. Basic Structures

An alternate approach is to use a membership table. Use 1 to indicate
membership in the set and 0 to denote the element is not in the set. Remember
to specify which columns give the desired result in the conclusion.

Proof using a membership table. We compute the membership table.

A B C A ∩B (A ∩B) ∩ C B ∩ C A ∩ (B ∩ C)
1 1 1 1 1 1 1
1 1 0 1 0 0 0
1 0 1 0 0 0 0
1 0 0 0 0 0 0
0 1 1 0 0 1 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0

Since the 5th and 7th columns are identical, we have

(A ∩B) ∩ C = A ∩ (B ∩ C).

�

Theorem 2.2.22 (De Morgan’s laws for sets). Let A and B be sets.

(1) A ∪B = A ∩B
(2) A ∩B = A ∪B

Proof. Exercise. Either compute membership tables and compare columns
or use generic elements to show each set is a subset of the other. �

Exercises

1. Give the definition for these terms. Be sure to set up any notation that
is required.
(a) union of sets
(b) intersection of sets
(c) difference of sets
(d) complement of a set
(e) disjoint sets

2. State precisely De Morgan’s laws for sets. Be sure to set up any notation
that is required.

3. Let C = {r, s, t, l, n, e}, and let W = {f, o, r, t, u, n, e}. Compute each of
these sets.
(a) C ∩W
(b) C ∪W

2.2. Set operations 55

(c) C ⊕W
(d) C −W
(e) W − C

4. Let A, B, C be sets. Shade the portion of the Venn diagram corresponding
to each of these sets.

A

B C

U

(a) A ∪ (B ∩ C)
(b) A ∩ (B ∩ C)
(c) A ∩ (B ∪ C)
(d) (A ∩B) ∪ C
(e) (A−B)− C
(f) (A−B) ∪ (A− C) ∪ (B − C)

5. Let A = {1, 3, 5, 7, 9}, and let B = {1, 2, 3, 4, 5}. Compute the following
sets.
(a) A ∩B
(b) A−B
(c) A ∪B
(d) B −A
(e) B ⊕A

6. Let A and B be sets. Prove that if A ⊆ B, then A ∪B = B.

7. Prove the set identities in Theorem 2.2.19.

8. Prove the set identities in Theorem 2.2.20.

9. Prove the set identities in Theorem 2.2.21.

10. Prove De Morgan’s laws for sets.

11. Let A and B be sets. Prove A⊕B = (A−B) ∪ (B −A).

12. Let A and B be sets.
(a) Prove if A ⊆ B then B ⊆ A.
(b) Prove if B ⊆ A then A ⊆ B.

56 2. Basic Structures

A B

f

Figure 2.3.1. Function from A to B.

2.3. Functions

Goals. To introduce the concept of a function, the notion of injective
functions, surjective functions, and the floor and ceiling functions.

2.3.1. Basic terminology. We have seen examples of functions in previ-
ous math classes. Most were likely given by formulas, such as f(x) = x2 + 2.
Functions can given in other ways and are not always given by formulas.
The key property of a function is that it accepts inputs and provides a
corresponding output value for each possible input.

Definition 2.3.1. Let A and B be nonempty sets. A function or map-
ping or transformation from A to B, denoted f : A→ B, is an assignment
of exactly one element of B to each element of A. In this case, A is called
the domain and B is called the codomain of f .

Definition 2.3.2. Let f : A → B be a function, and let a be an element
in A. The image of a is the unique element of B that is assigned by the
function f to the element a. In this case, write f(a) = b, where b is the
image of a. In this case, we say a is the preimage of b.

A function must output a value for every input from the domain. Not
every element in the codomain needs to be an image, though.

Example 2.3.3. Consider f(x) = x2 + 3. Then f defines a function from R
to R. We write f : R→ R. The domain is R. The codomain is R.

On the other hand, g(x) =
√
x is not a function from R to R. This is

because, for example, −2 is an element of R, but the formula does not define
a value for g(−2). We can view g as a function from R≥0 to R.

Functions do not have to be given by formulas, They do not have to be
from sets of numbers to sets of numbers.

Example 2.3.4. Each point on the surface of the earth has a particular
temperature right now, and the temperature (in degrees Celsius) is a real
number. Thus, temperature defines a function T from the surface of the
earth to R, where T (x) is the temperature at the point x.

2.3. Functions 57

Definition 2.3.5. Let f : A→ B be a function. The range or image of
f , denoted im(f) or f(A), is the set of all images of elements of A,

im(f) = {f(a) | a ∈ A}.
More generally, if S is a subset of A, the image of S under f , denoted f(S),
is the set

f(S) = {f(s) | s ∈ S}.

Functions are often given by a table of values.

Example 2.3.6. Consider the prices of some expensive gemstones.

Gemstone $ per carat

Blue Diamond $3,930,000
Pink Star Diamond $1,200,000
Musgravite $35,000
Jadeite $20,000
Alexandrite $12,000
Red Beryl $10,000
Padparadscha Sapphire $8000

This table describes a function p which gives the price per carat of these
gemstones. The domain of p is {Blue Diamond, Pink Star Diamond, Mus-
gravite, Jadeite, Alexandrite, Red Beryl, Padparadscha Sapphire}. We have
that p(Jadeite) = $20,000, but p(Opal) does not exist, since Opal is not in
the domain of p.

For a function f : A → B, we need each element a in A to be assigned
to a unique element f(a) in B. We do not require every element b in B to
have a corresponding element in A. Specifically, an element of B may be the
image of one, none, or several elements of A.

Example 2.3.7. Let P denote the set of all people (alive or dead). Let
F : P → P be the function defined by the rule F (x) is the father of x. For
example, F (Ben Stiller) = Jerry Stiller, since Jerry is Ben’s dad.

On the other hand, if we would run into trouble if we tried to define a
function G for grandfathers. This is because people have two grandfathers
(a paternal grandfather and a maternal grandfather), so G(Ben Stiller) is
ambiguous. Functions are not allowed to have this ambiguity. Thus G does
not define a function from P to P , though it does define a relation that we
discuss in §6.1.

Example 2.3.8. Let A = {1, 2, 3}, and let B = {1, 2, 3, 4}. Let f : A→ B
be the function defined by f(1) = 4, f(2) = 3, and f(3) = 1. Let’s see what
some of the terms mean for this function.

58 2. Basic Structures

• The domain is {1, 2, 3}.
• The codomain is {1, 2, 3, 4}.
• The image of 3 is 1, since f(3) = 1.
• A preimage of 3 is 2, since f(2) = 3.
• The element 2 has no preimage, since there is no element in the domain
that f sends to 2.
• The image of {1, 2} under f is {3, 4}, since

f({1, 2}) = {f(1), f(2)} = {4, 3}.

• The image or range of the function f the same as the image of the
domain A under f . This is {1, 3, 4}, since

f(A) = f({1, 2, 3}) = {f(1), f(2), f(3)} = {4, 3, 1}.

We can think about functions in terms of objects and arrows, where each
arrow joins an element a in A to the corresponding element f(a) in B as
show in the next example.

Example 2.3.9. On the left, we represent the function Example 2.3.8 graph-
ically using objects and arrows. On the right, we give the representation for
a different function. Note that in each case, each element of A is assigned
to a unique element of B. An element of B may be the image of 1, none, or
several elements of A.

1

2

3

1

2

3

4

1

2

3

4

1

2

3

Function Function

Example 2.3.10. These are graphical representations of relations that are
not functions. On the left, the element 1 is assigned to 1 and 4. Functions
need to assign exactly one element of the codomain to each element in the
domain. On the right, the element 1 is not assigned to any element. Again,
this is not a function since functions need to assign exactly one element of
the codomain to each element in the domain.

2.3. Functions 59

1

2

3

1

2

3

4

1

2

3

4

1

2

3

Not a Function Not a Function

Remark 2.3.11. A function is a special kind of relation from A to B.
Specifically, each element a in A is related to the element f(a) in B. We
discuss relations in detail in §6.1.

Example 2.3.12. The volume of a box is a function of its length, width,
and height. Let’s break this example down and recognize the components
described above.

What is the domain? Consider the the set of triples of numbers repre-
senting the length, width, and height of a box. Then each number must be
nonnegative (if we allow degenerate boxes). For concreteness, let’s consider
ordered triples (`, w, h) for length, width, and height. The set of all such
triples is the domain of the volume function.

The volume of a box is a real number, so we can take the codomain to
be R.

If V is the name of our volume function, then we have V : R3
≥0 → R. The

image or range of V is the set of realizable outputs of the function V . Thus
the image is the set of nonnegative real numbers,

im(V) = R≥0.

Definition 2.3.13. The floor of a real number x, denoted bxc, is the
largest integer that is less than or equal to x.

Example 2.3.14. The floor b2.7c = 2, since 2 is the largest integer that is
less than or equal to 2.7.

� Computing the floor of a real number is different from just throwing
away everything after the decimal. In the next example, we compute

the floor of a negative number.

Example 2.3.15. The floor b−2.7c = −3, since −3 is the largest integer
that is less than or equal to −2.7.

60 2. Basic Structures

Figure 2.3.2. xkcd: Number Line. (https://xkcd.com/899/) The
Wikipedia page List of Numbers opens with “This list is incomplete;
you can help by expanding it.”

Example 2.3.16. The floor of an integer is the integer itself, so b3c = 3,
b−3c = −3, and b0c = 0.

Definition 2.3.17. The ceiling of a real number x, denoted dxe, is the
smallest integer that is greater than or equal to x.

Example 2.3.18. The ceiling d2.7e = 3, since 3 is the smallest integer that
is greater than or equal to 2.7.

� Computing the ceiling of a real number is different from just throwing
away everything after the decimal and adding 1. In the next example,

we compute the ceiling of a negative number.

Example 2.3.19. The ceiling d−2.7e = −2, since −2 is the smallest integer
that is greater than or equal to −2.7.

Example 2.3.20. The ceiling of an integer is the integer itself, so d3e = 3,
d−3e = −3, and d0e = 0.

Remark 2.3.21. If we think of x as a point on the usual real number line,
then the floor of x is the integer that is directly to the left of x, unless x
itself is an integer. The ceiling of x is the integer that is directly to the right
of x, unless x itself is an integer.

2.3.2. Injective functions. Some functions “lose information” in the sense
that the output does not uniquely determine the input. For example, consider
the father function F given in Example 2.3.7. Knowing that the father of x is
George Foreman does uniquely determine x since George Foreman has twelve
children (including five sons all named George). Other functions do not lose
information in this way. This property is known as injectivity . Namely,
injective functions are the functions that do not lose information.

https://xkcd.com/899/

2.3. Functions 61

Definition 2.3.22. Let f : A → B be a function. The function f is
injective or one-to-one if for all a and â in A, f(a) = f(â) implies a = â.
An injective function is called an injection .

Example 2.3.23. The squaring function f : R→ R defined by f(x) = x2 is
not injective because f(−2) = f(2), but −2 6= 2.

Example 2.3.23 shows the general technique for showing a function is not
injective.

Proof Technique 2.3.24 (Show f is not injective). Suppose f : A→ B is
a function, and we want to show f is not injective.

(1) Find two different elements a 6= â in the domain A such that f(a) = f(â).
(2) Conclude f is not injective.

Example 2.3.25. The function U denote the set of UNCG students, and
consider the function id : U → Z that assigns to each student their university
ID. In other words, id(x) is the university ID of x. These ID numbers are
unique by design so that so that no two students have the same university ID.
Specifically, the only way to have id(student a) = id(student â) is to have
student a be the same student as â. The id function is injective.

For an injective function, every element in the codomain can have at most
one preimage.

Example 2.3.26. These are graphical representations of injective functions.
In each instance, each element in the codomain has at most one preimage.

1

2

3

4

1

2

3

4

1

2

3

1

2

3

4

Injective Injective

Example 2.3.27. These are graphical representations of functions that are
not injective. In each instance, there is an element in the codomain has
more than one preimage. On the left, both 1 and 4 map to 2, so 2 has two
preimages. On the right, 2, 3, and 4 map to 3, so 3 has three preimages.

62 2. Basic Structures

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Not Injective Not Injective

Example 2.3.28. Let f : R→ R be the function f(x) = 3x− 2. Let’s show
f is injective using the definition.

(1) First, we will rewrite what we want to show in the form “if p, then q.”
This will involve giving names to objects, and recalling the definition
of injective. We want to prove f is injective, which means we want to
prove: If f(a1) = f(a2), then a1 = a2.

(2) As before, to prove a statement of the form “if p, then q” directly, we
assume p is true and try to show q. This is commonly where we set
some notation as well. It is also a good place to remind the reader what
we want to show. e.g., Let a1 and a2 be real numbers such that
f(a1) = f(a2). We want to show that a1 = a2.

(3) Now look back at the goal. It should be some relationship between a1
and a2. It makes sense to write out what we know and simplify to see if
we get what we want.

f(a1) = f(a2)

3a1 − 2 = 3a2 − 2

3a1 = 3a2

a1 = a2

(4) The part above should complete the proof. Since we chose generic a1
and a2 from the domain of f , the argument covers all a1 and a2 in the
domain of f .

The technique in Example 2.3.28 can be generalized to prove a function
is injective.

2.3. Functions 63

Proof Technique 2.3.29 (Show f is injective). Suppose f : A → B is a
function, and we want to show f is injective.

(1) Fix generic elements a and â in the domain A such that f(a) = f(â).
(2) Deduce a = â.
(3) Conclude f is injective.

2.3.3. Surjective functions. Some functions have a codomain that is
larger than it needs to be. Namely, they have a codomain that is larger than
the image of the function. For example, consider the absolute value function
f : R→ R given by f(x) = |x|. Then the codomain of f is R, but the image
of f is just the set of nonnegative real numbers, im(f) = R≥0.

Negative numbers are in the codomain and have no preimage. Other
functions have the property that the codomain is as small as possible. Namely,
the codomain is exactly equal to the image. For example, we can modify f
to define a new function g : R→ R≥0 given by g(x) = |x|. Notice now that
the codomain is equal to the image. Another way of saying that is every
element of the codomain has at least one preimage. This property is known
as surjectivity . Namely, surjective functions have codomains equal to their
image.

Definition 2.3.30. Let f : A → B be a function. The function f is
surjective or onto if for each b in the codomain B, there exists an element
a in the domain A such that f(a) = b; equivalently, if f(A) = B. A
surjective function is called a surjection .

Example 2.3.31. The squaring function f : R→ R defined by f(x) = x2 is
not surjective because −2 ∈ R, but there is no a ∈ R such that f(a) = −2.

Example 2.3.31 shows the general technique for proving a function is not
surjective.

Proof Technique 2.3.32 (Show f is not surjective). Suppose f : A→ B
is a function, and we want to prove f is not surjective.

(1) Find particular b in the codomain B that is not in the image of f , i.e.,
b such that f(a) 6= b for all a in the domain A.

(2) Conclude f is not surjective.

We can make a non-surjective function into a surjective one by shrinking
the codomain.

Example 2.3.33. The squaring function is surjective onto R≥0. Specifically,
the function g : R→ R≥0 given by g(x) = x2 is surjective.

64 2. Basic Structures

� A function is a triple of data (f,A,B). In particular, the domain and
codomain are part of the function. Because of this, when we change the

domain or codomain, we are really creating a new function. For example, the
squaring function from R to R is different from the squaring function from R
to R≥0.

For a surjective function, every element in the codomain must have at
least one preimage.

Example 2.3.34. These are graphical representations of surjective functions.
In each instance, each element in the codomain has at least one preimage.

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

Surjective Surjective

Example 2.3.35. These are graphical representations of functions that are
not surjective. In each instance, there is an element in the codomain has has
no preimage. On the left, there is no element that maps to 4, so 4 has no
preimage. On the right, no elements map to 2 or 4, so both 2 and 4 have no
preimages.

1

2

3

1

2

3

4

1

2

3

4

1

2

3

4

Not Surjective Not Surjective

Example 2.3.36. Let f(x) = 3x − 2. We prove that f is surjective as
follows.

2.3. Functions 65

(1) First we recall the definition of surjective. At the same time, we give
names to things. We want to prove: For every b in R (the codomain
of f), there exists a in R (the domain of f) such that f(a) = b.

(2) Now this still does not look like a “if p, then q” type of statement. What
helps is the same thing as the previous exercise. Namely, if we pick
a generic b in R, then the argument will work for every b in R. That
means we want to prove the statement: If b ∈ R, then there exists
a ∈ R such that f(a) = b.

(3) As before, to prove a statement of the form “if p, then q” directly, we
assume p is true and try to show q. This is commonly where we set
some notation as well. It is also a good place to remind the reader what
we want to show. e.g., Let b ∈ R. We want to find a ∈ R such that
f(a) = b.

(4) Since we want to find a, we should write out the conditions that a must
satisfy, and see if we can solve for a.

f(a) = b

3a− 2 = b

3a = b+ 2

a =
b+ 2

3
.

(5) We have found a as desired. Since b is generic, the argument holds for
all b in R. That completes the proof.

The technique in Example 2.3.36 an be generalized to prove a function is
surjective.

Proof Technique 2.3.37 (Show f is surjective). Suppose f : A→ B is a
function, and we want to prove f is surjective.

(1) Fix a generic element b in the codomain B.
(2) Find a in the domain A such that f(a) = b.
(3) Conclude f is surjective.

2.3.4. Bijective functions.
Definition 2.3.38. Let f : A → B. The function f is bijective if f is
injective and surjective, i.e., one-to-one and onto. A bijective function is
called a bijection or one-to-one correspondence .

Example 2.3.39. The identity function f : R → R defined by f(x) = x is
bijective.

66 2. Basic Structures

A B

f

f−1

Figure 2.3.3. Inverse of a function from A to B.

Proof Technique 2.3.40 (Show f is bijective). Suppose f : A → B is a
function, and we want to prove f is bijective.

(1) Use Proof Technique 2.3.29 to show f is injective.
(2) Use Proof Technique 2.3.37 to show f is surjective.
(3) Conclude f is bijective.

Remark 2.3.41. If A and B are finite sets of the same size, a function
f : A→ B is surjective if and only if f is injective. Furthermore, if |A| < |B|
then f cannot be surjective. If |B| < |A| then f cannot be injective.

Example 2.3.42. The area of a circle is a function of its radius. This
function is injective, because if the area of a circle of radius r is equal to
the area of a circle of radius r′, we must have r = r′. This function is not
surjective, when viewed as a function from R>0 to R, since there is no radius
that would give rise to area −1. When we restrict the codomain to R>0, this
function is surjective since we can construct a circle for any given area.

Proof Technique 2.3.43 (Show f is not bijective). Suppose f : A→ B is
a function, and we want to prove f is no bijective.

(1) Complete one of the following.
(a) Use Proof Technique 2.3.24 to show f is not injective.
(b) Use Proof Technique 2.3.32 to show f is not surjective.

(2) Conclude f is not bijective.

Definition 2.3.44. Let f : A → B be a bijection. The inverse of f ,
denoted f−1, is a function f−1 : B → A that assigns to an element b ∈ B,
the unique element a ∈ A such that f(a) = b.

From the definition, it immediately follows that f is an invertible function
if and only if

f(f−1(b)) = b for all b ∈ B; and(2.1)

f−1(f(a)) = a for all a ∈ A.(2.2)

Remark 2.3.45.

2.3. Functions 67

(1) The definition of inverse makes sense since f is a bijection.
(2) f−1 does not mean 1

f .

(3) Non-bijective functions do not have an inverse.

Example 2.3.46. Consider the function f(x) = 3x+ 2. Let’s compute the
inverse of f .

Let y = f(x). Then f−1(y) = x. That means we can just take y = 3x+ 2,
and solve for x. Doing so, we see that x = y−3

2 . That means f−1(y) = y−3
2 .

Convention often dictates the input variable be named x, so we write it as

f−1(x) =
x− 3

2
.

Finding the inverse of a function is more difficult than checking if given
functions are inverses of each other.

Example 2.3.47. Let f and g be functions from R to R given by f(x) = x3−4
and g(x) = 3

√
x+ 4. Let’s check whether g is the inverse of f .

We just need to check that (2.1) and (2.2) both hold. We compute each
one separately. For all x ∈ R, we have

f(g(x)) = f(3
√
x+ 4)

= (3
√
x+ 4)3 − 4

= (x+ 4)− 4

= x;

g(f(x)) = g(x3 − 4)

= 3
√

(x3 − 4) + 4

=
3
√
x3

= x.

Thus g is the inverse of f . (Note: This also shows that f is the inverse of g.)

Definition 2.3.48. Let f : A→ B, and let g : B → C. The composition ,
denoted g ◦ f , is the function g ◦ f : A→ C defined by

(g ◦ f)(x) = g(f(x)).

Example 2.3.49. Let f(x) = x2 + 2x− 1 and g(x) = 3x− 5 be functions
from R to R.

68 2. Basic Structures

A B C

f g

g ◦ f

Figure 2.3.4. Composition of two functions.

Let’s compute some compositions. First, consider f ◦ g.
(f ◦ g)(x) = f(g(x))

= f(3x− 5)

= (3x− 5)2 + 2(3x− 5)− 1

= (9x2 − 30x+ 25) + (6x− 10)− 1

= 9x2 − 24x+ 14.

Next, let’s compose them in the opposite order.

(g ◦ f)(x) = g(f(x))

= g(x2 + 2x− 1)

= 3(x2 + 2x− 1)− 5

= (3x2 + 6x− 3)− 5

= 3x2 + 6x− 8.

Finally, let’s compose g with itself.

(g ◦ g)(x) = g(g(x))

= g(3x− 5)

= 3(3x− 5)− 5

= (9x− 15)− 5

= 9x− 20.

Exercises

1. Give the definition for these terms. Be sure to set up any notation that
is required.
(a) function
(b) image of an element

2.3. Functions 69

(c) image or range of a function
(d) image of a set under a function
(e) preimage of an element
(f) floor of a real number
(g) ceiling of a real number
(h) injective function
(i) surjective function
(j) bijective function
(k) inverse of a function
(l) composition of functions

2. Let f(x) = x2 + 1 and g(x) = x+ 2 be functions from R to R.
(a) Find the composition h = f ◦ g. What is the image of h?
(b) Find the composition i = g ◦ f . What is the image of i?

3. Construct a function that is injective but not surjective.
4. Construct a function that is surjective but not injective.
5. Construct a function that is neither surjective nor injective.
6. Construct a function that is both injective and surjective.
7. Prove that f : R→ R defined by f(x) = 3x+ 1 is surjective.
8. Prove that f : R→ R defined by f(x) = 3x+ 1 is injective.
9. Let W be the set of words in the Oxford English Dictionary, and let A

be the English alphabet. Let f : W → A be the function defined by

f(x) = first letter of x.

(a) What is the image of f?
(b) Is f is surjective? Justify.
(c) Is f is injective? Justify.

10. Give an explicit example of a function from Z to Z that is
(a) injective, but not surjective.
(b) surjective, but not injective.
(c) injective and surjective.
(d) neither injective nor surjective.

11. Let S = {−2,−1, 0, 3, 4, 5} Find f(S) for each of the following. Be sure
to express the answer as a set.
(a) f(x) = 1
(b) f(x) = 2x+ 1
(c) f(x) = x2

(d) f(x) = dx2 e
(e) f(x) = bx2+1

3 c
12. Let A and B be sets, and let f : A→ B be a function. Let S and T be

subsets of A. Prove f(S ∪ T) = f(S) ∪ f(T).

70 2. Basic Structures

13. Let A and B be sets, and let f : A→ B be a function. Let S and T be
subsets of A.
(a) Prove f(S ∩ T) ⊆ f(S) ∩ f(T).
(b) Give an explicit example that shows the inclusion above can be

proper.
14. Let A and B be sets, and let f : A→ B be a function. Let S and T be

subsets of A. Prove that if f is injective, then f(S ∩ T) = f(S) ∩ f(T).

2.4. Sequences and summations

Goals. To introduce terminology used for sequences and summations. To
introduce recurrence relations and some methods for solving them. To work
with summations and establish several important summation techniques.

2.4.1. Basic Terminology.

Definition 2.4.1. A sequence is a function from a subset of the integers
(usually {0, 1, 2, . . .} or {1, 2, 3, . . .}) to a set S. We use an to denote the
image of n, and we call an a term of the sequence. We use the notation
{an} to describe the whole sequence, and an represents an individual term
in the sequence.

Remark 2.4.2. Note the notation conflicts with our notation for sets. The
context will make it clear which we are discussing.

Example 2.4.3. The sequence {an}, where an = 1
n2 for n = 1, 2, 3, . . . has

terms
1,

1

4
,
1

9
,

1

16
,

1

25
, . . . ,

1

n2
,

1

(n+ 1)2
,

2.4.2. Geometric and arithmetic sequences.

Definition 2.4.4. A geometric progression is a sequence of the form

a, ar, ar2, ar3, . . . , arn, arn+1, . . . ,

where the initial term a and common ratio r are real numbers.

Suppose {an} is a geometric progression. How do we compute its initial
term and common ratio? The initial term is the first term in the sequence.
The common ratio is the ratio of consecutive terms:

an+1

an
=
arn+1

arn
= r,

assuming the sequence is not the zero sequence.

2.4. Sequences and summations 71

This is also how we can tell if a sequence is a geometric progression. A
geometric progression must have the ratio of consecutive terms constant, no
matter where we look in the sequence.

Example 2.4.5. The sequence 3, 6, 12, 24, . . . is a geometric progression
with initial term a = 3. The common ratio is r = 2, since

6

3
=

12

6
=

24

12
= · · · = 2.

Example 2.4.6. The sequence {an} = 2 ·5n for n = 0, 1, 2, . . . is a geometric
progression with initial term a = 2, since a0 = 2 · 50 = 2. The common ratio
r = 5, since

an+1

an
=

2 · 5n+1

2 · 5n = 5.

Example 2.4.7. The sequence 1, 3, 5, 7, 9, . . . is not a geometric progression
since the ratio of consecutive terms is not constant. For example,

3

1
6= 5

3
.

Definition 2.4.8. An arithmetic progression is a sequence of the form

a, a+ d, a+ 2d, . . . , a+ nd, . . . ,

where the initial term a and common difference d are real numbers.

Suppose {an} is an arithmetic progression. How do we compute its initial
term and common difference? The initial term is the first term in the sequence.
The common difference is the difference of consecutive terms:

an+1 − an = (a+ (n+ 1)d)− (a+ nd) = d.

This is also how we can tell if a sequence is an arithmetic progression. An
arithmetic progression must have the difference of consecutive terms constant,
no matter where we look in the sequence.

Example 2.4.9. The sequence 2, 5, 8, 11, 14, . . . is an arithmetic progression
with initial term 2. The common difference is 3, since

5− 2 = 8− 5 = 11− 8 = 14− 11 = · · · = 3.

Example 2.4.10. The sequence {an} defined by an = 3 + 5n for n =
0, 1, 2, . . . is an arithmetic progression with initial term a = 3, since a0 =
3 + 5 · 0 = 3. The common difference is d = 5, since

an+1 − an = (3 + 5(n+ 1))− (3 + 5n) = 5.

Example 2.4.11. The sequence 1, 2, 4, 8, 16, 32, . . . is not an arithmetic
progression, since the difference of consecutive terms is not constant. For
example,

2− 1 6= 4− 2.

72 2. Basic Structures

2.4.3. Recurrence relations.

Definition 2.4.12. A recurrence relation for a sequence {an} is an
equation that expresses an in terms of one or more of the previous terms of
the sequence.

Example 2.4.13 (Compound interest). Suppose we deposit P0 dollars in a
savings account that yields 3% interest per year, compounded annually. Find
a formula for the amount in the account after n years.

Let {Pn} be the sequence where the nth term is the amount in the account
after n years. Then

P0 = P0

P1 = P0 + 0.03P0 = 1.03P0

P2 = P1 + 0.03P1 = 1.03P1 = (1.03)2P0

P3 = P2 + 0.03P2 = 1.03P2 = (1.03)3P0

...
...

Pn = 1.03Pn−1 = (1.03)nP0.

Example 2.4.14. Suppose {an} is a sequence that satisfies the recurrence
relation an = −an−1 + 1 for n = 1, 2, 3, . . . , and suppose a0 = 2.

Then

a0 = 2

a1 = −a0 + 1 = −2 + 1 = −1

a2 = −a1 + 1 = −(−1) + 1 = 2

a3 = −a2 + 1 = −2 + 1 = −1

a4 = −a3 + 1 = −(−1) + 1 = 2

...
...

an =

{
2 if n is even,
−1 if n is odd.

Definition 2.4.15. A solution of a recurrence relation is a sequence whose
terms satisfy the recurrence relation.

Example 2.4.16. Is {an}, where an = 3n for n = 0, 1, 2, . . . a solution of
the recurrence relation an = 2an−1 − an−2 for n = 2, 3, . . . ?

We just need to check if the terms of the sequence satisfy the recurrence
relation. We compute for n ≥ 2,

2an−1 − an−2 = 2(3(n− 1))− (3(n− 2)) = (6n− 6)− (3n− 6) = 3n = an.

2.4. Sequences and summations 73

Thus an = 3n is a solution of the recurrence relation.
Note: It is easy to check that the sequence {bn}, defined by bn = 5 for

n = 0, 1, 2, . . . is also a solution of the recurrence relation. In particular, a
recurrence relation can have more than one solution.

Example 2.4.17. The sequence {an} defined by an = n! for n = 1, 2, 3, . . .
is a solution to the recurrence relation an = nan−1, since n! = n((n− 1)!).

Next, we define a famous recursively defined sequence named for a 12th
century Italian mathematician.

Definition 2.4.18. The Fibonacci sequence f0, f1, f2, . . . is defined by
the initial conditions f0 = 0, f1 = 1, and the recurrence relation

fn = fn−1 + fn−2,

for n = 2, 3,

Example 2.4.19. It is straightforward to compute more terms of the Fi-
bonacci sequence.

f0 = 0

f1 = 1

f2 = f1 + f0 = 1 + 0 = 1

f3 = f2 + f1 = 1 + 1 = 2

f4 = f3 + f2 = 2 + 1 = 3

f5 = f4 + f3 = 3 + 2 = 5

Using linear algebra, we can also find an explicit formula, called a closed
formula for the terms of this sequence.

2.4.4. Summations. We now consider the addition of terms of a se-
quence.

74 2. Basic Structures

Figure 2.4.1. xkcd: Tabletop Roleplaying. (https://xkcd.com/244/)
I may have also tossed one of a pair of teleportation rings into the ocean,
with interesting results.

Definition 2.4.20. Let {an} be a sequence of numbers. For a positive

integer n, the sum from 1 to n of an, denoted
n∑

i=1

ai, is

n∑

i=1

ai = a1 + a2 + · · ·+ an.

More generally, for m ≤ n, we have
n∑

i=m

ai = am + am+1 + · · ·+ an.

Even more generally, for a finite set I, we
∑

i∈I
ai be the sum of the ai with i

in I.

Remark 2.4.21. We are using the fact that addition is an associative
operator. In particular,

n∑

i=1

ai = ((. . . (((a1 + a2) + a3) + a4) + . . .) + an)

For summing infinitely many things, one must define the sum to be the limit
of partial sums as described above. This will be covered in more detail in
Calculus, since the notion of limit is required.

https://xkcd.com/244/

2.4. Sequences and summations 75

Python Code Snippet 2.4.22. Given a sequence {ai} as a function in
Python, the following function computes the sum from m to n of {ai}.
def summation(a,m,n):

’’’
Return summation of a_i from m to n.
’’’
partial_sum = 0 # initialize total
for i in range(m,n + 1):

partial_sum += a(i)
return total

Example 2.4.23.
3∑

i=1

i2 = 12 + 22 + 32 = 14.

Theorem 2.4.24 (Properties of summation). Let {an} and {bn} be defined
on a finite set S, and let c be a real number. Suppose

∑
i∈S ai and

∑
i∈S bi

exists. Then ∑

i∈S
ai +

∑

i∈S
bi =

∑

i∈S
(ai + bi),

c
∑

i∈S
ai =

∑

i∈S
cai.

We can use these properties to break down complicated sums into simpler
ones.

Example 2.4.25. Break down the summation
100∑

k=0

(3k2 − 5k + 2)

to a sum of simpler summations.
We use the properties in Theorem 2.4.24

100∑

k=0

(3k2 − 5k + 2) =
100∑

i=0

3k2 −
100∑

k=0

5k +

100∑

k=0

2

= 3

100∑

k=0

k2 − 5

100∑

k=0

k + 2

100∑

k=0

1.

It remains to work out formulas these simpler summations:
100∑

k=0

k2,

100∑

k=0

k, and
100∑

k=0

1.

76 2. Basic Structures

That is done in Example 2.4.29.

Theorem 2.4.26. If a and r are real numbers with r 6= 0, then
n∑

i=0

ari =

{
arn+1−a
r−1 if r 6= 1,

(n+ 1)a if r = 1.

Proof. If r = 1, then

n∑

i=0

ari =
n∑

i=0

a = a+ a+ · · ·+ a︸ ︷︷ ︸
n+ 1 times

= (n+ 1)a.

Now suppose r 6= 1. Let s =
∑n

i=0 ar
i. Then

rs =

n∑

i=0

ari+1 =

n+1∑

i=1

ari.

Then

s(r − 1) = rs− s =
n+1∑

i=1

ari −
n∑

i=0

ari = arn+1 − a.

Dividing by r − 1 gives the result. �

Example 2.4.27. Let’s compute the sum

1 +
1

2
+

1

22
+ · · ·+ 1

2100
.

We rewrite the sum as

1 +

(
1

2

)
+

(
1

2

)2

+ · · ·+
(

1

2

)100

=

100∑

i=0

(
1

2

)i
.

This is the sum of a geometric progression with initial term a = 1 and
common ratio r = 1

2 . Using Theorem 2.4.26 with a = 1, r = 1
2 , and n = 100,

we have that the sum is equal to

arn+1 − a
r − 1

=

(
1
2

)101 − 1
1
2 − 1

= 2

(
1− 1

2101

)
,

which is just a bit less than 2.

2.4. Sequences and summations 77

Theorem 2.4.28 (Summation formulae).
n∑

k=1

1 = n

n∑

k=1

k =
n(n+ 1)

2

n∑

k=1

k2 =
n(n+ 1)(2n+ 1)

6

n∑

k=1

k3 =
n2(n+ 1)2

4
.

Proof. We prove the first two formulae here. We reprove the second and
prove the latter two later in the section on mathematical induction §4.1.

We have
n∑

k=1

1 = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

= n.

Suppose n is even. Then
n∑

k=1

k = (1 + n) + (2 + (n− 1)) + · · ·+ (
n

2
+ (

n

2
+ 1))

︸ ︷︷ ︸
n
2
pairs that sum to n+ 1

=
n(n+ 1)

2
.

Now, suppose n is odd. Then n+ 1 is even. From above, we have
n+1∑

k=1

k =
(n+ 1)(n+ 2)

2
.

Then
n∑

k=1

k =

(
n+1∑

k=1

k

)
− (n+ 1)

=
(n+ 1)(n+ 2)

2
− (n+ 1)

=
(n+ 1)(n+ 2− 2)

2

=
n(n+ 1)

2
.

�

Example 2.4.29. Let’s use Theorem 2.4.28 to compute the sums from
Example 2.4.25.

78 2. Basic Structures

First, let’s compute
∑100

k=0 k
2. We break off piece that starts at k = 1 so

we can use Theorem 2.4.28,
100∑

k=0

k2 = 02 +
100∑

k=1

k2.

Since 02 = 0, this is just
∑100

k=1 k
2, which matches the formula in the theorem

using n = 100. Thus
100∑

k=0

k2 = 0 +
100(100 + 1)(2(100) + 1)

6
= 338,350.

Similarly, we write
100∑

k=0

k = 0 +
100∑

k=1

k.

We use Theorem 2.4.28 with n = 100 to get
100∑

k=0

k = 0 +
100(100 + 1)

2
= 5050.

Finally,
100∑

k=0

1 = 1 +

100∑

k=1

1,

so by Theorem 2.4.28,
100∑

k=0

1 = 1 + 100 = 101.

Example 2.4.30.
500∑

k=1

(7k + 3) = 7

500∑

k=1

k +

500∑

k=1

3

= 7 · 500(501)

2
+ 3(500)

= 878,250.

Exercises

1. Give the definition for these terms. Be sure to set up any notation that
is required.
(a) sequence
(b) geometric progression, common ratio, initial term
(c) arithmetic progression, common difference, initial term

2.4. Sequences and summations 79

(d) recurrence relation
(e) solution of a recurrence relation
(f) Fibonacci sequence
(g) sum

2. Compute the initial term and common ratio of the following geometric
progression.

16, 8, 4, 2, 1,
1

2
,
1

4
,
1

8
, . . .

3. Compute
5∑

i=1

i. Simplify.

4. Compute
100∑

i=1

(3i+ 7). Simplify.

5. Compute
100∑

k=50

k2. Simplify.

6. Compute
10∑

k=0

3 · 2k. Simplify.

7. What are the terms a1, a2, a3, and a4 of each of these sequences {an}?
(a) an = 1
(b) an = bn2 c
(c) an = (−1)n

(d) an = 2(−3)n+1 + 4
(e) an = (−1

2)n

8. What are the terms a1, a2, a3, and a4 of each of these sequences {an}?
(a) an = 1 + (−1)n

(b) an = −(−3)n

(c) an = 3n+ 4
(d) an = 3n − 2n

(e) an =
√
bnc

9. Show that each of these sequences {an} is a solution of the recurrence
relation

an = −3an−1 + 4an−2.

(a) an = 0
(b) an = 1
(c) an = (−4)n

(d) an = 2(−4)n + 3

10. Suppose you are hired at company in this year with a starting salary of
$50,000. Every year, you receive a 5% raise plus an additional $1000.
(a) Set up a recurrence relation for your salary after n years.
(b) What is your salary in 10 years?

80 2. Basic Structures

(c) Find an explicit formula for your salary in n years.

Chapter 3

Number Theory and
Applications

Mathematics is the queen of the sciences and
number theory is the queen of mathematics.

Carl Friedrich Gauss (1777–1855)

At its core, number theory is the study of integers. In this chapter,
we examine introduce modular arithmetic to explore divisibility. We dis-
cuss modern applications of number theory including ASCII encoding and
encryption.

3.1. Divisibility and modular arithmetic

Goals. To introduce some fundamental concepts from number theory, in-
cluding the division algorithm, congruences, and the rules of modular
arithmetic.

3.1.1. Divisibility.

Definition 3.1.1. Let a and b be integers, with a 6= 0. We say a divides
b, denoted a | b, if there exists an integer k such that b = ak. In this case,
we call a a factor of b, and b is a multiple of a. We write a - b when a
does not divide b.

Example 3.1.2.

3 divides 12: 3 | 12 since 12 = 3 · 4.

81

82 3. Number Theory and Applications

3 does not divide 7: 3 - 7 since there is no integer k such that 7 = 3k.
In other words, 7

3 is not an integer so 3 - 7.

Theorem 3.1.3. Let a, b, and c be integers with a 6= 0.

(1) If a | b and a | c, then a | (b+ c).
(2) If a | b, then a | bc.
(3) Suppose in addition b 6= 0. If a | b and b | c, then a | c.

Proof.

(1) Suppose a | b and a | c. Then there exists integers m and n such that
b = am and c = an. We want to show a | (b+ c). We compute

b+ c = am+ an = a(m+ n).

Since m and n are integers, m+ n is an integer. Thus a | (b+ c).
(2) Suppose a | b. Then there exists an integer n such that b = an. We

want to show a | bc. We compute

bc = (an)c = a(nc).

Since n and c are integers, nc is an integer. Thus a | bc.
(3) Suppose a | b and b | c. Then there exist integers m and n such that

b = am and c = bn. We want to show a | c. We compute

c = bn = (am)n = a(mn).

Since m and n are integers, mn is an integer. Thus a | mn.
�

Corollary 3.1.4. Let a, b, c ∈ Z with a 6= 0. If a | b and a | c, then
a | (sb+ tc) for all s, t ∈ Z.

Theorem 3.1.5 (Division algorithm). Let a and d be integers with d > 0.
There exists unique integers q and r with 0 ≤ r < d such that a = dq + r.

Remark 3.1.6. Given a and d, we can compute q as the floor
⌊
a
d

⌋
. After

we have q, we can solve for r in the equation a = dq + r.

Example 3.1.7. Let’s see what the division algorithm says in a few examples.
First consider a = 253 and d = 17. By long division, we see that

253/17 ≈ 14.88. Thus q =
⌊
253
17

⌋
= 14. Then 253 = 17 · 14 + r. Solving for r

gives r = 15.
Next consider a = −253 and d = 17. By long division, we see −253/17 ≈

−14.88. Thus q =
⌊−253

17

⌋
= −15. Then −253 = 17(−15) + r. Solving for r

gives r = 2.

3.1. Divisibility and modular arithmetic 83

Definition 3.1.8. Let a and d be integers, with d > 0. Let q and r be
integers such that a = dq + r, with 0 ≤ r < d. We call d the divisor , and
we call a the dividend . We call q the quotient , and denote it a div d. We
call r the remainder , and denote it a mod d.

Remark 3.1.9. The definition of the quotient and remainder of a divided
by d is well-defined because of the Division algorithm, which implies that the
a and r are uniquely determined by those conditions.

We denote the quotient and remainder by

q = adiv d and r = a mod d.

Python Code Snippet 3.1.10. In Python, the quotient and remainder
can be computed as follows. Note: In Python, there is a function that returns
both the quotient and remainder at once.

q = a // d
r = a % d
or compute them both at the same time
q, r = divmod(a,d)

Example 3.1.11. 17 div 3 = 5 and 17 mod 3 = 2 since 17 = 5 · 3 + 2.

Example 3.1.12. −17 div 3 = −6 and −17 mod 3 = 1 since 17 = −6 · 3 + 1.

3.1.2. Modular arithmetic.

Definition 3.1.13. Let a, b, and m be integers, with m > 0. We say a is
congruent to b modulo m, denoted a ≡ b (mod m), if m | (a− b).

Remark 3.1.14. This notion is different (but related) to the mod represent-
ing the remainder from the division algorithm. For example, if a = b mod m,
then a is an integer with 0 ≤ a < m. In particular, b mod m is an integer.
On the other hand, a ≡ b (mod m) asserts a relationship between a and b.
We never write b (mod m) by itself.

Theorem 3.1.15. Let a, b,m ∈ Z, with m > 0. The following are equiva-
lent.

(1) a ≡ b (mod m).
(2) There exists k ∈ Z such that a = b+ km.
(3) a mod m = b mod m.

Proof. It is enough to prove 1→ 2, 2→ 3, and 3→ 1.

1→ 2: Suppose a ≡ b (mod m). Then m | (a− b). Then there exists an
integer k such that a− b = mk. Solving for a, we have a = b+ km as
desired.

84 3. Number Theory and Applications

2→ 3: Suppose there exists k ∈ Z such that a = b + km. Using the
Division algorithm, we write a = qm + r and b = q′m + r′, for some
integers q, q′, r, r′ with 0 ≤ r, r′ < m. We want to show that r = r′. We
compute

a = b+ km = (q′m+ r′) + km = (q′ + k)m+ r′.

By the uniqueness of the integers in the Division algorithm, we must
have q′ + k = q and r′ = r.

3→ 1: Suppose a mod m = b mod m. Let r = a mod m = b mod m.
Then by the Division algorithm, there exist integers q and q′ such that
a = qm+ r and b = q′m+ r. We compute

a− b = (qm+ r)− (q′m+ r) = m(q − q′).

Since q and q′ are integers, we have m | (a− b). Thus a ≡ b (mod m).

�

Definition 3.1.16. The set of integers that are congruent to a modulo
m is called the congruence class of a modulo m, and is denoted [a]. In
particular,

[a] = {a+mk | k ∈ Z}.

Example 3.1.17. The congruence class of 3 modulo 7 is

[3] = {3 + 7k | k ∈ Z} = {. . . ,−11,−4, 3, 10, 17, . . .}

This is equal to the congruence class of 10 since

[10] = {10 + 7k | k ∈ Z} = {. . . ,−11,−4, 3, 10, 17, . . .}

In fact, the congreunce class of 3 is equal to the congruence class of any
integer that is congruent to 3 modulo 7,

· · · = [−4] = [3] = [10] = [17] = · · · .

Example 3.1.18. There are five congruence classes modulo 5,

[0] = {0 + 5k | k ∈ Z} = {. . . ,−10,−5, 0, 5, 10, . . .}
[1] = {1 + 5k | k ∈ Z} = {. . . ,−9,−4, 1, 6, 11, . . .}
[2] = {2 + 5k | k ∈ Z} = {. . . ,−8,−3, 2, 7, 12, . . .}
[3] = {3 + 5k | k ∈ Z} = {. . . ,−7,−2, 3, 8, 13, . . .}
[4] = {4 + 5k | k ∈ Z} = {. . . ,−6,−1, 4, 9, 14, . . .}.

The following result says that we can define arithmetic on congruence
classes.

3.1. Divisibility and modular arithmetic 85

Theorem 3.1.19. Let a, â, b, b̂,m ∈ Z, with m > 0. If a ≡ â (mod m) and
b ≡ b̂ (mod m), then

(1) a+ b ≡ â+ b̂ (mod m);

(2) ab ≡ âb̂ (mod m).

Proof. Suppose a ≡ â (mod m) and b ≡ b̂ (mod m). Then there exist
integers k and ` such that a = â+ km and b = b̂+ `m. We compute

a+ b = (â+ km) + (b̂+ `m) = (â+ b̂) +m(k + `).

Since k and ` are integers, k + ` is an integer. Thus a+ b ≡ â+ b̂ (mod m)
by Theorem 3.1.15.

Similarly, we compute

ab = (â+ km)(b̂+ `m) = (âb̂) +m(kb̂+ `â+ k`m).

Since â, b̂, k, m, and ` are integers, (kb̂ + `â + k`m) is an integer. Thus
ab ≡ âb̂ (mod m) by Theorem 3.1.15. �

The result says that we can take any element in the congruence class of
a and add it to any element in the congruence class of b, and we will get
an element of the congruence class of a + b, and the analogous result for
multiplication. The division algorithm ensures that each congruence class
modulo m will contain a unique representative 0 ≤ a < m, so we can transfer
the arithmetic on congruence classes to an arithmetic on congruence class
representatives.

Example 3.1.20. Suppose a ≡ 5 (mod 10) and b ≡ 2 (mod 10). Then

a2 − b ≡ 52 − 2 ≡ 23 ≡ 3 (mod 10).

Definition 3.1.21. Let m be a positive integer. The integers mod m,
denoted Zm, as a set is

Zm = {0, 1, . . . ,m− 1}.
We endow this set with arithmetic. For a and b in Zm, we define the sum
and product by

a+m b = (a+ b) mod m and a×m b = (ab) mod m.

86 3. Number Theory and Applications

Example 3.1.22. We compute the addition and multiplication table for Z6.

+6 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

×6 0 1 2 3 4 5

0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

3.1.3. Primitive roots.

Definition 3.1.23. A primitive root modulo a prime p is an integer r in
Zp such that every nonzero element of Zp is a power of r.

Example 3.1.24. Find a primitive root modulo 7.
We need to find an element r in Z7 such that every element in Z7 is

expressible as a power of r. Rather that figuring out which power to use to
represent each element of Z7, it is easier to just compute powers of r and see
which elements of Z7 they represent.

We compute in Z7.

30 = 1

31 = 3

32 = 31 ×m 3 = 3×m 3 = 2

33 = 32 ×m 3 = 2×m 3 = 6

34 = 33 ×m 3 = 6×m 3 = 4

35 = 34 ×m 3 = 4×m 3 = 5

This shows 1 = 30, 2 = 32, 3 = 31, 4 = 34, 5 = 35, and 6 = 33. Since
Z7 = {0, 1, 2, 3, 4, 5, 6}, we have represented all the nonzero elements of Z7

as powers of 3. Thus 3 is a primitive root modulo 7.

Exercises

1. Give the definition for these terms. Be sure to set up any notation that
is required.
(a) divides
(b) factor
(c) multiple
(d) divisor
(e) dividend

3.1. Divisibility and modular arithmetic 87

(f) quotient
(g) remainder
(h) two integers are congruent modulo an integer
(i) congruence class of an integer modulo an integer
(j) Zm
(k) primitive root

2. State precisely the Division algorithm. Be sure to set up any notation
that is required.

3. Does 13 divide these numbers? Justify.
(a) 39
(b) −26
(c) 0
(d) 1
(e) 57

4. What is the quotient and remainder for these?
(a) 44 divided by 7
(b) −123 divided by 12
(c) 253 divided by 15
(d) 0 divided by 17
(e) −100 divided by 100

5. Suppose a and b are integers such that a ≡ 11 (mod 17), and b ≡ 3
(mod 17). Find the integer c with 0 ≤ c ≤ 16 such that satisfies these.
(a) c ≡ 13a (mod 17)
(b) c ≡ 5a (mod 17)
(c) c ≡ −2a+ 3b (mod 17)
(d) c ≡ ab (mod 17)
(e) c ≡ a3 − b2 (mod 17)

6. Evaluate these quantities.
(a) −15 mod 6
(b) −2 mod 12
(c) 124 mod 7
(d) 244 mod 24
(e) 1245 mod 3

7. Find a primitive root modulo 11.
8. What is the congruence class of 5 modulo 7?
9. Compute the addition and multiplication table for Z5.

10. Let a, b, c be integers, where a, b 6= 0. Follow the steps below to prove
that if a | b and b | c, then a | c.
(a) First, we recognize what we want to prove is in the form “if p, then

q.” What is hypothesis p? What is the conclusion q?
(b) When we want to prove a statement of the form “if p, then q” directly,

we assume p is true and try to show q. This is commonly where we

88 3. Number Theory and Applications

set some notation as well. e.g., Suppose a, b, c are integers such
that a | b and b | c.

(c) Next we need to recall what x | y or divides means. It should have
something to do with the existence of an integer. We say x | y or x
divides y if there exists an integer k such that . . .

(d) Now apply the definition to our situation where we have a | b and
b | c. e.g., Then, there exist(s)

(e) Check back above to be sure that the two integers whose existence is
guaranteed have different names. They need different names because
they need not be the same integer.

(f) Now look back to the goal q that we set above. We should have
something like “a | c”. Use the definition to re-express this goal. We
want to show there exists an integer . . . such that

(g) Now use the two equations from (d) to produce the integer whose
existence we want from (f). Use equations or complete sentences.
Don’t just write sentence fragments of expressions.

(h) Draw the conclusion.

11. Follow the steps below to prove that n3 − n is divisible by 3 for every
integer n.
(a) Remember that divisibility statements can be rewritten as congru-

ence conditions. e.g., a is divisible by b can be written as a ≡ 0
(mod b). What is the congruence condition for this problem?

(b) Rewrite the above, alerting the proof reader that our statement is
equivalent to the desired statement. Be sure to specify that we will
show it for every integer n. e.g., It suffices to show . . . for every
. . .

(c) When we want to prove a universal statement, we can fix a generic
one to consider. e.g., Let n be an integer.

(d) Turn this into a finite check by looking at each congruence class
separately. e.g., There are . . . cases to consider.

(e) For each case, write down the assumption that n is in the congruence
class under consideration. Use properties of modular arithmetic from
class to prove the result in that case. Repeat for each case.

12. Let a, b, c, d,m be integers, with m > 1. Follow the steps below to prove
that if a ≡ b (mod m) and c ≡ d (mod m), then a+ c ≡ b+ d (mod m).
(a) First, recognize what we want to prove is in the form “if p, then q.”

What is p? What is q?
(b) As before, to prove a statement of the form “if p, then q” directly,

we assume p is true and try to show q. This is commonly where we
set some notation as well. Suppose We want to show

(c) Above are some statements about congruences. Use the definition or
theorems to state our assumption and our goal in terms of divisibility
or existence of integers.

3.2. Integer representations and applications 89

(d) Use arithmetic to get from the assumptions to the goal.
(e) Draw the conclusion.

13. Prove that if n is an odd, positive integer, then n2 ≡ 1 (mod 8).
14. Find a counterexample to the following statement about congruences.

Let a, b, c, and m be integers with m > 2. If ac ≡ bc (mod m), then
a ≡ b (mod m).

3.2. Integer representations and applications

Goals. To study representations of integers in different bases, including
binary and hexadecimal representations, and to introduce algorithms and
applications involving integers based on these representations.

3.2.1. Integer representations. We typically use decimal (base 10) no-
tation to represent integers. e.g., 253 means 2 · 102 + 5 · 101 + 3 · 100. This
is most likely due to the fact that we have 10 fingers. There is no good
mathematical reason to use base 10, and in fact we can use any integer b > 1
as a base.

Working with other bases is important. By abstracting to a general base
b, we find that we understand the usual decimal operations better. Working
in other bases also has applications. For example, binary (base 2) expansions
are used to develop fast exponentiation techniques. This is a vital component
of modern computer encryption schemes necessary for today’s digital world.
Without secure means of communication, things such as online shopping
would be impossible. We use base 256 for ASCII encoding, a character
encoding standard for electronic communication.

Theorem 3.2.1. Let b be an integer greater than 1. If n is a positive integer,
it can be expressed uniquely in the form

n =
k∑

i=0

aib
i,

where k is a non-negative integer, the ai are all non-negative integers strictly
less than b, and ak 6= 0.

Definition 3.2.2. The expression
k∑

i=0

aib
i of the theorem is known as a

base b expansion , denoted (akak−1 . . . a1a0)b.

Example 3.2.3.

90 3. Number Theory and Applications

Figure 3.2.1. xkcd: 1 to 10. (https://xkcd.com/953/) If you get an
11/100 on a CS test, but you claim it should be counted as a ‘C’, they’ll
probably decide you deserve the upgrade.

• (253)10 = 2 · 102 + 5 · 101 + 3 · 100 = 253.

• (10)2 = 1 · 21 + 0 · 20 = 2.

For b > 10, we move to other symbols to represent the digits. For example,
in hexadecimal (base 16), the digits are

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,B,C,D,E, F.

Example 3.2.4.

(1FAD)16 = 1 · 163 + F · 162 +A · 161 +D · 160

= 1 · 163 + 15 · 162 + 10 · 161 + 13 · 160

= 8109.

How do we go the other way? Namely, given an integer n in decimal form
and a positive base b, how can we compute the base b-expansion of n?

We can compute the base b expansion using div and mod. See the
following examples. The first writes out the steps. The second is more
condensed, given as a table.

https://xkcd.com/953/

3.2. Integer representations and applications 91

Example 3.2.5. Compute the binary (base 2) expansion of 67.

67 = 33 · 2 + 1

33 = 16 · 2 + 1

16 = 8 · 2 + 0

8 = 4 · 2 + 0

4 = 2 · 2 + 0

2 = 1 · 2 + 0

1 = 0 · 2 + 1 .

The boxed terms give the base 2 expansion of 67 as

67 = (1000011)2.

Python Code Snippet 3.2.6. Below is the Python code to compute the
base b expansion of n.

def base_expansion(n,b):
’’’
Return the digits of the base b expansion of n.
[a_k, ..., a_1, a_0], where a_k b^k + ... + a_0 = n.
’’’
q = n
digit_list = [] # used to store digits a_0, ..., a_k
while q != 0:

q, r = divmod(q,b)
digit_list.append(r)

now reverse the digits so that a_k is first
digit_list.reverse()
return digit_list

With the algorithm, here is a more condensed solution.

Example 3.2.7. Compute the base 5 expansion of 325.

i q ai

0 325 0
1 65 0
2 13 3
3 2 2
4 0 −

Thus, we have 325 = (2300)5.
Similarly, one can compute that 325 = (505)8 and 325 = (101000101)2.

92 3. Number Theory and Applications

3.2.2. Text encoding. ASCII is a standard way to represent characters
as numbers. For example, a space is represented by 32, a comma is 44, and a
period is 46. The capital letters are also 2 digit integers, starting with 65 for
A and going to 90 for Z. The Python functions chr and ord to convert the
ASCII to characters. e.g., chr(66) returns the string A. If we want to go the
other way, ord(’A’) returns the integer 65. This is known as encoding.

In order to encode messages longer than one character, we will view each
number as a digit in a base 256 expansion of an integer M .

Example 3.2.8. Suppose I want to encode the message Help! using ASCII.
We have

ord(H) = 72, ord(e) = 101, ord(l) = 108, ord(p) = 112, ord(!) = 33,

so the encoded message is

M = (72, 101, 108, 112, 33)256.

That means

M = 72·2564+101·2563+108·2562+112·2561+33·2560 = 310,939,250,721.

Remark 3.2.9. ASCII allows use to convert messages written as strings into
sequences of integers. We take this a step further interpreting the sequence
as the base 256 expansion of a single integer. We will use this later when we
look at RSA encryption §3.5.2.

Example 3.2.10. We can decode a message by computing the base 256
expansion of the encoded message and decoding each character. For exam-
ple, suppose the encoded message is M = 310,939,249,775. The base 256
expansion of M is

M = (72, 101, 108, 108, 111)256.

Then

chr(72) = H, chr(101) = e, chr(108) = l, chr(108) = l, chr(111) = o,

so the decoded message is ‘Hello’.

Watch the video

https://youtu.be/23J2doHaJ6U

for additional details about implementation.

3.2.3. Fast exponentiation. Let b, n, and m be positive integers. For
cryptographic applications, it is important to compute bn mod m efficiently.
Note that in theory, the computation is easy. For example, we can compute

bn = b · b · · · b︸ ︷︷ ︸
n times

.

https://youtu.be/23J2doHaJ6U

3.2. Integer representations and applications 93

Then divide the result by m to get the remainder. There are at least two
problems with this in practice. The first is that computing bn in this way
requires n− 1 multiplications. If n is large, this is slow. We can get around
this using fast exponentiation . We will develop the algorithm by first
looking at an example.

Example 3.2.11. Compute 311.
First, we compute the binary expansion of 11 = (1011)2. Then

311 = 32
3+21+1 = 38 · 32 · 3.

Notice that we can compute 38 as (34)2. Similarly, 34 = (32)2. We have
by repeated squarings,

3 = 3

32 = 9

34 = 92 = 81

38 = 812 = 6561.

Thus 311 = 6561 · 9 · 3 = 177,147. In this computation, we cut the number of
required multiplications in half. For larger exponents n, the savings are even
more extreme.

We can save even more time when we only care about the remainder
modulo some integer.

Example 3.2.12. Compute 311 mod 7.
As in Example 3.2.11, we will use the square and multiply technique to

get the exponentiation faster. As before, we compute the binary expansion
of 11 = (1011)2. Then

311 mod 7 = 32
3+21+1 mod 7 = (38 · 32 · 3) mod 7.

We make additional time and memory savings by keeping the integers small.
We achieve this by reducing mod 7 at every stage, since we only want the
result modulo 7.

We have by repeated squarings,

3 mod 7 = 3

32 mod 7 = 2

34 mod 7 = 22 mod 7 = 4

38 mod 7 = 42 mod 7 = 2.

Thus 311 mod 7 = 2 · 2 · 3 mod 7 = 5.

94 3. Number Theory and Applications

The fast exponentiation algorithm allows one to efficiently compute
an mod m. We give a slightly different formulation here than the standard
that is easier to remember for computations by hand.

Theorem 3.2.13 (Fast exponentiation). Given positive integers a, n, and
m, with m > 1, compute an mod m efficiently by following these steps.

(1) Compute the base 2 expansion of the exponent n

n = (akak−1 . . . a1a0)2.

(2) Make a list of successive squares pi, where p0 = a mod m and pi =
p2i−1 mod m for 1 < i ≤ k.

(3) Compute
pa00 p

a1
1 . . . pakk mod m,

while remembering the following.
• Keep reducing modulo m when computing the product in order to
keep the numbers small.
• When ai = 0, the term paii = 1 and so does not contribute to the
product.

Example 3.2.14. Let’s compute 367 mod 253.
First we compute the base 2 expansion of 67 = (1000011)2 as in Exam-

ple 3.2.5. Note that this is seven digits (k = 6), so we need to compute the
seven successive squares p0, . . . p6.

p0 = 3 mod 253 = 3

p1 = 32 mod 253 = 9

p2 = 92 mod 253 = 81

p3 = 812 mod 253 = 236

p4 = 2362 mod 253 = 36

p5 = 362 mod 253 = 31

p6 = 312 mod 253 = 202.

We summarize the computations so far.

i ai pi

0 1 3 mod 253 = 3
1 1 32 mod 253 = 9
2 0 92 mod 253 = 81
3 0 812 mod 253 = 236
4 0 2362 mod 253 = 36
5 0 362 mod 253 = 31

6 1 312 mod 253 = 202

3.2. Integer representations and applications 95

The terms corresponding to a 1 in the binary expansion of 67 have been
boxed. It is these terms that we multiply together. It follows that

367 mod 253 = 3 · 9 · 202 mod 253 = 141.

Python Code Snippet 3.2.15. The Python code given below shows the
general algorithm for fast exponentiation. It utilizes the base_expansion
code above.

def fast_power_mod(b, n, m):
’’’
Return b^n mod m.
’’’
x = 1 # initialize answer
power = b % m # initialize power
digit_list = base_expansion(n, 2)
for digit in digit_list[::-1]:

if digit == 1:
x = (x * power) % m

power = (power * power) % m
return x

Let’s compute another fast exponentiation x = bn mod m example, but
using the algorithm in Python Code Snippet 3.2.15. The main difference is
that instead of multiplying the relevant values together at the end, we keep
track and update the value of x as the computation progresses.

Example 3.2.16. Let’s compute 367 mod 253 again. Compare with Exam-
ple 3.2.14, but this time we will use the algorithm described in Python Code
Snippet 3.2.15.

As before, we have compute the base 2 expansion of 67 = (1000011)2.
We compute pi by squaring pi−1 and reducing mod 253. We initialize p0 =
3 mod 253 = 3 and x = 1. Whenever the ith digit in the binary expansion
of 22 is a 1, we update x by multiplying x by pi. These rows are marked
with a left arrow (←) below. The result is the last value of x. Thus
367 mod 253 = 141.

i ai pi x

0 1 3 mod 253 = 3 1 · 3 mod 253 = 3 ←
1 1 32 mod 253 = 9 3 · 9 mod 253 = 27 ←
2 0 92 mod 253 = 81 27
3 0 812 mod 253 = 236 27
4 0 2362 mod 253 = 36 27
5 0 362 mod 253 = 31 27

6 1 312 mod 253 = 202 27 · 202 mod 253 = 141 ←

96 3. Number Theory and Applications

3.2.4. Casting out nines.
Theorem 3.2.17. A positive integer is congruent to the sum of its decimal
digits modulo 9.

Proof. Let the decimal expansion of the integer N be given by

N = (anan−1 . . . a1a0)10

so that

N = an10n + an−110n−1 + · · ·+ a110 + a0.

It follows immediately that

N ≡ an10n + an−110n−1 + · · ·+ a110 + a0 (mod 9).

The next key fact is that 10 ≡ 1 (mod 9), and so

10k ≡ 1k ≡ 1 (mod 9), for all k.

Since 10k ≡ 1 (mod 9), we have

N ≡ an + an−1 + · · ·+ a3 + a2 + a1 + a0 (mod 9).

In other words, N is congruent to the sum of its digits modulo 9. �

Remark 3.2.18. This result is the reason the casting out nines technique
for checking arithmetic works. See the video Casting Out Nines - Numberphile
for additional details.

https://youtu.be/FlndIiQa20o

Since an integer is divisible by 9 if and only if it is congruent to 0 modulo
9, Theorem 3.2.17 immediately gives the following divisibility criterion.

Corollary 3.2.19 (Divisibility by nine). A positive integer is divisible by 9
if and only if the sum of its decimal digits is divisible by 9.

Proof. Therefore N ≡ 0 (mod 9) if and only if

an + an−1 + · · ·+ a1 + a0 ≡ 0 (mod 9).

Since being divisible by 9 is the same as being congruent to 0 (mod 9), we
have proved that a positive integer is divisible by 9 if and only if the sum of
its decimal digits is divisible by 9. �

A similar argument gives divisibility rules for 3 and 11.

https://youtu.be/FlndIiQa20o

3.2. Integer representations and applications 97

Exercises

1. Give the definition for these terms. Be sure to set up any notation that
is required.
(a) base b expansion
(b) binary
(c) decimal
(d) hexadecimal

2. Compute the base 5 expansion of 253.
3. Watch the following videos

• How to count to 1000 on two hands posted by 3Blue1Brown
https://youtu.be/1SMmc9gQmHQ

• How high can you count on your fingers? (Spoiler: much higher than
10) - James Tanton posted by TED-Ed

https://youtu.be/UixU1oRW64Q
and learn to count in binary on your hands.

4. Compute the integer representing the ASCII encoding of these messages.
(a) apple
(b) Radiohead
(c) discrete math
(d) secret

5. These integers represent messages encoded in ASCII as described in
§3.2.2. Decode these messages.
(a) 6582119
(b) 280991720293
(c) 311107740793
(d) 22107779118197813113556726561
(e) The following is an integer that is too long to fit in a line.

1971486178880874921204775823582727213754122745

127854714387549425398830

6. Compute 12321 mod 456. Follow the steps below if you get stuck.
(a) Compute the base 2 expansion of 321.
(b) Check that you got 321 = (101000001)2.
(c) Compute the successive powers pi, remembering to reduce mod 456.

Did you notice anything that helps this computation go faster?
(d) Multiply the correct terms together to compute 12321 mod 456.

7. Compute 7447 mod 645.
8. Compute 3447 mod 645.
9. Convert the decimal expansion of each of these integers to a binary

expansion. i.e., Convert base 10 to base 2.

https://youtu.be/1SMmc9gQmHQ
https://youtu.be/UixU1oRW64Q

98 3. Number Theory and Applications

(a) 1
(b) 156
(c) 765
(d) 23
(e) 245

10. Convert the decimal expansion of each of these integers to a hexadecimal
expansion. i.e., Convert base 10 to base 16.
(a) 123
(b) 45326
(c) 12
(d) 157
(e) 149987

11. Convert the binary expansion of each of these integers to a decimal
expansion. i.e., Convert base 2 to base 10.
(a) (10011)2
(b) (111)2
(c) (101010)2
(d) (111000)2
(e) (1011011)2

12. Convert the hexadecimal expansion of each of these integers to a decimal
expansion. i.e., Convert base 16 to base 10.
(a) (A123B)16
(b) (81C)16
(c) (ABBA)16
(d) (DA3)16
(e) (253)16

13. Prove that a positive integer is divisible by 5 if and only if the last digit
is divisible by 5.

14. Prove that a positive integer is divisible by 3 if and only if the sum of its
decimal digits is divisible by 3.

15. Prove that a positive integer is divisible by 11 if and only if the alternating
sum of its decimal digits is divisible by 11.

3.3. Primes and greatest common divisors

Goals. To introduce some fundamental concepts from number theory, in-
cluding primality, prime factorization, and greatest common divisors. To
introduce some important conjectures about primes.

3.3.1. Primes.

3.3. Primes and greatest common divisors 99

Figure 3.3.1. xkcd: Factoring the Time. (https://xkcd.com/247/) I
occasionally do this with mile markers on the highway.

Definition 3.3.1. An integer p > 1 is prime if the only positive factors of
p are 1 and p. A positive integer greater than 1 that is not prime is called
composite .

Remark 3.3.2. In later courses, we extend the notion of prime to all integers.
For simplicity, in this course we restrict the prime versus composite distinction
to integers greater than 1. Even in the extended notion, 1 is not prime.

Example 3.3.3. The first few primes are

2, 3, 5, 7, 11, 13, 17,

Theorem 3.3.4 (Fundamental Theorem of Arithmetic). Every integer that
is greater than 1 can be written uniquely as a prime or a product of two or
more primes, where the primes are written in order of non-decreasing size.

Example 3.3.5.

100 = 2 · 2 · 5 · 5 = 2252

253 = 11 · 13

7007 = 7 · 7 · 11 · 13 = 72 · 11 · 13

23,498,357,349 = 3 · 53 · 397 · 372,263

https://xkcd.com/247/

100 3. Number Theory and Applications

The following Theorem says than if an integer is composite, it must have
a “small” prime factor, where “small” means less than or equal to the square
root of the number.

Theorem 3.3.6. If n is composite, then n has a prime factor less than or
equal to

√
n.

Proof. Let n be composite. Then n can be factored as n = ab. If a and b
are both greater than

√
n, then n = ab >

√
n
√
n = n. Contradiction. Thus

n has a divisor less than or equal to
√
n. Then by the Fundamental Theorem

of Arithmetic, that divisor is either prime, or has a prime divisor less than or
equal to

√
n. �

Theorem 3.3.6 can be used to prove primality of certain integers. The
theorem says that if an integer is composite, then it must have a small prime
factor. The contrapositive says that if an integer does not have a small prime
factor, then it must be prime.

Example 3.3.7. Prove that 523 is prime.

Proof. Theorem 3.3.6 says that if 523 is composite, it will have a prime
factor less than

√
523. Since

√
523 ≈ 22.9, it suffices to show that no prime

less than 22 divides 523. That means we need to check 2, 3, 5, 7, 11, 13, 17, 19.
A quick computation shows that

523 mod 2 = 1

523 mod 3 = 1

523 mod 5 = 3

523 mod 7 = 5

523 mod 11 = 6

523 mod 13 = 3

523 mod 17 = 13

523 mod 19 = 10.

Thus 523 is prime. �

We can use the Sieve of Eratosthenes to find the primes up to some
bound. This is a simple, ancient algorithm for finding all prime numbers up
to any given limit. See the Wikipedia page for a nice animation.

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

The sieve works by iteratively marking as composite (i.e., not prime) the mul-
tiples of each prime, starting with the first prime number, 2. See Figure 3.3.1
for an example using the sieve to find the primes up to 49.

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

3.3. Primes and greatest common divisors 101

8

15

22

29

36

43

2

9

16

23

30

37

44

3

10

17

24

31

38

45

4

11

18

25

32

39

46

5

12

19

26

33

40

47

6

13

20

27

34

41

48

7

14

21

28

35

42

49

Step 1: Numbers from 2 . . . 49.

8

15

22

29

36

43

2

9

16

23

30

37

44

3

10

17

24

31

38

45

4

11

18

25

32

39

46

5

12

19

26

33

40

47

6

13

20

27

34

41

48

7

14

21

28

35

42

49

Step 2: Eliminated multiples of 2.

Primes:
2

8

15

22

29

36

43

2

9

16

23

30

37

44

3

10

17

24

31

38

45

4

11

18

25

32

39

46

5

12

19

26

33

40

47

6

13

20

27

34

41

48

7

14

21

28

35

42

49

Step 3: Eliminated multiples of 3.

Primes:
2, 3 8

15

22

29

36

43

2

9

16

23

30

37

44

3

10

17

24

31

38

45

4

11

18

25

32

39

46

5

12

19

26

33

40

47

6

13

20

27

34

41

48

7

14

21

28

35

42

49

Step 4: Eliminated multiples of 5.

Primes:
2, 3, 5

8

15

22

29

36

43

2

9

16

23

30

37

44

3

10

17

24

31

38

45

4

11

18

25

32

39

46

5

12

19

26

33

40

47

6

13

20

27

34

41

48

7

14

21

28

35

42

49

Step 5: Eliminated multiples of 7.

Primes:
2, 3, 5, 7

Step 6: Remaining are prime.

8

15

22

29

36

43

2

9

16

23

30

37

44

3

10

17

24

31

38

45

4

11

18

25

32

39

46

5

12

19

26

33

40

47

6

13

20

27

34

41

48

7

14

21

28

35

42

49

Primes:
2, 3, 5, 7,
11, 13, 17,
19, 23, 29,
31, 37, 41,
43, 47

1

Figure 3.3.2. Sieve of Eratosthenes.

Through sieving, we could enumerate the primes up to a bound N . This
number is denoted π(N). Only 5.0848% of the positive integers less than
1,000,000,000 are prime. See Table 3.3.1 for additional data. It looks like the
frequency with which primes occur is diminishing. It might be reasonable to
guess that eventually prime numbers become so rare that beyond a certain

102 3. Number Theory and Applications

Table 3.3.1. Number of primes up to bound.

bound (N) # of primes (π(N)) percentage (π(N)
N %)

10 4 40.0000%
100 25 25.0000%

1000 168 16.8000%
10,000 1229 12.2900%

100,000 9592 9.5920%
1,000,000 78,498 7.8498%

10,000,000 664,579 6.6458%
100,000,000 5,761,455 5.7615%

1,000,000,000 50,847,534 5.0848%

bound, they no longer occur. This is not the case, as was known to the
Greeks over 2000 years ago. The first known proof is due to Euclid (c. 300
BC). See Theorem 3.3.8. It turns out, the proportion π(N)

N of integers up to
N that are prime does decrease, but at an ever decreasing rate. If you are
interested, you can read more about the Prime Number Theorem and its
fascinating history.

http://mathworld.wolfram.com/PrimeNumberTheorem.html

Theorem 3.3.8 (Infinitude of primes). There are infinitely many primes.

Proof. We use proof by contradiction. Suppose there are finitely many
primes. Label them as p1, p2, . . . , pn. Consider the integer q = p1p2 . . . pn + 1.
By the Fundamental Theorem of Arithmetic, q is prime or can be expressed
as a product of two or more primes. Since q mod pi = 1 for i = 1, 2, . . . , n,
we have that q is not divisible by any prime. Thus q is prime. This gives the
desired contradiction since q is a prime that is not on our list. Therefore,
there are infinitely many primes. �

Though we were able to prove there are infinitely many primes, there are
several open questions about primes.

Definition 3.3.9. Twin primes are pairs of primes that differ by 2.

For example, 3 and 5, 5 and 7, 11 and 13, It is conjectured that
there are infinitely many twin primes.

Conjecture 3.3.10 (Twin prime conjecture). There are infinitely many
primes p such that p+ 2 is also prime.

http://mathworld.wolfram.com/PrimeNumberTheorem.html

3.3. Primes and greatest common divisors 103

Figure 3.3.3. xkcd: Haiku Proof. (https://xkcd.com/622/) After
somewhere around 40 hours, there’s no academic reason to go to the
class. Only go for the hallucinations.

While the twin prime conjecture is still open, there have been several
amazing recent advances in this direction. See the video Gaps between Primes
- Numberphile for some of this story.

https://www.youtube.com/watch?v=vkMXdShDdtY

Another famous open problem in number theory concerns decomposing
integers into sums of primes. In a letter to Leonhard Euler in 1742, Christian
Goldbach conjectured that every odd integer n, n > 5, is the sum of three
primes. Euler replied that this conjecture is equivalent to the conjecture that
every even integer n, n > 2, is the sum of two primes. For example, 4 = 2 + 2,
6 = 3 + 3, 8 = 3 + 5, 10 = 3 + 7, Although no proof of the Goldbach
conjecture has been found, the conjecture has been computationally checked
to hold up to 4 · 1018 [3].

Conjecture 3.3.11 (Goldbach conjecture). Every even integer n, n > 2, is
the sum of two primes.

3.3.2. Greatest common divisor and Euclidean algorithm.

Definition 3.3.12. Let a and b be integers, not both 0. The greatest
common divisor of a and b, denoted gcd(a, b) is the largest integer d such
that d | a and d | b. We say a is relatively prime or coprime to b if
gcd(a, b) = 1.

Remark 3.3.13. It is easy to see from the definition that gcd(a, b) =
gcd(b, a).

Example 3.3.14. The greatest common divisor of 10 and 15 is 5 since 5
divides both 10 and 15, and it is the largest integer to do so. We write
gcd(10, 15) = 5.

The integers 15 and 22 are relatively prime since gcd(22, 15) = 1.

https://xkcd.com/622/
https://www.youtube.com/watch?v=vkMXdShDdtY

104 3. Number Theory and Applications

Figure 3.3.4. xkcd: Goldbach Conjectures (https://xkcd.com/1310/)
The weak twin primes conjecture states that there are infinitely many
pairs of primes. The strong twin primes conjecture states that every
prime p has a twin prime (p+ 2), although (p+ 2) may not look prime
at first. The tautological prime conjecture states that the tautological
prime conjecture is true.

Definition 3.3.15. For a positive integer n, the Euler phi function or
Euler totient function evaluated at n, denoted φ(n), is the number of
non-negative integers less than n that are relatively prime to n.

Example 3.3.16. There are four positive integers less than 10 that are
relatively prime to 10: {1, 3, 7, 9}. Thus φ(10) = 4.

Example 3.3.17. There are six positive integers less than 7 that are relatively
prime to 7: {1, 2, 3, 4, 5, 6}. Thus φ(7) = 6.

Remark 3.3.18. For p prime, it is easy to show that φ(p) = p− 1. One can
also show that for p and q distinct primes, φ(pq) = (p− 1)(q − 1).

Definition 3.3.19. Let a and b be positive integers. The least common
multiple of a and b, denoted lcm(a, b), is the smallest positive integer `
such that a | ` and b | `.

For integers we can factor, or for small integers where we can use trial
division, it is straightforward to compute greatest common divisors and least
common multiples.

Example 3.3.20. Let’s compute the greatest common divisor and least
common multiple of 24 and 30. We have that 24 = 23 · 3, and 30 = 2 · 3 · 5.
They have 2 · 3 in common, so greatest common divisor is

gcd(30, 24) = 2 · 3 = 6.

https://xkcd.com/1310/

3.3. Primes and greatest common divisors 105

For the least common multiple, we need to include all the prime factors that
arise and keep the larger exponent, so the least common multiple is

lcm(30, 24) = 23 · 3 · 5 = 120.

Note that 24 · 30 = 720 = 6 · 120 so that

24 · 30 = gcd(30, 24) lcm(30, 24).

This turns out to be true in general. See Theorem 3.3.21.

Theorem 3.3.21. Let a and b be positive integers. Then

ab = gcd(a, b) lcm(a, b)

Proof. Try this at home. Hint: Use the prime factorizations of a and b
guaranteed from the Fundamental Theorem of Arithmetic. Express the gcd
and lcm of a and b in terms of the factorizations. Compare the product of
these with the prime factorization of the product of a and b. �

Factoring or trial division works for computing greatest common divisors,
but for large a and b, it is horribly inefficient. There is a better method
known as the Euclidean algorithm . As an additional bonus, the theorem
above shows that fast computation of gcd leads to fast computation of lcm.
The Euclidean algorithm works because of the following lemma.

Lemma 3.3.22. Let a and b be positive integers. Then

gcd(a, b) = gcd(b, a mod b).

It may look like the Lemma does not help, as it just turns one gcd
computation into another. The real power here comes from two facts:

• gcd(a, b) = gcd(b, a), so we can arrange that b is less a; (Note: if a = b,
then gcd(a, b) = a so we would only really use this lemma when a 6= b.)
• a mod b is strictly less than b.

That means that Lemma 3.3.22 allows us to compute gcd(a, b) by computing
gcd(A,B), where A and B are smaller than a and b. Nothing prevents us
from repeatedly using this result, so we can keep using the result until we
are computing gcd(d, 0), which is equal to d.

Example 3.3.23. Let’s compute gcd(252, 198) using Lemma 3.3.22.
Since 252 mod 198 = 54,

gcd(252, 198) = gcd(198, 54).

Since 198 mod 54 = 36, we have

gcd(198, 54) = gcd(54, 36).

106 3. Number Theory and Applications

Since 54 mod 36 = 18, we have

gcd(54, 36) = gcd(36, 18).

Since 36 mod 18 = 0, we have

gcd(36, 18) = gcd(18, 0) = 18.

Thus the greatest common divisor of 252 and 198 is 18.

gcd(252, 198) = 18.

Theorem 3.3.24 (Bézout’s theorem). If a and b are positive integers, there
exist integers s and t such that

gcd(a, b) = as+ bt.

By keeping track of some extra information in the Euclidean algorithm,
we get the solution to the Bézout equation as well. The extended version is
called Extended Euclidean Algorithm .

Example 3.3.23 shows the computation of gcd(252, 198) using Lemma 3.3.22.
In the following example, we go through the additional bookkeeping required
to solve the Bézout equation.

Example 3.3.25. Find integers s and t such that

gcd(252, 198) = 252s+ 198t.

We construct a table to help with the bookkeeping. We have columns q,
r, s, and t. The q column keeps track of the quotients. The r column keeps
track of the remainder. The s and t columns show integers such that

r = 252s+ 198t

on every row. We proceed using the Euclidean algorithm to reduce r to
gcd(252, 198).

Step 1: Initialize the table.

q r s t

252 1 0
198 0 1

Step 2: Compute the quotient

252 div 198 =

⌊
252

198

⌋
= 1,

and enter it in the box in the q column as shown.

q r s t

252 1 0

1 198 0 1

3.3. Primes and greatest common divisors 107

This step may be easier to understand in a more general setting. The
general pattern is repeated throughout the computation, so we go
through it in more detail here. We have the table filled out as below.
We want to compute the quotient q shown in a box below.

q r s t

r1 s1 t1
q r2 s2 t2

To do so, we compute the quotient

q = r1 div r2 =

⌊
r1
r2

⌋
,

and enter it in the box in the q column as shown.
Step 3: Use the value of q shown in bold to compute the next row values

for r, s, and t. Compute the next r value: 252− 1 · 198 = 54. Compute
the next s value: 1−1 · 0 = 1. Compute the next t value: 0−1 · 1 = −1.
Enter these three values in their respective boxes as shown.

q r s t

252 1 0
1 198 0 1

54 1 −1

This step may be easier to understand in a more general setting. The
general pattern is repeated throughout the computation, so we go
through it in more detail here. We have the table filled out as below.
We just computed the quotient q shown in bold below. We want to
compute the boxed quantities r3, s3 and t3.

q r s t

r1 s1 t1
q r2 s2 t2

r3 s3 t3

To do so, we compute

r3 = r1 − qr2

s3 = s1 − qs2

t3 = t1 − qt2.

You can also think of it as

(r3, s3, t3) = (r1, s1, t1)− q(r2, s2, t2).

Enter these values in the boxed spots in the table as shown.

108 3. Number Theory and Applications

Step 4: Now the bottom two rows look like the table at the end of Step
1, so we proceed to compute the next quotient as in Step 2

198 div 54 =

⌊
198

54

⌋
= 3,

and enter the value in the box in the q column as shown.

q r s t

252 1 0
1 198 0 1

3 54 1 −1

Step 5: Now the bottom two rows look like the table at end of Step 2, so
we proceed to compute the next values of r, s, and t as in Step 3

(198, 0, 1)− 3(54, 1,−1) = (36,−3, 4),

and enter the values in their respective boxes as shown.

q r s t

252 1 0
1 198 0 1
3 54 1 −1

36 −3 4

Step 6: Compute the next quotient

54 div 36 =

⌊
54

36

⌋
= 1.

q r s t

252 1 0
1 198 0 1
3 54 1 −1

1 36 −3 4

Step 7: Compute the next row of r, s, and t

(54, 1,−1)− 1(36,−3, 4) = (18, 4,−5).

q r s t

252 1 0
1 198 0 1
3 54 1 −1
1 36 −3 4

18 4 −5

3.3. Primes and greatest common divisors 109

Step 8: Compute the next quotient

36 div 18 =

⌊
36

18

⌋
= 2.

q r s t

252 1 0
1 198 0 1
3 54 1 −1
1 36 −3 4

2 18 4 −5

Step 9: Compute the next row of r, s, and t. We can get by with less
work in this step because in the r column, 36− 2 · 18 = 0. That signals
us that the computation is done, and the row above is the one we want.
We can signify this in the table by entering 0 in the r column and
putting − in the s and t columns, since those values do not matter.

q r s t

252 1 0
1 198 0 1
3 54 1 −1
1 36 −3 4
2 18 4 −5

0 − −

Step 10: Draw the conclusion. We have the following table computed.
How do we interpret it?

q r s t

252 1 0
1 198 0 1
3 54 1 −1
1 36 −3 4

2 18 4 −5
0 − −

We look in the row above the row where we have a 0 in the r column.
The r value is gcd(252, 198), and the values of s and t in that row satisfy

gcd(252, 198) = 252s+ 198t.

Thus we have shown that gcd(252, 198) = 18 , and that

18 = 252 · 4 + 198 · −5 .

110 3. Number Theory and Applications

Example 3.3.26. Let’s use the Extended Euclidean Algorithm to compute
gcd(1184339, 137632) and to find integers s and t such that

gcd(1184339, 137632) = 1184339s+ 137632t.

We compute the table, following the steps as in Example 3.3.25.

q r s t

1184339 1 0
8 137632 0 1
1 83283 1 −8
1 54349 −1 9
1 28934 2 −17
1 25415 −3 26
7 3519 5 −43
4 782 −38 327

2 391 157 −1351
0 − −

The computation below shows that gcd(1184339, 137632) = 391 and

391 = 1184339 · 157 + ·137632 · −1351 .

Python Code Snippet 3.3.27. Here is Python code that will do Extended
Euclidean Algorithm to find a solution to the Bézout equation.

def XGCD(a,b):
’’’
Return [d,s,t], where d = (a,b) and s, t are integers such
that d = as + bt. Uses Extended Euclidean Algorithm.
’’’
set up first 2 rows
r1, s1, t1, r2, s2, t2 = a, 1, 0, b, 0, 1
r = r2
while r!= 0: # while remainder is not 0

q, r = divmod(r1,r2) # compute quotient and remainder
s = s1 - q*s2
t = t1 - q*t2
now shift everything
r1, s1, t1, r2, s2, t2 = r2, s2, t2, r, s, t

want data just before remainder 0
return [r1, s1, t1]

Lemma 3.3.28. Let a, b, c be positive integers such that gcd(a, b) = 1 and
a | bc. Then a | c.

3.3. Primes and greatest common divisors 111

Proof. By Bézout’s theorem, there exist integers s and t such that

1 = sa+ tb.

Multiply both sides by c to get

c = cas+ cbt.

It is clear that a | csa, and a | bc by assumption, so a | cbt. Thus a divides
the sum c as desired. �

Although we cannot divide both sides of a congruence by an integer,
the following result says that we can if the integer is relatively prime to the
modulus.

Theorem 3.3.29. Let m be a positive integer. Let a, b, and c be integers.
If ac ≡ bc (mod m), and gcd(c,m) = 1, then a ≡ b (mod m).

Proof. Suppose ac ≡ bc (mod m) and gcd(c,m) = 1. Then m | (ac − bc),
so m | c(a− b). Since gcd(c,m) = 1, Lemma 3.3.28 implies m | (a− b). Then
a ≡ b (mod m) as desired. �

Exercises

1. Give the definition for these terms. Be sure to set up any notation that
is required.
(a) prime
(b) composite
(c) twin primes
(d) greatest common divisor of integers
(e) relatively prime or coprime integers
(f) least common multiple
(g) Euler phi function

2. State precisely the Fundamental Theorem of Arithmetic. Be sure to set
up any notation that is required.

3. State precisely Bézout’s theorem. Be sure to set up any notation that is
required.

4. Compute φ(15).
5. Compute φ(24).
6. Which positive integers less than 12 are relatively prime to 12?
7. Which positive integers less than 25 are relatively prime to 25?
8. Determine whether these integers are prime.

(a) 21
(b) 100

112 3. Number Theory and Applications

(c) 101
(d) 253
(e) 91

9. Compute the greatest common divisor and least common multiple of the
following integers.
(a) 131 and 19
(b) 260 and 77
(c) 46 and 34
(d) 132 and 192
(e) 293 and 37
(f) 15 and 87
(g) 57 and 93

10. Compute the greatest common divisor and least common multiple of the
following integers.
(a) 36503 and 5017
(b) 8479 and 12017
(c) 15089 and 16999
(d) 11371 and 10541
(e) 14453 and 26671

11. Compute the greatest common divisor and least common multiple of the
following integers.
(a) 3599 and 5917
(b) 9701 and 8633
(c) 23707 and 5809
(d) 8413 and 12709
(e) 19303 and 5917

12. Show that gcd(75, 53) = 1. Find integers s and t such that

75s+ 53t = 1.

Use these to find an integral solution to

75x+ 53y = 13.

Check your solutions by plugging back in.
13. Show that gcd(75, 10) = 5. Use this to show that

75x+ 10y = 13

has no integral solutions.
14. Explain why there are no integers s and t such that 25s+ 30t = 1.
15. Find integers s and t such that 2018s+ 253t = 1.
16. Use the Extended Euclidean Algorithm to find integers s and t such that

4321s+ 12367t = 149.

Check your solution by plugging back in.

3.4. Solving congruences 113

17. Use the Extended Euclidean Algorithm to find integers s and t such that

5293s+ 8509t = 67.

Check your solution by plugging back in.
18. Use the Extended Euclidean Algorithm to find integers s and t such that

27263s+ 44377t = 199.

Check your solution by plugging back in.
19. Use the Sieve of Eratosthenes to find primes up to 100. (You should find

25 primes less than 100.)

3.4. Solving congruences

Goals. To learn how to solve linear congruences and simultaneous systems
of linear congruences.

3.4.1. Linear congruences.

Definition 3.4.1. A linear congruence is a congruence of the form

ax ≡ b (mod m),

where m is a positive integer, a and b are integers, and x is a variable.

We want to solve linear congruences. As motivation, note that if we
wanted to solve ax = b, and a has a multiplicative inverse a−1, then we would
just multiply both sides by a−1 to solve, and get x = a−1b. e.g., The solution
to 7x = 3 is x = 3

7 . The same idea works for linear congruences if there exists
an integer ā such that aā ≡ 1 (mod m). Such an integer is called an inverse
of a modulo m.

Definition 3.4.2. Let a and m be integers, with m > 1. An inverse of a
modulo m is an integer ā such that aā ≡ 1 (mod m).

Example 3.4.3. 5 is an inverse of 7 modulo 17, since 5 · 7 ≡ 1 (mod 17).
Note that an inverse is not unique. 22 is another inverse of 7 modulo 17,
since 22 · 7 ≡ 1 (mod 17). Inverses can be negative. For example, −12 is an
inverse of 7 modulo 17. In fact, there are infinitely many inverses of 7 modulo
17. Every integer in the congruence class of 5 modulo 17 is an inverse of 7
modulo 17

[5] = {5 + 17k | k ∈ Z}.

114 3. Number Theory and Applications

In the example above, we see that the inverses of 7 modulo 17 form a
congruence class. If an integer a has an inverse modulo m, this is what
happens in general.

Theorem 3.4.4. If gcd(a,m) = 1, then the inverse of a modulo m exists.
Furthermore, it is unique modulo m.

Proof. Suppose gcd(a,m) = 1. Then by Bézout, there exists integers s and
t such that as + mt = 1. It follows that mt = 1 − as, so as ≡ 1 (mod m).
Thus s is an inverse of a modulo m.

Next, we show uniqueness. Suppose s and s′ are inverses of a modulo m.
We need to show s ≡ s′ (mod m). Since s and s′ are inverses of a modulo
m, there exists integers k and k′ such that as = 1 + km and as′ = 1 + k′m.
Then

a(s− s′) = as− as′ = (1 + km)− (1 + k′m) = m(k − k′).
Then m divides a(s − s′) and gcd(a,m) = 1, so Lemma 3.3.28 implies m
divides s− s′. It follows that s ≡ s′ (mod m), as desired. �

Using modular arithmetic, we can see a few things that will simplify
computations. Suppose gcd(a,m) = 1 so that a has an inverse modulo m.
An inverse of a will be an inverse for every integer in the congruence class
of a modulo m. We can use this to simplify our problem when |a| > m.
Furthermore, once an inverse is found, every integer in the congruence class
of the inverse is also an inverse. This is helpful when we want to find an
inverse with additional properties. For example, we may want to find an
inverse that is positive and “small” since we are doing computations by hand.

Example 3.4.5. Let’s find a positive integer that is an inverse of 253 modulo
8.

Since 253 mod 8 = 5, this reduces to finding an inverse of 5 modulo 8.
Since 3 · 5 ≡ 15 ≡ −1 (mod 8), we have that −3 is an inverse of 5 modulo
8. Every integer in the congruence class [−3] is also an inverse. We want a
positive inverse, so we can take −3 + 8 = 5 as an inverse. In fact, since the
inverse is unique modulo 8, we just proved that this is the smallest positive
integer that is an inverse of 253 modulo 8.

We can use the modular inverse to solve linear congruences ax ≡ b
(mod m) when gcd(a,m) = 1. Namely, x ≡ āb (mod m). When gcd(a,m) 6=
1, the solution is a bit more subtle.

For small m, the inverse of a is easy to compute by inspection. For larger
m, use Extended Euclidean algorithm. Specifically, if gcd(a,m) = 1, there
exists integers s and t such that

1 = as+ tm.

3.4. Solving congruences 115

Then
1 ≡ as (mod m).

3.4.2. Chinese Remainder Theorem.

Theorem 3.4.6 (Chinese Remainder Theorem). Let m = m1m2 · · ·mr

with gcd(mi,mj) = 1 for all i 6= j. Then the system

x ≡ a1 (mod m1)
x ≡ a2 (mod m2)

...
x ≡ ar (mod mr)

has a unique solution modulo m, given by

x = a1e1 + a2e2 + · · ·+ arer, where ei = wi · ti,
with

wi =
m

mi
and tiwi ≡ 1 (mod mi).

In other words, the solution set is exactly the congruence class of x modulo
m,

[x] = {x+ km | k ∈ Z}.

Remark 3.4.7. Roughly speaking, the ei is 1 in the mod mi direction and
0 in the mod mj direction for i 6= j.

Steps to solve CRT problem:

(1) Identify ai and mi.
(2) Compute m and wi.
(3) Compute ti, the inverse of wi modulo mi.
(4) There is a unique solution modulo m

x = a1t1w1 + a2t2w2 + · · ·+ artrwr.

Example 3.4.8. Use the Chinese Remainder Theorem to find all of the
solutions to following the system of congruences.

{
x ≡ 7 (mod 12)
x ≡ 3 (mod 5)

}

Following the notation above, we have a1 = 7, m1 = 12, a2 = 3, and
m2 = 5. Since gcd(12, 5) = 1, we can use CRT. We are guaranteed a unique
solution modulo m = 12 · 5 = 60. It has the form

x ≡ 7 · e1 + 3e2 (mod 60).

Recall that e1 is an integer such that e1 ≡ 1 (mod 12) and e1 = 0 (mod 5).
We can compute e1 as e1 = w1t1, where w1 = m/m1, and t1 is the inverse

116 3. Number Theory and Applications

of w1 modulo m1. Then w1 = 5. By inspection, we can take t1 = 5, since
5 · w1 ≡ 1 (mod 12). Then e1 = 5 · 5 = 25.

Similarly, e2 = w2t2, where w2 = m/m2 = 12. We compute the inverse of
12 modulo 5, but this is the same as the inverse of 2 modulo 5, since 12 ≡ 2
(mod 5). By inspection, we can take t2 = 3, so e2 = 12 · 3 = 36.

Then
x ≡ 7 · 25 + 3 · 36 ≡ 283 ≡ 43 (mod 60).

Equivalently,
x = 43 + 60k, for k ∈ Z.

Example 3.4.9. Find all the solutions to

x ≡ 1 (mod 2)
x ≡ 2 (mod 3)
x ≡ 3 (mod 5)
x ≡ 4 (mod 11)

.

Since 2, 3, 5, 11 are pairwise coprime, we can use CRT. There is a unique
solution modulo m = 2 · 3 · 5 · 11 = 330. Let wi = m

mi
. Then

w1 = 165

w2 = 110

w3 = 66

w4 = 30.

We compute ti such that tiwi ≡ 1 (mod mi). Then t1 is the inverse of 165
modulo 2. We take t1 = 1. Similarly, t2 is inverse of 110 modulo 3, which
is the same as the inverse of 2 modulo 3. We pick t2 = 2. Similarly, we can
take t3 = 1 and t4 = 7. Then

e1 = t1w1 = 1 · 165 = 165

e2 = t2w2 = 2 · 110 = 220

e3 = t3w3 = 1 · 66 = 66

e4 = t4w4 = 7 · 30 = 210.

Then

x ≡ 1 · e1 + 2e2 + 3e3 + 4e3 (mod 330)

≡ 1 · 165 + 2 · 220 + 3 · 66 + 4 · 210 (mod 330)

≡ 323 (mod 330).

Thus x = 323 + 330k, for k ∈ Z. Equivalently, x ≡ 323 (mod 330).

Example 3.4.10. My son had 500 action figures before we moved to Greens-
boro. He has not bought any new ones, but he lost a few in the process of
the move, and he wants to know how many he has now. He can only count
accurately to 10, but he knows that you are a number theorist, and he has

3.4. Solving congruences 117

faith in you. He reports that there is an odd number left. When you tell him
that is not enough information, he reports that there is 1 left over if he lines
them up 5 at a time, 2 left over if he lines the up 7 at a time, and 3 left over
if he lines them up 9 at a time. How many action figures does he have?

Let x be the number of action figures my son has. Then

x ≡ 1 (mod 2) since x is odd
x ≡ 1 (mod 5) since there is 1 left over in rows of 5

x ≡ 2 (mod 7) since there is 2 left over in rows of 7

x ≡ 3 (mod 9) since there is 3 left over in rows of 9

Note that we can solve for x using CRT since

gcd(2, 5) = gcd(2, 7) = gcd(2, 9) = gcd(5, 7) = gcd(5, 9) = gcd(7, 9) = 1.

Let’s follow the steps to solve a CRT problem:

(1) We identify ai and mi. We have

a1 = 1,m1 = 2 a2 = 1,m2 = 5 a3 = 2,m3 = 7 a4 = 3,m4 = 9.

(2) We compute

m = m1m2m3m4 = 630

w1 = m2m3m4 = 315

w2 = m1m3m4 = 126

w3 = m1m2m4 = 90

w4 = m1m2m3 = 70.

(3) t1: The inverse of 315 modulo 2 is the same as the inverse of 1 modulo
2, which is 1 by inspection. Specifically, we choose t1 = 1.

t2: The inverse of 126 modulo 5 is the same as the inverse of 1 modulo
5, which is 1 by inspection. Specifically, we choose t2 = 1.

t3: The inverse of 90 modulo 7 is the same as the inverse of −1 modulo
7, which is −1. Specifically, we choose t3 = −1 (Note: Some of
you will instead say the inverse of 90 modulo 7 is the same as the
inverse of 6 modulo 7, which is 6. That is fine as well. My way
just keeps the numbers smaller if you are willing to use negative
numbers.)

t4: The inverse of 70 modulo 9 is the same as the inverse of 7 modulo
9, which is 4 by inspection. Specifically, t4 = 4.

118 3. Number Theory and Applications

(4) We compute

x ≡ a1t1w1 + a2t2w2 + a3t3w3 + a4t4w4 (mod 630)

≡ (1 · 1 · 315) + (1 · 1 · 126) + (2 · (−1) · 90) + (3 · 4 · 70) (mod 630)

≡ 1101 (mod 630)

≡ 471 (mod 630).

In other words, x = 471 + 630k for some integer k. Since my son has less
than 500 action figures, he must have 471 action figures.

3.4.3. Fermat’s little theorem and Euler’s generalization.

Theorem 3.4.11 (Fermat’s little theorem and Euler’s generalization). If p
is prime and p - a, then ap−1 ≡ 1 (mod p). Furthermore, ap ≡ a (mod p).
More generally, if gcd(a,m)− 1, then aφ(m) ≡ 1 (mod m).

Example 3.4.12. Compute 8222 mod 11.
Note that 11 is prime and gcd(11, 8) = 1. Since 11 − 1 = 10, Fermat’s

little theorem implies 810 ≡ 1 (mod 11). We rewrite the exponent 222 as

222 = 22 · 10 + 2

and use properties of exponents to get

8222 ≡ 822·10+2 ≡ 122 · 82 (mod 11) ≡ 9 (mod 11).

Thus 8222 mod 11 = 9.

Exercises

1. Give the definition for these terms. Be sure to set up any notation that
is required.
(a) linear congruence
(b) inverse of an integer modulo an integer

2. State precisely the Chinese Remainder Theorem. Be sure to set up any
notation that is required.

3. State precisely the Fermat’s little theorem and Euler’s generalization. Be
sure to set up any notation that is required.

4. Show that 25 is an inverse of 13 modulo 36.
5. Find an inverse of 5 modulo 7 by inspection.
6. Use the Extended Euclidean Algorithm to find an inverse of 68 modulo

253.

3.4. Solving congruences 119

7. Use Chinese Remainder Theorem to find the smallest positive solution
to the system of congruences

x ≡ 2 (mod 3)
x ≡ 1 (mod 4)
x ≡ 3 (mod 5)

 .

8. Use Fermat’s Little Theorem to compute 7222 mod 11.
9. Use Fermat’s little theorem to compute 3302 mod 5.
10. Find all the solutions to

{
x ≡ 2 (mod 13)
x ≡ 6 (mod 15)

}
.

What is the smallest positive solution?
11. Find all the solutions to

x ≡ 2 (mod 7)
x ≡ 3 (mod 8)
x ≡ 4 (mod 5)

 .

What is the smallest positive solution?
12. The problems below are related. Namely, a computation in one portion

may be used in more than one part.
(a) Compute gcd(2468, 357).
(b) Use the Extended Euclidean Algorithm to solve the Bézout equation

for 2468 and 357. Namely, find integers s and t such that

gcd(2468, 357) = 2468s+ 357t.

(c) Compute an inverse of 357 modulo 2468, or explain why one does
not exist.

(d) Find an inverse of 19 modulo 241.
(e) Show that 937 is an inverse of 13 modulo 2436.
(f) Solve the linear congruence 357x ≡ 123 (mod 2468).

13. I have an unknown number of Easter candies. When I arrange them in
groups of 20, there are 3 left over. When I arrange them in groups of 41,
there are 26 left over. What is the minimum number of candies that I
could have?

14. Solve the congruence 2x ≡ 3 (mod 13) by inspection.
15. Solve the linear congruence 19x ≡ 11 (mod 141).
16. Solve the congruence 200x ≡ 5 (mod 1357) using modular inverses.
17. Split up the positive integers less than 13, except 1 and 12 into pairs of

integers such that each pair consists of integers that are inverses of each
other modulo 13. Use this to show 12! ≡ −1 (mod 13).

120 3. Number Theory and Applications

Figure 3.5.1. xkcd: Code Talkers. (https://xkcd.com/257/) As far
as I can tell, Navajo doesn’t have a common word for ‘zero’. do-neh-lini
means ‘neutral’.

18. Suppose you collected shells on the beach with your daughter. When you
arrange them in piles of 15, there are 13 left over. When you arrange
them in piles of 19, there are 6 leftover. Use the Chinese Remainder
Theorem to figure out how many shells you collected. Give the smallest
positive solution.

3.5. Cryptography

Goals. To introduce the basic notions of cryptography and cryptographic
protocols. To explain both classical and modern encryption methods.

3.5.1. Shift ciphers. We want a method to encrypt, or make secret, a
plaintext message. One of the earliest know approaches was by Julius Caesar.
The idea was to basically shift the alphabet by 3 spots.

Definition 3.5.1. The Caesar cipher is the shift cipher, where we shift
forward by three.

Here are the steps to encrypt using the Caesar cipher.

https://xkcd.com/257/

3.5. Cryptography 121

Table 3.5.1. Caesar cipher lookup table.

A B C D E F G H I J K L M
D E F G H I J K L M N O P

N O P Q R S T U V W X Y Z
Q R S T U V W X Y Z A B C

(1) Replace each letter in the message by an element of Z26 equal to 1 less
than its position in the alphabet. e.g., A is replaced by 0, B is replaced
by 1, . . . , Z is replaced by 25. In this step, we are encoding the message
as a list of integers.

(2) Replace each number p by (p + 3) mod 26. Equivalently, apply the
function f : Z26 → Z26 defined by f(x) = x+ 3 mod 26 to each number.
This step does the encrypting .

(3) Translate the numbers back to letters. This step does the decoding .

Example 3.5.2. Let’s encrypt CAT using the Caesar cipher.
First, we change CAT to numbers, we get 2 0 19. Apply f to get 5 3 22.

Translate back to letters to get FDW.

C encode−−−−→ 2
encrypt−−−−→ 5

decode−−−−→ F

A encode−−−−→ 0
encrypt−−−−→ 3

decode−−−−→ D

T encode−−−−→ 19
encrypt−−−−→ 22

decode−−−−→W

If we were going to encrypt longer messages, it would be faster to pre-
compute a lookup table as shown in Table 3.5.1.

Remark 3.5.3. Instead of using f , which represents a shift of 3, we can
shift by any integer amount

f(x) = (x+ k) mod 26

to yield a cipher known as a shift cipher . To decode, we use a function

g(x) = f−1(x) = x− k mod 26.

More generally, the encryption function f can be any invertible function
f : Z26 → Z26.

3.5.2. RSA. First, we give a bit of history. Ron Rivest, Adi Shamir,
and Leonard Adleman (shown in Figure 3.5.2) first publicly described this
algorithm for public key encryption in 19781[4]. They posted one of the first

1Clifford Cocks described an equivalent system in 1973, but it was classified by the UK
intelligence agency GCHQ until 1997

122 3. Number Theory and Applications

Figure 3.5.2. Rivest, Shamir, and Adleman. Ron Rivest, Adi Shamir,
and Leonard Adleman (left to right), inventors of the RSA encryption
scheme.

public-key encryption messages using a 129 digit number which later became
known as RSA-129 [2].

RSA-129 =1143816257578888676692357799761466120102182967212

4236256256184293570693524573389783059712356395870

5058989075147599290026879543541

=3490529510847650949147849619903898133417764638493

387843990820577

×3276913299326670954996198819083446141317764296799

2942539798288533.

They offered a $100 prize and remarked that using technology and fac-
toring techniques available at that time, it would take 40 quadrillion years to
crack. Advances in factoring techniques and computers cracked the code in
April 1994 [1] to find that the secret message was:

The Magic Words are Squeamish Ossifrage2

Suppose Alice wants to send Bob an encrypted message. Bob lets her
know his public key, a pair of integers (N, e).

Definition 3.5.4. The RSA public encryption key consists of a pair of
integers (N, e), where N is the product of two distinct primes p and q, and
the encryption exponent e is relatively prime to φ(N) = (p− 1)(q − 1).

The message space is set of integers {1, 2, · · · , N}. To encrypt a message
M from the message space, Alice computes the integer C in the message
space that satisfies

C ≡M e (mod N).

Notice that with fast exponentiation, this is fast.

2According to Wikipedia, Ossifrage is an older name for the lammergeier, a scavenging
vulture that is famous for dropping animal bones and live tortoises onto rocks to crack them open.
It might perhaps be considered among the least squeamish of creatures.

3.5. Cryptography 123

Remark 3.5.5. RSA encryption works when the messages are integers
between 1 and N . As we saw in §3.2.2, ASCII encoding allows us to encode
a message string into an integer. After the message is encoded as an integer,
we can encrypt it with RSA encryption.

If a Eve captures C while it is being transmitted, she will have a hard
time computing the original message M , since taking eth roots is a hard
problem known as the discrete log problem .

How is it any easier for Bob? The trick is that Bob has a bit of extra
information. When constructing the key, Bob choosesN to be a product of two
distinct primes p and q, so that N = pq. The exponent e is chosen so that the
greatest common divisor gcd(e, φ(N)) = 1. Since Bob knows the factorization
of N , he can easily compute the Euler phi function φ(N) = (p− 1)(q − 1).
Then using the Euclidean algorithm, Bob can compute an inverse to e modulo
φ(N), an integer d such that ed ≡ 1 (mod φ(N)). By Bézout’s Theorem,
there is an integer k so that ed = 1 + kφ(N). Now Euler’s generalization to
Fermat’s little theorem says that if gcd(C,N) = 1, we have

Cd ≡ (M e)d (mod N)

≡M1+kφ(N) (mod N)

≡M · (Mφ(N))k (mod N)

≡M (mod N).

In fact, this happens even if gcd(C,N) 6= 1. We show this using CRT in
Theorem 3.5.8.

Thus, to decrypt the message, Bob does not need to take an eth root of
C modulo N . Instead, he can raise C to the dth power and achieve the same
result. Thank you, Euler! Again, with fast exponentiation, this is fast.

Note that if Eve can factor N , then she can also decrypt the message.
For that reason, Bob must choose p and q “large” enough.

Definition 3.5.6. A positive integer d is a decryption exponent for RSA
public key (N, e), d is an inverse of e modulo φ(N).

Before proving that RSA works in general, let’s look at a small example.

Example 3.5.7. Suppose Bob has public key (N, e) = (55, 3). For the
purposes of this example, pretend 55 is so large that Eve cannot factor it.
Then Alice can encrypt any number from 1 to 55. Suppose Alice wants to
send M = 18. She computes

C = M e mod N = 183 mod 55 = 2.

How does Bob decrypt C? He knows that φ(55) = 40, since he created
the key. The decryption exponent d is the inverse if e modulo φ(N), so

124 3. Number Theory and Applications

it satisfies ed ≡ 1 (mod φ(N)). Bob can compute d ≡ −13 (mod 40) by
Extended Euclidean Algorithm

q r s t

40 1 0
13 3 0 1
3 1 1 −13

0 −3 40

or by observing that 3 · 13 = 39 ≡ −1 (mod 40). Thus d = −13 mod 40 = 27.
To decrypt C = 2, Bob computes

M = Cd mod N = 227 mod 55 = 18.

What are some of the problems with this example? i.e., What kind of
attacks should Eve try to decrypt the message?

First, the value N = 55 is too easy to factor. Once Eve knows 55 = 5 · 11,
CRT tells her that

φ(55) = φ(5)φ(11) = (5− 1)(11− 1) = 40.

Then she can compute d using Euclidean algorithm just as Bob did to decrypt
any intercepted message.

Next, the message space is too small. Notice that if Eve could solve x3 ≡ 2
(mod 55), she can find Alice’s message. The message space {1, 2, . . . , 55} is
small enough that Eve could just compute x3 mod 55 for several values of x
and quickly find an answer.

Theorem 3.5.8. Let N , e, and d be positive integers such that

(1) N is the product of two distinct primes, i.e., there are primes p 6= q
such that N = pq;

(2) e is relatively prime to φ(N), i.e., gcd(e, φ(N)) = 1;
(3) d is an inverse of e modulo φ(N), i.e., ed ≡ 1 (mod φ(N)).

Let M be any integer, and let C = M e. Then Cd ≡M (mod N).

Why is RSA secure? What numbers should I pick? The encryption
exponent e is typically chosen to be e = 216 + 1 = 65537. This is not for
security, but for speed. Because of our fast powering algorithm, this choice
of e allows encryption to be done even more quickly.

If p and q are chosen to be large primes (for today’s technology 100-200
digit primes are large enough), then the claim is that this encryption is secure.
To decrypt a message, we either have to be able to take eth roots (i.e., solve
xe ≡ C (mod N)), or compute d. The first problem is hard, and one of the
main ways to try to solve it is via finding d. In order to find d, we must know

3.5. Cryptography 125

Figure 3.5.3. xkcd: Alice and Bob. (https://xkcd.com/177/) Yet
one more reason I’m barred from speaking at crypto conferences.

φ(N). As long as Bob keeps the factors p and q secret then computing φ(N)
is hard.

In the days of early commercial cryptography, many companies offered
“challenges” to measure the state of progress in practical cryptanalysis. RSA
used a Factoring Challenge. More information can be found at

https://en.wikipedia.org/wiki/RSA_Factoring_Challenge.

They posted a set of eight challenge numbers, ranging in size from 576 bits
(174 decimal digits) to 2048 bits (617 decimal digits) that made up the
challenge3. Each number is the product of two large primes, similar to the
modulus of an RSA key pair. The first person to submit a correct factorization
for any of the challenge numbers was eligible for a cash prize. To date, only
four of the eight challenge numbers have been factored.

3The RSA numbers were generated on a computer with no network connection of any kind.
The computer’s hard drive was subsequently destroyed so that no record would exist, anywhere, of
the solution to the factoring challenge. Not even the people at RSA knew the factorizations.

https://xkcd.com/177/
https://en.wikipedia.org/wiki/RSA_Factoring_Challenge

126 3. Number Theory and Applications

Figure 3.5.4. xkcd: Security. (https://xkcd.com/538/) Actual actual
reality: nobody cares about his secrets. (Also, I would be hard-pressed
to find that wrench for $5.)

A reasonable RSA key to use is 1024 bits. Their RSA-1024 has 309
decimal digits.

N =135066410865995223349603216278805969938881475605667027524485

143851526510604859533833940287150571909441798207282164471551

373680419703964191743046496589274256239341020864383202110372

958725762358509643110564073501508187510676594629205563685529

475213500852879416377328533906109750544334999811150056977236

890927563

Just how large is N? There is a nice video by Vsauce explaining to see
how large 52! is. If you don’t have 20 minutes, skip to around the 15:56
minute mark. Even then, we are not done, since 52! is MUCH smaller than
N . In fact,

N > (52!)4,

so if we repeat the process 52! times, then repeat all of that 52! times, then
repeat all of that 52! times, we are still not done.

https://www.youtube.com/watch?v=ObiqJzfyACM

https://xkcd.com/538/
https://www.youtube.com/watch?v=ObiqJzfyACM

3.5. Cryptography 127

Exercises

1. Give the definition for these terms. Be sure to set up any notation that
is required.
(a) Caesar cipher
(b) RSA public encryption key
(c) RSA encryption exponent
(d) RSA decryption exponent

2. Encrypt the message UNCG SPARTANS by translating the letters into
numbers, applying the given encryption function, then translating the
numbers back into letters.
(a) f(p) = p+ 3 mod 26
(b) f(p) = p+ 22 mod 26
(c) f(p) = −3p mod 26
(d) f(p) = 5p+ 7 mod 26

3. Encrypt the message MIDNIGHT by translating the letters into numbers,
applying the given encryption function, then translating the numbers
back into letters.
(a) f(p) = p+ 17 mod 26
(b) f(p) = p− 4 mod 26
(c) f(p) = −7p mod 26
(d) f(p) = 3p+ 12 mod 26

4. Decrypt these messages that were encrypted using the Caesar cipher.
(a) KHOS
(b) VSDUWDQV
(c) VHFUHW
(d) DEVTXDWXODWH
(e) VXUUHSWLWLRXV
(f) DOLFH ORYHV ERE

5. Decrypt these messages that were encrypted using the encryption function
f(p) = 5p− 3 mod 26.
(a) OGERR
(b) LKYLJLCAR
(c) XKPKNFPTJ
(d) CPC APYRJ RYR

6. Decrypt these messages that were encrypted using the encryption function
f(p) = p+ 10 mod 26.
(a) LVEO
(b) LKXKXK
(c) CYVSNKBSDI
(d) OFO VYFOC KVSMO

128 3. Number Theory and Applications

7. Suppose the ciphertext HVS ZONM RCU XIADG CJSF HVS EIWQY
PFCKB TCL was produced by encrypting a plaintext message using a
shift cipher. What is the original plaintext message?

8. My RSA public key is (N, e) = (85, 3). Encrypt the number M = 23.
9. Encrypt the message M = 253 using the RSA encryption scheme with

public key (N, e) = (391, 17).
10. Encrypt the current year using the RSA encryption scheme with public

key (N, e) = (343751, 23).
11. Show that the RSA public key (N, e) = (527, 13) is too small by computing

the decryption exponent.
12. Alice encodes her birthday as an 8-digit number yyyymmdd. Suppose she

encrypts it using the RSA encryption scheme with public key

(N, e) = (25736197, 29),

resulting in the ciphertext C = 8141408. What is her birthday?

Chapter 4

Induction

Many times, a universal quantification can be reinterpreted as a nice family
of propositions, indexed by positive integers. For example, consider the
statement “the sum of the first n positive integers is n(n+1)

2 .” This can be
rephrased as the universally quantified statement “for every positive integer
n, 1 + 2 + · · ·+ n = n(n+1)

2 .” This can be seen as a family of infinitely many
simpler propositions:

1 = 1

1 + 2 =
2(2 + 1)

2

1 + 2 + 3 =
3(3 + 1)

2
...

Mathematical induction is a powerful proof technique that allows us
to prove certain universally quantified statements by examining closely the
related family of more basic propositions. Despite its name, mathematical
induction is an example of deductive, not inductive, reasoning.

4.1. Mathematical induction

Goals. To explain how to construct proofs of a variety of theorems using
mathematical induction.

Mathematical induction can be used to prove statements that assert P (n)
is true for all positive integers n.

In its most basic form, there are two parts:

129

130 4. Induction

(1) Prove P (1) is true.
(2) Prove for all positive integers k, if P (k) is true, then P (k + 1) is true.

Then symbolically, mathematical induction says

(P (1) ∧ ∀k(P (k)→ P (k + 1)))→ ∀nP (n).

A useful analogy to keep in mind is stacking dominoes to topple. How can
we prove that the nth domino topples for all n? First, we need to know that
the first domino falls. A bit of thought shows that this is not enough. We
need to additionally know that the dominoes are stacked expertly. Namely,
they are stacked in such a way that if the kth domino falls, then the (k+ 1)st
domino falls.

Theorem 4.1.1 (Principle of Mathematical Induction). Let {P (n) : n ≥
n0} be a family of propositions such that

(1) P (n0) is true.
(2) P (k) implies P (k + 1), for k ≥ n0.
Then P (n) is true for all n ≥ n0.

Follow these steps to write a proof by induction.

(1) State that we are using induction. To be extra clear, tell the reader
on what we are doing induction. A common way of saying this is “We
proceed by induction on . . . ”

(2) Define P (n).
(3) basis step or base case : Prove P (n0) is true.
(4) inductive step: For fixed (generic) k ≥ n0, assume P (k) is true. This

is known as assuming the inductive hypothesis. Prove P (k + 1) is
true.

Example 4.1.2. Prove

1 + 2 + · · ·+ n =
n(n+ 1)

2
,

for all n ≥ 1.

Proof. Let P (n) be the proposition

P (n) = “1 + 2 + · · ·+ n =
n(n+ 1)

2
.”

We proceed by induction on n.

Basis step: P (1) is the statement 1 = 1(1+1)
2 , which is clearly true.

4.1. Mathematical induction 131

Figure 4.1.1. xkcd: Win By Induction. (https://xkcd.com/1516/)
This would be bad enough, but every 30th or 40th pokéball has TWO
of them inside.

Inductive step: Fix k ≥ 1. Assume P (k) is true. This is the inductive
hypothesis. Specifically, we assume

1 + 2 + · · ·+ k + (k + 1) =
k(k + 1)

2
.

Then add k + 1 to both sides.

1 + 2 + · · ·+ k + (k + 1) =
k(k + 1)

2
+ (k + 1)

=
k(k + 1)

2
+

2(k + 1)

2

=
k(k + 1) + 2(k + 1)

2

=
(k + 1)(k + 2)

2
.

Thus P (k + 1) is true.
Therefore by mathematical induction,

1 + 2 + · · ·+ n =
n(n+ 1)

2
,

for all n ≥ 1. �

Example 4.1.3. Prove n3 − n is divisible by 3 for all n ≥ 1.

Proof. Let P (n) be the proposition

P (n) = “n3 − n is divisible by 3.”

We proceed by induction on n.

https://xkcd.com/1516/

132 4. Induction

Basis step: P (1): We see that 13 − 1 = 0, and 0 is divisible by 3.
Inductive step: Fix k ≥ 1. Assume P (k) is true. Then k3 − k is divisible

by 3, so there exists an integer ` such that k3 − k = 3`. We want to show
(k + 1)3 − (k + 1) is divisible by 3.

(k + 1)3 − (k + 1) = k3 + 3k2 + 3k + 1− k − 1

= k3 − k + 3k2 + 3k − k
= 3`+ 3(k2 + k) by inductive hypothesis

= 3(`+ k2 + k).

Since ` and k are integers, `+ k2 + k is an integer. Thus (k+ 1)3 − (k+ 1) is
divisible by 3.

Therefore by mathematical induction, n3 − n is divisible by 3 for all
positive integers n. �

Example 4.1.4 (Tower of Hanoi). The Tower of Hanoi is a puzzle game
consisting of three rods, and a number of disks of different sizes which can
slide onto any rod. The puzzle starts with the disks in a neat stack in
ascending order of size on one rod, the smallest at the top, thus making a
conical shape.

The objective of the puzzle is to move the entire stack to another rod,
obeying the following simple rules:

(1) Only one disk can be moved at a time.
(2) Each move consists of taking the upper disk from one of the stacks and

placing it on top of another stack i.e., a disk can only be moved if it is
the uppermost disk on a stack.

(3) No disk may be placed on top of a smaller disk.

See the Wikipedia article for more details.

https://en.wikipedia.org/wiki/Tower_of_Hanoi

Let Hanoi(n) denote the Tower of Hanoi game with n disks. Once we have
a winning strategy for Hanoi(k) for some positive integer k, we can get a
winning strategy for Hanoi(k + 1) as follows.

(1) Use strategy to move the smallest k disks to an empty rod.
(2) Move largest disk to the remaining empty rod.
(3) Use strategy to move the smallest k disks on top of the largest disk.

If there are mk moves in the Hanoi(k) winning strategy, then there are
mk + 1 +mk = 2mk + 1 moves in the Hanoi(k + 1) strategy described above.
It is clear that m1 = 1. Then its easy to see that m2 = 3, m3 = 7, m4 = 15,
. . . . It looks like mk = 2k − 1. Let’s prove it by induction.

https://en.wikipedia.org/wiki/Tower_of_Hanoi

4.1. Mathematical induction 133

Proof. Let P (n) be the proposition “mn = 2n − 1.”
We proceed by induction on n.
Basis step: P (1): It is clear that m1 = 1.
Inductive step: Fix k ≥ 1. Assume P (k) is true so that mk = 2k + 1.

Then

mk+1 = 2mk + 1

= 2(2k − 1) + 1 inductive hypothesis

= 2k+1 − 1.

Thus P (k + 1) is true.
Therefore, by mathematical induction, mn = 2n − 1 for all n ≥ 1. �

Remark 4.1.5. A proof almost identical to the one above can be used to
prove that the winning strategy for Hanoi(n) with the minimum number of
moves has 2n − 1 moves.

Example 4.1.6. Find the flaw in the following proof that any set with n
people are all the same age.

Proof. We proceed by induction. Let P (n) be the proposition

P (n) = “Any set of n people are all the same age.”

We proceed by induction on n.
Basis step: P (1): It is clear that in any set with 1 person, they are the

same age.
Inductive step: Fix k ≥ 1. Assume P (k) is true so that any set of k

people are the same age. Let S be a set of k+1 people. We have to show that
everyone in S is the same age. Pick one person X in S. Let T = S − {X}.
Then |T | = k, so by the inductive hypothesis everyone in T is the same age,
call it a. Pick another person X ′ in S, X 6= X ′. Let T ′ = S − {X ′}. Then
|T ′| = k, so by the inductive hypothesis everyone in T ′ is the same age, call
it a′. Notice that we have a = a′ since T and T ′ have some members in
common. Furthermore, T ∪ T ′ = S. Thus everyone in S is the same age.

Therefore by mathematical induction, any set of n people are all the same
age. �

What is the error in the “proof”? When we choose X ′ 6= X, we are
assuming k ≥ 2. Furthermore, when we assert T and T ′ have members in
common, we assume k ≥ 3. This shows that we need to be really careful that
the basis step is correctly chosen so that the inductive step can work.

134 4. Induction

Exercises

1. State precisely the Principle of Mathematical Induction. Be sure to set
up any notation that is required.

2. Complete the steps below to prove that for every positive integer n,

1 · 2 + 2 · 3 + · · ·+ n(n+ 1) =
n(n+ 1)(n+ 2)

3
.

I have written in bold part of what you need to write. You should
complete the proof.
(a) What is the proposition P (n)? Let P (n) be the proposition
(b) Basis step:

(i) What is the statement P (1)?
(ii) Prove P (1) is true.

(c) Inductive step:
(i) State the inductive hypothesis. Fix k ≥ 1. Assume
(ii) What is it we want to prove, assuming the inductive hypothe-

sis? We want to show
(iii) Prove it. Be clear where you are using the inductive hypothesis.
(iv) Write This completes the inductive step.

(d) State the conclusion. By mathematical induction,
3. For each positive integer n, let P (n) be the proposition

20 + 21 + 22 + · · ·+ 2n = 2n+1 − 1.

Follow the steps below to prove P (n) is true for all positive integers n.
(a) Basis step:
(b) Inductive step:
(c) Conclusion:

4. Prove this extension of De Morgan’s law. Let p1, p2, · · · , pn be proposi-
tions. Prove that

¬(p1 ∨ p2 ∨ · · · ∨ pn) ≡ ¬p1 ∧ ¬p2 ∧ · · · ∧ ¬pn.
5. Find the flaw in the following proof that n2 + 5n+ 1 is even for all n ≥ 0.

Proof. Let P (n) be the proposition “n2 + 5n + 1 is even.” Fix k ≥ 0.
Assume P (k) is true so that k2 + 5k + 1 is even. We want to show
(k + 1)2 + 5(k + 1) + 1 is even. We compute

(k + 1)2 + 5(k + 1) + 1 = k2 + 2k + 1 + 5k + 5 + 1

= (k2 + 5k + 1) + 2(k + 3).

Since k2 + 5k + 1 is even by inductive hypothesis and 2(k + 3) is visibly
even, (k + 1)2 + 5(k + 1) + 1 is even.

Thus by induction, n2 + 5n+ 1 is even for all n ≥ 0. �

4.1. Mathematical induction 135

6. Find the flaw in the following proof that 2n ≤ n+ 1 for all n ≥ 1.

Proof. Let P (n) be the proposition “2n ≤ n+ 1”.
We proceed by induction on n.
Base case: 21 = 2 and 1 + 1 = 2, so 21 ≤ 1 + 1.
Inductive step: Fix k ≥ 1. Assume P (k) is true. i.e., assume

2k ≤ k + 1.

2k+1 ≤ (k + 1) + 1

2 · 2k ≤ k + 2

2k ≤ k

2
+ 1 ≤ k + 1,

which is true by inductive hypothesis. Thus by induction, 2n ≤ n+ 1 for
all n ≥ 1. �

7. Prove that for all positive integers n,

1 + 2 + 22 + · · ·+ 2n = 2n+1 − 1.

More generally, fix real numbers a and r, with r 6= 1. Prove that for
every positive integer n,

a+ arj + · · ·+ arn =
arn+1 − a
r − 1

.

8. If you have had calculus, prove the power rule for positive exponents.
Specifically, prove that for every positive integer n,

d

dx
(xn) = nxn−1.

(Hint: Use induction on n and the Product rule, writing xn = x · xn−1.)
9. Prove that for every positive integer n,

1 + 2 + · · ·+ n =
n(n+ 1)

2
.

10. Prove that for every positive integer n,

12 + 22 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
.

11. Prove for every positive integer n,

13 + 23 + 33 + · · ·+ n3 =

(
n(n+ 1)

2

)2

.

12. Prove that for every positive integer n,

1 · 1! + 2 · 2! + · · ·+ n · n! = (n+ 1)!− 1.

13. Prove that n < 2n, for every positive integer n.
14. Prove that 11n − 4n is divisible by 7, for all n ≥ 0. Redo the proof using

congruences instead of induction.

136 4. Induction

15. Prove that for every positive integer n,
1

1(2)
+

1

2(3)
+ · · ·+ 1

n(n+ 1)
=

n

n+ 1
.

4.2. Strong induction

Goals. To explain how to construct proofs of a variety of theorems using
strong induction and the well-ordering property.

Strong induction is another form of mathematical induction that can
often be used when we cannot easily use mathematical induction. For strong
induction , replace the inductive step in the Principle of Mathematical
Induction by a stronger assumption. In its most basic form, there are two
parts:

(1) Prove P (1) is true.
(2) Prove that for all positive integers k, if P (j) is true for all 1 ≤ j ≤ k,

then P (k + 1) is true.

Then symbolically, mathematical induction says

(P (1) ∧ ∀k((P (1) ∧ P (2) ∧ · · · ∧ P (k))→ P (k + 1)))→ ∀nP (n).

Theorem 4.2.1 (Principle of Strong Induction). Let {P (n) : n ≥ n0} be a
family of propositions such that

(1) P (n0) is true.
(2) P (n0) ∧ P (n0 + 1) ∧ · · · ∧ P (k) implies P (k + 1), for k ≥ n0.
Then P (n) is true for all n ≥ n0.

For the inductive step, we need to show “P (n0) ∧ P (n0 + 1) ∧ · · · ∧ P (k)
implies P (k + 1).” For fixed (generic) k ≥ n0, assume P (j) is true for all
n0 ≤ j ≤ k. Prove P (k + 1) is true.

Example 4.2.2. Prove that every positive integer greater than 1 can be
written as a product of primes.

Proof. Let P (n) be the proposition “n can be written as a product of primes.”
We want to show P (n) is true for all n ≥ 2. We proceed by induction on n.

Basis step: P (2) is true since 2 is prime.
Inductive step: Fix k ≥ 2. Suppose P (j) is true for all 0 ≤ j ≤ k so that

j can be written as a product of primes when 0 ≤ j ≤ k. We want to show
k + 1 can be written as a product of primes. There are two cases to consider.

4.2. Strong induction 137

k + 1 is prime: In this case, P (k + 1) is trivially true.
k + 1 is composite: In this case, there exist integers a and b such that
a ≥ 2, b ≥ 2, ab = k + 1. This implies a < k + 1 and b < k + 1, so
2 ≤ a ≤ k and 2 ≤ b ≤ k. Then by the inductive hypothesis, a and b
can be written as products of primes. Thus k + 1 = ab can be written
as a product of primes.

Therefore by strong induction, every integer greater than or equal to 2 can
be written as a product of primes. �

Example 4.2.3. When we use the inductive hypothesis, it is important to
verify that we are in the range where we can use it. See the example below.

Find the flaw in the following proof that 3n = 1 for every nonnegative
integer n.

Let P (n) be the proposition 3n = 1.
Basis step: P (0) is true since 30 = 1.
Inductive step: (Uses strong induction.) Fix k ≥ 0. Assume P (j) is true

for all 0 ≤ j ≤ k. In particular, we assume that 3j = 1 for all 0 ≤ j ≤ k. We
wish to show that 3k+1 = 1. We compute

3k+1 = 3k · 31 =
3k · 3k
3k−1

=
1 · 1

1
= 1,

since by the inductive hypothesis, 3k = 1 and 3k−1 = 1. Thus, by induction,
3n = 1 for all n ≥ 0.

The induction principle follows from the well-ordering property of the
integers, which says that every non-empty subset of the non-negative integers
has a least element.

Remark 4.2.4. This well-ordering property is not true for subsets of the
real numbers, so we cannot use these induction techniques to prove things
like P (x) is true for all real positive numbers x.

Example 4.2.5. Prove that every amount of postage of 12 cents or more
can be formed using 4-cent and 5-cent stamps.

Proof. Let P (n) be the proposition

P (n) = “n cents can be formed using 4-cent and 5-cent stamps.”

We want to prove P (n) is true for n ≥ 12. We proceed by induction on n.
Basis step:

12 = 3 · 4 + 0 · 5
13 = 2 · 4 + 1 · 5
14 = 1 · 4 + 2 · 5
15 = 0 · 4 + 3 · 5

138 4. Induction

Inductive step: Fix k ≥ 15. Suppose P (j) is true for all 12 ≤ j ≤ k so
that j cents can be formed using 4-cent and 5-cent stamps for each j such that
12 ≤ j ≤ k. We want to form k + 1 cents. Consider j = (k + 1)− 4 = k − 3.
Then j ≤ k. Since k ≥ 15, we have j = k − 3 ≥ 15 − 3. Thus 12 ≤ j ≤ k.
Then by the inductive hypothesis, we can form j cents using 4-cent and 5-cent
stamps. Just add another 4-cent stamp to get j+ 4 = k− 3 + 4 = k+ 1 cents.
Thus P (k + 1) is true.

Therefore by strong induction, P (n) is true for all n ≥ 12. �

Example 4.2.6. Recall the Fibonacci sequence is defined by f0 = 0, f1 = 1,
and

fn+1 = fn + fn−1, for n ≥ 2.
Prove that fn ≤ 2n for all n ≥ 0.

Proof. Let P (n) be the proposition “fn ≤ 2n.” We proceed by induction on
n.

Basis step: It is clear that f0 = 0 ≤ 20 and f1 = 1 ≤ 21, so P (0) and
P (1) are true.

Inductive step: Fix k ≥ 1. Assume P (j) is true for 0 ≤ j ≤ k so that
fj ≤ 2j for 0 ≤ j ≤ k. We want to prove fk+1 ≤ 2k+1. We have

fk+1 = fk + fk−1

≤ 2k + 2k−1

≤ 2 · 2k

= 2k+1.

Thus P (k + 1) is true.
Therefore by strong induction, fn ≤ 2n for all n ≥ 0. �

The validity of mathematical induction and strong induction follows from
a fundamental axiom of the integers known as the well-ordering property .
Note that while we list the well-ordering property below as a theorem, it is in
fact an axiom (self-evident truth) that we assume in the precise construction
of the set of integers.

Theorem 4.2.7 (Well-Ordering Property). Every nonempty set of nonneg-
ative integers has a least element.

Why does the well-ordering property imply that induction is valid?

Proof. For simplicity, just think about the most basic form, as described
before Theorem 4.1.1. We proceed by contradiction. Suppose not. Then
the set S of positive integers for which P (n) is false is nonempty. By the
well-ordering property, S must have a least element. Let m be the least

4.2. Strong induction 139

Figure 4.2.1. xkcd: Set Theory. (https://xkcd.com/982/) Proof of
Zermelo’s well-ordering theorem given the Axiom of Choice: 1: Take S
to be any set. 2: When I reach step three, if S hasn’t managed to find
a well-ordering relation for itself, I’ll feed it into this wood chipper. 3:
Hey, look, S is well-ordered.

element in S. Then m is not 1, since P (1) is true by the basis step. Because
m is positive and not 1, we must have that m is at least 2. Then m − 1
is a positive integer less than m, and P (m − 1) is true. By the inductive
step, we know that P (m− 1) implies P (m), so P (m) must be true as well.
Contradiction! Thus induction is valid.

The proof the more general case as well as strong-induction is similar. �

Exercises

1. State precisely the Principle of Strong Induction. Be sure to set up any
notation that is required.

2. State precisely the Well-Ordering Property. Be sure to set up any notation
that is required.

3. Complete the steps below to prove that every amount of postage of 12
cents or more can be formed using 4-cent and 5-cent stamps.
(a) What is the proposition P (n)? Let P (n) be the proposition
(b) Basis step:

(i) What is the statement P (12)?
(ii) Prove P (12) is true.

https://xkcd.com/982/

140 4. Induction

(iii) In this case, the proof is simpler if we use strong induction.
State and prove P (13), P (14), and P (15).

(c) Inductive step:
(i) State the inductive hypothesis. Fix k ≥ Assume . . . for

all · · · ≤ j ≤ k. Be careful here. We gain the additional
advantage of additional cases in the basis step by forcing k to
be larger, and allowing j to go down as much as possible.

(ii) What is it we want to prove, assuming the inductive hypothe-
sis? We want to show

(iii) Prove it. Be clear where we are using the inductive hypothesis.
Verify that we are working in a range where the inductive
hypothesis is assumed to hold.

(iv) Write This completes the inductive step.
(d) State the conclusion. By mathematical induction,

4. Suppose a1 = 10, a2 = 5, and an = 2an−1 + 3an−2 for n ≥ 3. Use strong
induction to prove that 5 divides an for n ≥ 1.

5. Let n be a positive integer. Show that any 2n × 2n chessboard with 1
square removed can be tiled using L-shaped pieces, where these pieces
cover three squares at a time, as shown below.

6. Let fn denote the nth Fibonacci number. Prove that

fn =
φn − (1− φ)n√

5
, where φ =

1 +
√

5

2
.

(Hint: Since φ satisfies φ2 − φ − 1 = 0, we have φ2 = φ + 1 and
(1− φ)2 = 2− φ.)

7. Prove that the power set P(S)of a finite set S has cardinality

|P(S)| = 2|S|.

(Hint: Use induction on the size |S| of S. Fix an element a in S, and
count the subsets of S containing a and the subsets not containing a.
Note: A direct proof of this is given in Theorem 5.1.14.)

8. Prove that if a sequence {an} satisfies
an+1 =

an
an + 1

then
an =

a0
na0 + 1

.

Chapter 5

Counting

When angry count to ten before you speak. If very
angry, count to one hundred.

Thomas Jefferson (1743–1826)

We learn to count at a young age. It is something that is fundamental
and basic. There is archaeological evidence suggesting humans have been
counting for over 50,000 years. In this chapter, we define precisely what it
means to count something. Then we develop advanced counting techniques
and look at some of the implications.

5.1. Basics of counting

Goals. To introduce basic counting rules and to show how they are used
to solve a variety of counting problems.

Combinatorics is the study of arrangements of objects. We want to count
the number of ways to do certain things.

First we make precise what it means to count something.

Definition 5.1.1. Let A a finite nonempty set. To count A means to
construct a bijection φ : A→ {1, 2, . . . , |A|}, where |A| is the cardinality of
A.

Recall that the cardinality of a finite set is defined earlier in §2.1.3. This
definition of counting is exactly what we show children when we teach them
to count to answer “how many” type questions, though not in this language.

141

142 5. Counting

Specifically, we teach them to construct a bijection in order to find the size
of a set. For example, imagine teaching a child to count the number of hearts
(♥) shown below:

♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥

Most likely, you pointed to each heart, one-by-one, and recited: “one, two,
three, four, . . . , thirteen, fourteen.” In doing so, you created a bijection
between the set of hearts and {1, 2, . . . , 14}. From this, you cam deduce that
there are 14 hearts.

Notice that we do not need to have constructed the same bijection in
order to get the right number for the cardinality. The key point is that we
create a function that is both injective and surjective. Do you see why?

We can generalize the definition for counting and cardinality to include
some infinite sets. An infinite set is any set that is does not have a finite
cardinality. It turns out, there are different sizes of infinity.

Definition 5.1.2. Two sets A and B have the same cardinality , denoted
|A| = |B| if there is a bijection from A to B.

Definition 5.1.3. A countable set is either finite or has the same cardi-
nality as the set of positive integers. An uncountable set is any set that is
not countable.

Notice that this gives at least two different “sizes” for infinite sets. Some
sets are infinite, but we can count them by constructing a bijection to the
positive integers. Other infinite sets are so large that we cannot even construct
such a bijection to the positive integers.

Example 5.1.4. The set of integers Z is a countable set. To show this, we
need to construct a bijection from Z to {1, 2, . . .}. Consider the function
f : Z→ {1, 2, . . .} defined by

f(x) =

{
2x+ 1 if x ≥ 0,
−2x if x < 0.

So f(0) = 1, f(1) = 3, f(3) = 7, . . . , and f(−1) = 2, f(−2) = 4, f(−3) = 6,
. . . . In other words, f sends the nonnegative integers to the odd integers,
and the negative integers are sent to the even integers.

Let’s show that f is bijective. First, to see that f is surjective, fix a
generic element n in {1, 2, . . .}. If n is even, then −n

2 is a negative integer,
and so

f(−n
2

) = −2(−n
2

) = n.

5.1. Basics of counting 143

If n is odd, then n−1
2 is a positive integer, and so

f(
n− 1

2
) = 2(

n− 1

2
) + 1 = n.

Thus f is surjective.
To see f is injective, fix generic integers a and â such that f(a) = f(â). If

f(a) is even, then f(â) is also even, and so both a and â are negative. Then
f(a) = −2a, and f(â) = −2â. Since f(a) = f(â), we have −2a = −2â so
a = â. Now suppose f(a) is odd. Then f(â) is also odd, and so both a and â
are nonnegative. Then f(a) = 2a+ 1, and f(â) = 2â+ 1. Since f(a) = f(â),
we have 2a+ 1 = 2â+ 1 so a = â. Thus f is injective.

Since f is injective and surjective, f is bijective and so Z is countable.

� Example 5.1.4 is a bit counterintuitive. It shows that Z can be put in
bijection with a proper subset of itself. In particular, Z has the same

size as {1, 2, . . .}. This hints at some of the strange things that can happen
with counting infinite sets.

Since the inverse of a bijective function is bijective, we can show an infinite
set is countable by constructing a bijection from the set of positive integers to
the set. Such a bijection is a sequence that includes all of the elements of A,
listed with no repeats. In other words, an infinite set is countable if and only
if it is possible to list all of the elements in a sequence with no repeats. In
fact, we can relax the “no repeats” part, since if we do have a sequence with
repeats, we can easily extract a subsequence without repeats. For example,
if we are given the sequence

1, 2, 3, 4, 5, 5, 6, 7, 7, 8, 9, 9, 10, . . .

we instead consider the sequence

1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

In Example 5.1.4 that shows the set of integers is countable, the sequence
that is inverse the bijection given is

0,−1, 1,−2, 2,−3, 3,

Sometimes it is easier to think of a sequence instead of a formula for the
function.

Since the composition of bijective functions is bijective, to show an infinite
set A is countable it is enough to find a bijection from A to Z. If we have
such a bijection, we compose it with the bijection from Z to {1, 2, . . .} given
in Example 5.1.4 to get the desired bijection from A to {1, 2, . . .}. Using this
idea, it is clear that the set of even integers 2Z is countable, since f : 2Z→ Z
given by f(x) = x

2 is a bijection from 2Z to Z. A similar argument shows the
set of odd integers is countable.

144 5. Counting

...

5
1

4
1

3
1

2
1

1
1

...

5
2

4
2

3
2

2
2

1
2

...

5
3

4
3

3
3

2
3

1
3

...

5
4

4
4

3
4

2
4

1
4

...

5
5

4
5

3
5

2
5

1
5

...

5
6

4
6

3
6

2
6

1
6

· · ·

· · ·

· · ·

· · ·

· · ·

Figure 5.1.1. The positive rationals are countable.

What about the set of rational numbers? Surely there are more rational
numbers than integers? It turns out, the set of rational numbers is also
countable.

Theorem 5.1.5. The set of rational numbers is countable.

Proof. It suffices to show the set of positive rational numbers is countable.
(Why? Exercise.)

Every positive rational number is the quotient p
q of two positive integers

p and q. We arrange the positive rational numbers by listing those with
denominator q = 1 in the first row, those with denominator 2 in the second
row, and so on. The rational numbers with denominator k are listed in the
kth row, as shown in Figure 5.1.1. From the figure, we create a sequence
by looking at the diagonals: list p

q with p + q = 2, followed by those with
p + q = 3, followed by with p + q = 4, and so on as shown in Figure 5.1.1.
The numbers we keep for the sequence are circled. The uncircled numbers are
those we leave out because they are already listed. Because all the positive
rational numbers are listed once. we hove show the set of positive integers is
countable. The exercise completes the proof by extending this bijection to a
bijection from Z to Q. �

One may start to think that every infinite set is countable. In fact, there
are sets that are larger. In 1879, Georg Cantor produced a proof using
a technique now known as the Cantor diagonalization argument , that
proves the set of real numbers is not countable.

Theorem 5.1.6. The set of real numbers is uncountable.

5.1. Basics of counting 145

Proof. It suffices to prove the interval e(0, 1) is uncountable. We prove this
by contradiction. Suppose the interval (0, 1) is countable. Then there is a
sequence that contains all of the real numbers in (0, 1).

a1 = 0.a1,1a1,2a1,3a1,4a1,5 . . .

a2 = 0.a2,1a2,2a2,3a2,4a2,5 . . .

a3 = 0.a3,1a3,2a3,3a3,4a3,5 . . .

...
...

The ith term in the sequence has a decimal expansion with ai,j in the jth
digit after the decimal point. For example, if the third term was 0.536831 . . . ,
then a3,1 = 5, a3,2 = 3, a3,3 = 6,

By assumption, this sequence contains every real number in the interval
(0, 1). To reach a contradiction, it suffices to produce a real number in the
interval (0, 1) that is provably not a term in the sequence. Consider the
number

d = 0.d1a2a3a4a5 . . . ,

where dj is defined by

dj =

{
3 if aj,j 6= 3,
4 if aj,j = 3.

We have that d 6= a1, since they differ in the first digit after the decimal,
d1 6= a1,1. Similarly, d 6= a2, since they differ in the second digit after the
decimal, d2 6= a2,2, and so on. In general, d cannot be the kth term in the
sequence, since dk 6= ak,k. See boxed digits below.

a1 = 0. a1,1 a1,2a1,3a1,4a1,5 . . .

a2 = 0.a2,1 a2,2 a2,3a2,4a2,5 . . .

a3 = 0.a3,1a3,2 a3,3 a3,4a3,5 . . .

...
...

In other words, d is not a term in the sequence. This contradicts the
assumption that we have a sequence containing every real number. Thus
there is no such sequence, and hence the interval (0, 1) is uncountable. It
follows that the set of real numbers is uncountable. �

� There is a subtle point that not every real number has a unique decimal
representation. For example, 0.5000 . . . is the same real number as

0.4999 We avoid this issue by choosing d to have digits only involving 3
and 4 to be sure we are producing a number that has only one representation,
so that we can be sure it is not in the sequence.

146 5. Counting

5.1.1. Product Rule.

Theorem 5.1.7 (Product Rule). Suppose a procedure can be broken down
into a sequence of two tasks. If there are n1 ways to do the first task, and
for each of these ways there are n2 ways to do the second task, then there
are n1n2 ways to do the procedure.

Example 5.1.8. Suppose auditorium chairs are labelled with an uppercase
letter followed by a positive integer not exceeding 100. How many different
labels are possible?

We can view this problem as counting they ways to assign a label to a
chair. We proceed by constructing tasks.

Task 1. Assign a letter: There are 26 ways to assign the letter.
Task 2. Assign an integer: For each choice of letter, there are 100 ways

to assign the integer.

By the Product Rule, there are 26 · 100 = 2600 different ways to assign a
label. Hence there are 2600 different labels.

The Product Rule generalizes to m tasks. Suppose a procedure can be
carried out by performing tasks T1, T2, . . . , Tk tasks in sequence. If each task
Ti can be done in ni ways regardless of how the previous tasks were done,
then there are n1n2 · · ·nm ways to carry out the procedure.

Example 5.1.9. How many bit strings of length 8 are there?
We just have to choose each bit, so there are 8 tasks. Each bit can be 0

or 1, so there are 2 ways to choose each bit. The Product Rule says there
are 28 = 256 such bit strings.

Example 5.1.10. How many bit strings of length 8 that start with 1 are
there?

The first bit must be 1. We are left with choosing the remaining bits, so
there are 7 tasks. There are 2 ways to choose each of the remaining 7 bits.
The Product Rule says there are 27 = 128 such bit strings.

Example 5.1.11. How many bit strings of length 8 that end with 00 are
there?

The last two bits must be 00. We are left with choosing the remaining
bits, so there are 6 tasks. There are 2 ways to choose each of the remaining 6
bits. The Product Rule says there are 26 = 64 such bit strings.

Example 5.1.12. How many bit strings of length 8 that start with 1 and
end with 00 are there?

The first bit must be 1 and the last two must be 00. We are left with
choosing the remaining bits, so there are 5 tasks. There are 2 ways to choose

5.1. Basics of counting 147

each of the remaining 5 bits. The Product Rule says there are 25 = 32 such
bit strings.

Example 5.1.13. Suppose there are 22 people in the class. How likely is it
that two share a birthday?

First, let’s count the number of ways the birthdays could be arranged,
assuming no one was born on February 29. We order the 22 people, and
break this own into 22 tasks. The ith task is choosing a birthday for the ith
person. There are 365 ways to complete each task, regardless of how previous
tasks were done. By the Product Rule, the number of birthday arrangements
is

36522 ≈ 2.346621351× 1056.

Next, let’s compute the number of ways the birthdays could be arranged,
assuming no one was born on February 29 and no two people share a birthday.
Again, we break this into 22 tasks, where the ith task is choosing the birthday
for the ith person. The difference is in the number of ways to complete each
task. There are 365 was to complete the first task. There are only 364 ways
to complete the second task, since we cannot choose the same birthday as the
first person. Notice that the number of ways does not depend on what day
was chosen for the first person. Similarly, there are 353 ways to complete the
second task, and so on. In general, there are 365− (i− 1) ways to complete
the ith task. By the Product Rule, the number of birthday arrangements so
that no two share a birthday is

365 · 364 · 363 . . . 344︸ ︷︷ ︸
22 terms

≈ 1.230344586× 1056.

The likelihood of an event happening (assuming all possible events are
equally likely) is the ratio of the number of ways the particular event can
occur divided by the total number of events. We can compute that

1.230344586× 1056

2.346621351× 1056
≈ 0.5243.

That means if birthdays are arranged randomly, there is a 52% chance that
no two people in the class share a birthday. This is the largest gathering
where that is greater than 50%. If we do the same computation with twice
as many people, there is only a 6.7% chance that no one shares a birthday.

Theorem 5.1.14. If a set A has cardinality n, then the cardinality of the
power set of A is |P(A)| = 2n.

Proof. Label the elements of A,

A = {a1, a2, . . . , an}.
Note that we uniquely determine a subset of A by specifying the elements
that are in the subset.

148 5. Counting

We specify a subset of A by completing n tasks, where the ith task is
deciding whether or not ai is in the subset. There are two ways to complete
each task, regardless of how previous tasks are completed. By the Product
Rule, there are 2n different subsets of A. �

Example 5.1.15. How many license plates can be made, if the license plate
consists of 3 upper case letters followed by 4 one digit numbers.

We view this as a sequence of 7 tasks: choose a letter, choose a letter,
choose a letter, choose a digit, choose a digit, choose a digit, and choose a
digit. There are 26 letters and 10 digits, so there are 26 ways to choose a
letter and 10 ways to choose a digit. The number of ways to complete each
task does not depend on how the previous tasks were completed. Thus by
the Product Rule, there are

26 · 26 · 26 · 10 · 10 · 10 · 10 = 175,760,000

different license plates.

Example 5.1.16. Let A = {a, b, c}, and let B = {1, 2, 3, 4, 5}.
(1) How many functions f : A→ B are there?

We need to choose a value for f(x) for each x in A. There are
5 choices for f(a), 5 choices for f(b), and 5 choices for f(c). By the
Product Rule, there are 5 · 5 · 5 = 125 functions from A to B.

(2) How many injective functions f : A→ B are there?
We need to choose a value for f(x) for each x in A, but we need to

do so in a way that produces an injective function. There are 5 choices
for f(a). There are 4 choices for f(b), since we cannot choose the same
value as was chosen for f(a). Similarly, there are 3 choices for f(c),
since we must avoid f(a) and f(b). By the Product Rule, there are
5 · 4 · 3 = 60 injective functions from A to B.

(3) How many surjective functions f : A→ B are there?
Since |B| > |A|, there are no surjective functions from A to B.

5.1.2. Sum Rule.

Theorem 5.1.17 (Sum Rule). If a task can be done in either one of n1
ways or n2 ways, where none of the set of n1 ways is the same as any of
the set of n2 ways. Then there are n1 + n2 ways to do the task.

The Sum Rule can be generalized. If a task can be done in one of n1
ways, or in one of n2 ways, . . . , or in one of nm ways, where none of the set
of ni ways is the same as any of the set of nj ways, for all i 6= j, then there
are n1 + n2 + · · ·+ nm ways to complete the task.

Example 5.1.18. Suppose there are 10 goats and 15 sheep in a certain
village.

5.1. Basics of counting 149

(1) Suppose a gift of one animal (goat or sheep) is to be given to a visiting
dignitary. How many ways are there to select a gift?

There are 10 ways to select a goat and 15 ways to select a sheep,
and none of the ways that select a goat is the same as any of the ways
that select a sheep. By the Sum Rule, there are 10 + 15 = 25 ways to
select the gift.

(2) Suppose it is decided instead that the gift should consist of one goat
and one sheep. How many ways are there to select a gift?

The procedure of selecting a gift can be broken down into two tasks:
select the goat and select the sheep. The number of ways to select the
sheep does not depend on which goat was selected. By the Product rule,
there are 10 · 15 = 150 ways to select a gift.

5.1.3. Principle of Inclusion-Exclusion.

Definition 5.1.19 (Principle of Inclusion-Exclusion). If a task can be done
in n1 ways or n2 ways, then the number of ways to do the task is n1 +n2−k,
where k is the number of ways to do the task that is common to the n1 and
n2 ways.

The Principle of Inclusion-Exclusion s sometimes called the Subtraction
Rule .

Example 5.1.20. How many bit strings of length 8 are there that start with
1 or end with 00?

From Example 5.1.9, there are 27 bit strings of length 8 that start with 1.
From Example 5.1.11, there are 26 bit strings of length 8 that end with 00.
From Example 5.1.12, there are 25 bit strings that start with 1 and end with
00. By the Principle of Inclusion-Exclusion, there are 27 + 26 − 25 = 160 bit
strings that start with 1 or end with 00.

Example 5.1.21. Suppose there are 350 undergraduates in an auditorium.
Of these, 220 are computer science majors, 147 are math majors, and 51
are double majoring in computer science and math. How many are neither
computer science nor math majors?

First count the number of computer science or math majors. By the
Principle Inclusion-Exclusion, there are 220+147−51 = 316 computer science
or math majors. Then there are 350 − 316 = 34 students that are neither
computer science nor math majors.

5.1.4. Division Rule.

Theorem 5.1.22 (Division Rule). Suppose we can complete a task using
a procedure that can be carried out in n ways, and for each of these ways
exactly d of the ways corresponds to the same way. Then there are n

d ways
to do the task.

150 5. Counting

Example 5.1.23. Seat four people at a circular table. Two seating arrange-
ments are the same if each person has the same left and right neighbor. In
other words, two seating arrangements are the same if one can be rotated
into the other.

By the Product Rule there are 4 · 3 · 2 · 1 = 24 ways to arrange the
four people around the table. For each way, exactly four give the same
seating arrangement. By the Division Rule, there are 24

4 = 6 different seating
arrangements.

Exercises

1. State precisely the following rules. Be sure to set up any notation that is
required.
(a) Product Rule
(b) Sum Rule
(c) Principle of Inclusion-Exclusion
(d) Division Rule

2. How many bit strings of length eight contain exactly three 0s? Hint:
Think about choosing locations for the 0s.

3. How many answer keys are possible for a twenty question multiple choice
test, where each question has exactly six choices?

4. Suppose there are 350 undergraduates in an auditorium. Of these, 220
are computer science majors, 147 are math majors, and 51 are double
majoring in computer science and math. How many are neither computer
science nor math majors?

5. Let A = {a, b, c, d}, and let N = {1, 2, 3, 4, 5, 6, 7}.
(a) How many functions are there from A to N? How many functions

are there from N to A?
(b) How many injective functions are there from A to N? How many

injective functions are there from N to A?
(c) How many surjective functions are there from A to N? It is a trickier

problem to determine the number of surjective functions from N to
A.

6. Suppose a multiple choice exam consists of 20 questions, each with choices
A, B, C, D.
(a) How many possible answer keys are there?
(b) In how many ways can a student answer the questions on the test,

if the student answers every question?
(c) In how many ways can a student answer the questions on the test,

if the student student can leave answers blank?

5.2. Pigeonhole Principle 151

7. A particular brand of shirt comes in a variety of colors (red, green, blue,
black, pink, orange, purple) and sizes (XS, S, M, L, XL). How many
different types of shirts are there?

8. How many license plates can be made using either three uppercase English
letters (A–Z) followed by three digits (0–9) or four uppercase English
letters (A–Z) followed by two digits (0–9)?

9. In how many ways can Alice arrange six of her dolls in a row if she has
twenty-three dolls?

10. In how many ways can a photographer at a wedding arrange five people
in a row from a group of twenty people, given that the bride must be in
the picture?

11. In how many ways can Alice arrange twelve of her fifty-four books on a
shelf, given that she must include Strangers Have the Best Candy and
The Joy of Chickens?

12. Each user on a computer system has a password, where each character is
an uppercase letter (A–Z) or a digit (0–9).
(a) How many possible 8 character passwords are there?
(b) How many possible 8 character passwords are there that do not use

any digits?
(c) How many possible 8 character passwords are there, if each password

must contain at least one digit?
13. Count the number of times that the letter F appears in the following

sentence:
FINISHED FILES ARE THE RESULT OF YEARS OF SCI-
ENTIFIC STUDY COMBINED WITH THE EXPERIENCE
OF YEARS.

14. Let f be a bijection from the set of positive rational numbers Q>0 to the
set of positive integers Z>0. Use f to construct a bijection from Q to Z.
Use this to fill in the gap of the proof in Theorem 5.1.5. Hint: Extend
the domain of f to be Q: For a positive rational number r you know
f(r). What is a reasonable choice to pick to define f(−r)?

5.2. Pigeonhole Principle

Goals. To introduce the Pigeonhole Principle and show how to use it in
enumeration and in proofs.

The basic idea is really simple. For example, if we have three boxes and
want to put away four or more toys, there must be at least one box containing
two or more toys. The technique can be used cleverly to prove statements
that are not so trivial.

152 5. Counting

Theorem 5.2.1 (Pigeonhole Principle). If k is a positive integer, and
k + 1 or more objects are placed into k boxes, then there is at least one box
containing two or more objects.

Example 5.2.2. In any group of 27 English words, at least two must start
with the same letter, since there are only 26 letters in the English alphabet.

Example 5.2.3. Assume no human has more than 200,000 hairs on his/her
head. Since there are more than 200,000 people in Greensboro, there are at
least two people in Greensboro with exactly the same number of hairs on
their head.

Theorem 5.2.4. If A and B are nonempty sets with |B| = k and |A| ≥ k+1,
then there are no injective functions from A to B.

Proof. We show that any function from A to B is not injective. Make a
box for each b in B. For each a in A, place a in box labelled b if f(a) = b.
By the Pigeonhole Principle, there is a box with at least two elements in it.
Thus there is a b in B with at least two different preimages. Thus f is not
injective. �

Example 5.2.5. For any integer n, there is a positive multiple of n that has
only 0s and 1s in its decimal expansion.

n multiple

2 10
3 111
4 100
5 10
6 1110
7 1001
...

...

How can we prove something like this in general?
There are n congruence classes modulo n. Use these as labels on a box.

Consider the n+ 1 integers

1, 11, 111, . . . , 111 · · · 1︸ ︷︷ ︸
n+ 1 times

.

By the Pigeonhole Principle, there must be a congruence class with at least
two of these integers in it. The difference of these two integers is 0 modulo n,
hence divisible by n. Additionally, the difference only has 0s and 1s in its
decimal expansion.

5.2. Pigeonhole Principle 153

Theorem 5.2.6 (Extended Pigeonhole Principle). Suppose n and k are
positive integers. If n objects are placed into k boxes, then there is at least
one box containing

⌈
n
k

⌉
objects.

Example 5.2.7. In a group of 100 people, there are at least
⌈
100
12

⌉
= 9 born

in the same month.

Example 5.2.8. Suppose a bowl contains apples, oranges, and bananas.
How many random selections are required to ensure we have at least two of
the same fruit?

Label boxes by fruit types. Place fruit in the box identifying its type.
Then there are 3 boxes, so if we select 3+1 = 4 fruit, the Pigeonhole Principle
says we will have at least two of the same type.

If we wanted at least five of the same type, the Extended Pigeonhole
Principle says we need

⌈
n
3

⌉
≥ 5. That means we need n

3 > 4, so n > 12.
Thus if we select 13 fruit, we are guaranteed at least five of the same type.

Example 5.2.9. How many distinct random selections from {1, 2, 3, 4, 5, 6}
are required to guarantee at least one pair that adds up to 7?

Note that 1 + 6 = 2 + 5 = 3 + 4 = 7 are the only ways to get a pair to add
to 7. Label 3 boxes: {1, 6}, {2, 5}, and {3, 4}. By the Pigeonhole Principle,
if we select 3 + 1 = 4 numbers, one box must contain two or more elements.
Thus we will have a pair that sums to 7 if we select 4 numbers.

Example 5.2.10. Suppose we deal cards from a standard deck of cards
(jokers removed). How many cards must be dealt to guarantee that at least 3
of the same suit are chosen?

Imagine 4 boxes, labelled by the 4 suits: hearts (♥), diamonds (♦), clubs
(♣), spades (♠). By the Extended Pigeonhole Principle, if we deal n cards,
we are guaranteed at least one suit has

⌈
n
4

⌉
cards in it. We want n

4 > 2, so
we need n > 2 · 4 = 8. Thus 9 cards will guarantee 3 of the same suit.

Exercises

1. State precisely the Pigeonhole Principle. Be sure to set up any notation
that is required.

2. State precisely the Extended Pigeonhole Principle. Be sure to set up any
notation that is required.

3. UNCG has 18,502 students. How many students at UNCG must share a
birthday? Explain using the Extended Pigeonhole Principle. (You may
assume no one was born on February 29.)

154 5. Counting

4. Suppose the final exam is graded on a scale from 0 to 100 points. How
many students must be in the class to guarantee that at least two students
receive the same score on the final exam?

5. How many numbers must be selected from the set {1, 3, 5, 7, 9, 11, 13, 15}
to guarantee at least one pair of these numbers add up to 16?

6. What is the minimum number of people required to be sure that at least
four will have birthdays in the same month?

7. A standard deck of cards consists of 52 cards. Each card is one of thirteen
ranks (A, 2, 3, . . . , J, Q, K) and one of four suits (♣, ♠, ♥, ♦).
(a) How many cards must be selected to guarantee that at least three

of the same suit are chosen?
(b) How many cards must be selected to guarantee that at least three

of the same rank are selected?

8. A standard deck of cards consists of 52 cards. Each card is one of thirteen
ranks (A, 2, 3, . . . , J, Q, K) and one of four suits (♣, ♠, ♥, ♦).
(a) How many cards must be selected to guarantee that at least two

hearts (♥) are selected?
(b) How many cards must be selected to guarantee that at least three

spades (♠) are selected?
(c) How many cards must be selected to guarantee that at least two

hearts (♥) and three spades (♠) are selected?

9. Alice selects clips randomly from a bowl that contains ten large paper
clips and thirty small paper clips.
(a) How many must she select to be sure of having at least three of the

same size?
(b) How many must she select to be sure of having at least five of the

same size?

10. Show that there are at least seventeen people in Greensboro (population
285,000) with the same three initials, assuming everyone has a first,
middle, and last initial.

11. There are 38 different time periods during which classes can be scheduled.
If there are 650 different classes, how many different rooms will be needed?

12. Show that among any group of five integers, there are at least two with
the same remainder when divided by 4.

13. There are 50 baskets of apples. Each basket contains at least one apple and
no more than 24 apples. Show that there are at least 3 baskets containing
the same number of apples. If you use the Pigeonhole Principle or its
extension, be sure to tell me what are the pigeons and what are the boxes.
Hint: The apples are not pigeons. The baskets are not boxes.

5.3. Permutations and combinations 155

5.3. Permutations and combinations

Goals. To introduce permutations and combinations, to solve counting
problems using them, and to show how theorems are proved by combinatorial
arguments.

5.3.1. Permutations.

Definition 5.3.1. A permutation of a set of distinct objects is an ordered
arrangement of these objects.

Example 5.3.2. Let S = {x, y, z}. The permutations of S are

{xyz, xzy, yxz, yzx, zxy, zyx}.

Definition 5.3.3. An ordered arrangement of r elements of a set is called
an r-permutation . The number of r-permutations of a set of size n is
denoted P (n, r).

Remark 5.3.4. If |S| = n, then an n-permutation is the same thing as a
permutation.

Example 5.3.5. Let S = {a, b, c, d}.
(1) The 1-permutations of S are

{a, b, c, d}.
Thus we see that P (4, 1) = 4.

(2) The 2-permutations of S are

{ab, ac, ad, ba, bc, bd, ca, cb, cd, da, db, dc}.
Thus we see that P (4, 2) = 12.

(3) The 3-permutations of S are

{abc, acb, bac, bca, cab, cba,
abd, adb, bad, bda, dab, dba,

acd, adc, cad, cda, dac, dca,

bcd, bdc, cbd, cdb, dbc, dcb}.

Thus we see that P (4, 3) = 24.
(4) As an exercise, try to list the permutations of S. There are 24 of them.

Theorem 5.3.6. Let n and r be integers such that 0 ≤ r ≤ n. Then

P (n, r) =
n!

(n− r)! = n(n− 1)(n− 2) · · · (n− (r − 1)).

156 5. Counting

Proof. Constructing an r-permutation, can be broken down into a sequence
of r tasks. First, we select the first term in the arrangement. There are n
ways to do this. Then, we select the second term in the arrangement. There
are n− 1 ways to do this because one of the ways is no longer valid as it was
already used in the previous step. Similarly, there are n− 2 ways to select
the third term, and so on. The result then follows by the Product Rule. �

Remark 5.3.7. 0! = 1, so P (n, n) = n!.

Example 5.3.8. Suppose there are eight runners in a race. How many
different ways can we Gold/Silver/Bronze finishers, assuming no ties?

We want to count the number of 3-permutations of the runners. Since
there are eight runners, we have

P (8, 3) =
8!

(8− 3)!
=

8!

5!
=

8 · 7 · 6 ·(((((((
5 · 4 · 3 · 2 · 1

(((((((
5 · 4 · 3 · 2 · 1 = 336.

Remark 5.3.9. For n and k such that 0 ≤ k ≤ n, cancellation gives

n!

k!
= n(n− 1) · · · (k + 1).

Example 5.3.10. Let S = {a, b, c, . . . , x, y, z}. The number of permutations
of S is

P (26, 26) = 26! = 403,291,461,126,605,635,584,000,000.

Example 5.3.11. How many permutations of S = {a, b, c, . . . , x, y, z} con-
tain abc?

We can view this as a different problem. We want permutations of

S′ = {abc, d, e, f, . . . , x, y, z}.

Then |S′| = 24, and

P (24, 24) = 24! = 620,448,401,733,239,439,360,000.

Example 5.3.12. How many ways are there to arrange seven people in from
a group of ten (including me) in a row if I need to be one of the seven?

We break this into tasks. First select the position for me. There are 7
choices. The remaining spots are ordered. We need a 6-permutation of the
set of 9 remaining people. There are

P (9, 6) =
9!

(9− 6)!
= 9 · 8 · 7 · 6 · 7 · 6 = 60,480

such permutations. By the Product Rule, there are 7 · 60480 = 423,360
arrangements.

5.3. Permutations and combinations 157

5.3.2. Combinations.

Definition 5.3.13. A combination of a set of distinct objects is an un-
ordered selection of these objects. An unordered selection of r-elements
from a set is called an r-combination . The number of r-combinations of
a set of size n is denoted C(n, r).

Example 5.3.14. Let S = {a, b, c, d}.
(1) The 1-combinations of S are

{{a}, {b}, {c}, {d}}.
Thus we see that C(4, 1) = 4.

(2) The 2-permutations of S are

{{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}}.
Thus we see that C(4, 2) = 6.

(3) The 3-combinations of S are

{{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}}.
Thus we see that C(4, 3) = 4.

(4) The 4-combinations of S are

{{a, b, c, d}}.
Thus we see that C(4, 4) = 1.

Remark 5.3.15. There is only one way to select all of the elements of S, so
C(n, n) = 1, in general.

Theorem 5.3.16. Let n and r be integers such that 0 ≤ r ≤ n. Then

C(n, r) =
n!

r!(n− r)! .

Proof. We can carry out the last of listing the r-combinations by listing the
r-permutations. By Theorem 5.3.6, there are n!

(n−r)! ways to do this. For each
of these ways, exactly r! of the ways correspond to the same way. The result
then follows by the Division Rule. �

Example 5.3.17. How many poker hands (5 cards) are in a standard deck
of 52 cards?

We want to count 5-combinations of cards. Since there are 52 cards, the
number of 5-combinations is

C(52, 5) =
52

5!(52− 5)!
=

52

5!47!
=

52 · 51 · 50 · 49 · 48

5 · 4 · 3 · 2 · 1 = 2,598,960.

158 5. Counting

Selecting r elements from a set of size n to be in an r-combination is
equivalent to selecting n− r elements not to be in the r-combination. Thus
the number of ways to do each must be the same. This gives the following
theorem.

Theorem 5.3.18. Let n and r be integers such that 0 ≤ r ≤ n. Then
C(n, r) = C(n, n− r).

Example 5.3.19. Suppose there are 9 males and 11 females in MAT 253.
How many different final exam committees can be made if a committee
consists of 3 males and 4 females?

The procedure of choosing a committee can be broken down into two
tasks—selecting the male members and selecting the female members. The
number of ways to select male members is

C(9, 3) =
9!

3!(9− 6)!
− 9!

3!6!
=

9 · 8 · 7
3 · 2 · 1 = 84.

The number of ways to select female members is

C(11, 4) =
11!

4!(11− 4)!
=

11!

4!7!
=

11 · 10 · 9 · 8
4 · 3 · 2 · 1 = 330.

Then by the Product Rule, the number of different committees is

84 · 330 = 27,720.

Example 5.3.20. How many bit strings of length ten have exactly three 0s?
We can describe a bit string with exactly three 0s by specifying the

location of the three 0s. There are ten possible places for them to go, and
we cannot distinguish the three 0s, so the order does not matter. Thus the
number of bit strings with exactly three 0s is

C(10, 3) =
10!

3!(10− 3)!
=

10!

3!7!
=

10 · 9 · 8
3 · 2 · 1 = 120.

Example 5.3.21. Thirteen people on a soccer team show up for a game. Of
the thirteen that show up, three are women. How many ways are there to
choose ten players to take the field if at least one of these players must be a
woman?

Which of the following computations is correct?

(1) There are C(3, 1) = 3 ways to choose a woman. Then there are 12
remaining players, and we need to choose 9 of them. The number of
ways to choose 9 from 12 is

C(12, 9) =
12!

9!(12− 9)!
=

12!

9!3!
=

12 · 11 · 10

3 · 2 · 1 = 220.

5.3. Permutations and combinations 159

By the Product Rule, the number of ways to choose a team with at
least one woman is the product

C(3, 1)C(12, 9) = 3 · 220 = 660.

(2) There are 3 ways to choose a woman. Of the remaining 10 men, we need
to choose 9. The number of ways to choose 9 from 10 is C(10, 9) = 10.
By the Product Rule, the number of ways to choose a team with at
least one woman is the product 3 · 10 = 30.

(3) To pick a team, independent of gender, we need to choose 10 people
from a group of 13. The number of ways to pick 10 from 13 is

C(13, 10) =
13!

10!(10− 3)!
=

13!

10!3!
=

13 · 12 · 11

3 · 2 · 1 = 286.

There is C(10, 10) = 1 way to choose a team of all men. Therefore there
are 286− 1 = 285 ways to choose a team with at least one woman.

The third method is correct. The second method counts the teams with
exactly 1 female. It does not allow for more than one female. The first method
counts certain teams more than once. For example if Alice is chosen first as
part of the C(3, 1), and then Beverly is chosen as part of the C(12, 9), the
team created is duplicated when Beverly is chosen first as part of the C(3, 1)
and Alice is chosen as part of the C(12, 9). We can see furthermore that the
value of 660 cannot be correct, as the total number of teams independent of
gender is 286, as shown in the third method.

Example 5.3.22. How many ways are there for eight men and five women to
stand in a line so that no two women stand next to each other? (Hint: First
position the men and then consider the possible positions for the women.)

There are P (8, 8) = 8! ways to arrange the men in order. There are 9
slots where a woman can go so that the women are separated by at least one
man. There are C(9, 5) = 9!

5!(9−5)! ways to choose the slots for the women.
There are P (5, 5) = 5! ways to arrange the women. By the Product Rule,
there are

8! · 9!

5!(9− 5)!
· 5! = 609,638,400 ways.

Exercises

1. Give the definition for these terms. Be sure to set up any notation that
is required.
(a) permutation
(b) r-permutation
(c) combination
(d) r-combination

160 5. Counting

2. A local pizza shop offers their pies in small, medium, large, or extra
large. For toppings, they offer: pepperoni, sausage, bacon, olives, onions,
peppers, and anchovies. How many different pizzas can they make that
have exactly three (different) toppings?

3. Compute the following.
(a) P (7, 3)
(b) C(7, 3)
(c) C(8, 0)
(d) P (8, 5)
(e) C(8, 3)

4. Fifteen people on a softball team show up for a game.
(a) How many ways are there to select 9 to take the field?
(b) How many ways are there to assign the 9 positions?

5. How many permutations of the letters ABCDEFGH contain the string
ABC?

6. In how many different orders can ten runners finish a race if no ties are
allowed?

7. List all the permutations of {1, 2, 3}
8. List all the 3-combinations of {a, e, i, o, u}.
9. List all the 3-permutations of {1, 2, 3, 4, 5, 6}.
10. In how many ways can a set of four letters be selected from the English

alphabet?
11. How many ways are there for 10 women and 6 men to stand in a line if

so that no two men stand next to each other? (Hint: First position the
women and then consider the possible positions for the men.)

12. Harry, Hermione, Ron, Fred, George, Ginny, Luna, Neville, Seamus, and
Hagrid go to some pictures taken.
(a) How many ways are there to arrange four people from that group in

a row for the picture?
(b) Suppose Harry is willing to pay for any picture that he is in. How

many ways are there to arrange four people from that group in a
row for the picture, if Harry must be one of the four?

Chapter 6

Relations

Phineas: . . . you believe in us!
Ferb: And we believe in you.
Phineas: And therefore, through the transitive
property of belief, you do believe in yourself !

Phineas and Ferb Season 2 (2010)

Relationships between sets occur in many different contexts. For example,
we deal with relationships between people all the time. e.g., Alice is dating
Bob. Bob is friends with Eve. Eve and Alice are sisters. We also deal with
relationships between other sets. e.g., Four quarters are worth $1. Ten dimes
are worth $1.

Relationships between elements of sets are described mathematically
using a structure called a relation, which is just a subset of the Cartesian
product of the sets. For example, in the friendship example above, friendship
is the relation F and (Bob,Eve) is an element in F .

6.1. Relations and their properties

Goals. To introduce the concept of a relation and basic properties of
relations, including the reflexive, symmetric, antisymmetric, and transitive
properties.

6.1.1. Binary relations.

161

162 6. Relations

Figure 6.1.1. xkcd: Approximations. (https://xkcd.com/1047/) Two
tips: 1) 8675309 is not just prime, it’s a twin prime, and 2) if you ever
find yourself raising log(anything)e or taking the π-th root of anything,
set down the marker and back away from the whiteboard; something
has gone horribly wrong.

https://xkcd.com/1047/

6.1. Relations and their properties 163

Definition 6.1.1. Let A and B be sets. A binary relation or relation
R from A to B is a subset of A × B, R ⊆ A × B. We use aRb to denote
the fact that (a, b) is in R, and say a is related to b.

One can think of a relation R as defining a relationship between elements
from A to B.

Example 6.1.2. Let P denote the set of people on earth, and let F be the
set of foods. Define a relation L from P to F by (p, f) ∈ L if and only if p
likes f . For example, (Dan, potato chips) is an element of L. We can also
write that as Dan L potato chips.

Example 6.1.3. Let C be the set of names of cities in the US. Let S be the
set of names of states in the US. Let R be the relation from C to S

R = {(a, b) ∈ C × S | a is a city in b}.
Then (Greensboro,North Carolina) and (Dallas,Texas) are both in R.

Definition 6.1.4. A relation on a set A is a relation from A to A.

Example 6.1.5. Equality defines a relation on R, E ⊆ R× R.
E = {(a, b) ∈ R× R | a = b}.

Since 2 = 2, we have 2E2. Similarly, πEπ,
√

2E
√

2, etc.

Example 6.1.6. Let P denote the set of all people (alive or dead). Let G
be the relation on P by xGy if and only if y is the grandfather of x. People
have two grandfathers (a paternal grandfather and a maternal grandfather),
so G does not define a function from P to P . Functions are not allowed to
have this ambiguity.

Example 6.1.7. A function f : A→ B defines a subset of A×B called the
graph of f ,

Γ = {(a, b) ⊂ A×B | b = f(a)}.
We see that Γ is a relation from A to B.

Example 6.1.8. Relations are more general than graphs of functions. Let
C be the set of names of cities in the US. Let S be the set of names of states
in the US. Let R be the relation from C to S

R = {(a, b) ∈ C × S | a is a city in b}.
Then (Greenville,North Carolina) and (Greenville, South Carolina) are in R.
This cannot happen for the graph of a function, since functions have the
property that there is a unique element in the range related to each element
in the domain.

Example 6.1.9. The following define relations on Z.

164 6. Relations

(1) R1 = {(a, b) ∈ Z2 | a ≤ b}.
(2) R2 = {(a, b) ∈ Z2 | a = b− 3}.

We have 10R157 and 10R213.

6.1.2. Properties of binary relations.

Definition 6.1.10. A relation R on a set A is reflexive if, for every a in
A, we must have aRa

Proof Technique 6.1.11 (Show R is reflexive). Suppose R is a relation
on a set A, and we want to prove R is reflexive.

(1) Fix a generic element a in A.
(2) Deduce aRa.
(3) Conclude R is reflexive.

Definition 6.1.12. A relation R on a set A is symmetric if, for every a
and b in A, whenever bRa , we must have aRb.

Proof Technique 6.1.13 (Show R is symmetric). Suppose R is a relation
on a set A, and we want to prove R is symmetric.

(1) Fix generic elements a and b in A such that aRb.
(2) Deduce bRa.
(3) Conclude R is symmetric.

Definition 6.1.14. A relation R on a set A is antisymmetric if, for any
a and b in A, whenever aRb and bRa, we must have a = b.

Definition 6.1.15. A relation R on a set A is transitive of aRb if, for
every a, b, and c in A, whenever aRb and bRc, we must have aRc.

Proof Technique 6.1.16 (Show R is transitive). Suppose R is a relation
on a set A, and we want to prove R is transitive.

(1) Fix generic elements a, b, and c in A such that aRb and bRc.
(2) Deduce aRc.
(3) Conclude R is transitive.

Example 6.1.17. Let R be the relation on Z defined by ≤, so that aRb if
and only if a ≤ b.

6.1. Relations and their properties 165

(1) Since a ≤ a for every integer a, we have aRa for every integer a. Thus,
R is reflexive.

(2) Since 1 ≤ 2, but 2 6≤ 1, we have 1R2 but not 2R1. Thus, R is not
symmetric.

(3) Whenever a ≤ b and b ≤ a, we must have a = b. That means whenever
aRb and bRa, we must have a = b. Thus R is antisymmetric.

(4) Whenever a ≤ b and b ≤ c, we must have a ≤ c. Then, whenever aRb
and bRc, we must have aRc. Thus R is transitive.

Example 6.1.18. Let R be the relation on {1, 2, 3, 4} that is given by

R = {(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}.
Then R is not reflexive since (1, 1) is not in R. It is not symmetric since (2, 4)
is in R but (4, 2) is not in R. It is not antisymmetric since (2, 3) is in R and
(3, 2) is in R, but 2 6= 3. It is transitive since if (a, b) is in R and (b, c) is in
R, then (a, c) is in R.

Example 6.1.19. Let R be the relation on {1, 2, 3, 4} that is given by

R = {(1, 3), (1, 4), (2, 3), (2, 4), (3, 1), (3, 4)}.
Then R is not reflexive since (1, 1) is not in R. It is not symmetric since (1, 4)
is in R, but (4, 1) is not in R. It is not antisymmetric since (1, 3) is in R and
(3, 1) is in R, but 1 6= 3. It is not transitive since (1, 3) is in R and (3, 1) is in
R, but (1, 1) is not in R.

Example 6.1.20. Let R be the relation on {1, 2, 3, 4} that is given by

R = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)}.
Then R is reflexive since (1, 1), (2, 2), (3, 3), and (4, 4) are all in R. It is
symmetric because whenever (a, b) is in R, we have (b, a) is in R. It is
transitive since if (a, b) is in R and (b, c) is in R, then (a, c) is in R. It is not
antisymmetric since (1, 2) is in R and (2, 1) is in R, but 1 6= 2.

6.1.3. Combining binary relations. Since relations are sets, we can take
unions, intersections, differences, and complements of relations.

Example 6.1.21. Let S be the set of students at UNCG, and let C be the
set of courses at UNCG. Let T and N be the relations from S to C,

T = {(s, c) ∈ S × C | s has taken c};
N = {(s, c) ∈ S × C | s needs c to graduate}.

Then

T ∩N = {(s, c) ∈ S × C | s has taken c and needs c to graduate};
T −N = {(s, c) ∈ S × C | s has taken c but does not need c to graduate}.

Like functions, we can represent relations in many ways.

166 6. Relations

Example 6.1.22. Let R be the relation on {1, 2, 3, 4, 5, 6} given by aRb if
and only if a divides b. Then

R = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 2), (2, 4), (2, 6), (3, 3), (3, 6), (4, 4), (5, 5), (6, 6)}.
We can represent it graphically as

1

2

3

4

5

6

1

2

3

4

5

6

We can represent R in a table by putting an × in the ath row and bth
column if and only if a divides b.

R 1 2 3 4 5 6
1 × × × × × ×
2 × × ×
3 × ×
4 ×
5 ×
6 ×

Like functions, we can also compose relations.

Definition 6.1.23. Let A, B, and C be sets. Suppose R is a relation from
A to B, and S is a relation from B to C. The composite or composition
of R and S, denoted S ◦R, is the relation from A to C

S ◦R = {(a, c) ∈ A× C | ∃b ∈ B such that aRb and bSc }.

Example 6.1.24. Let A = {1, 2, 3}, B = {1, 2, 3, 4}, and C = {0, 1, 2}. Let
R be the relation from A to B

R = {(1, 1), (1, 4), (2, 3), (3, 1), (3, 4)},

6.1. Relations and their properties 167

A B C

R S

S ◦R

Figure 6.1.2. Composition of two relations.

and let S be the relation from B to C

S = {(1, 0), (2, 0), (3, 1), (3, 2), (4, 1)}.
Compute the composition S ◦R.

One approach is to view this graphically.

1

2

3

1

2

3

4

0

1

2

Then
S ◦R = {(1, 0), (2, 1), (2, 2), (1, 1), (3, 0), (3, 1)}.

Exercises

1. Give the definition for these terms. Be sure to set up any notation that
is required.
(a) binary relation from one set to another
(b) relation on a set
(c) reflexive relation
(d) symmetric relation
(e) antisymmetric relation
(f) transitive relation
(g) composition of relations

2. Consider the relation R = {(a, b) | a divides b} on the set {1, 2, 3, 4}.
(a) List all of the ordered pairs in R.

168 6. Relations

(b) Is R reflexive? Explain.
(c) Is R symmetric? Explain.
(d) Is R antisymmetric? Explain.
(e) Is R transitive? Explain.

3. Which of these relations on the set of all people are reflexive? Which are
symmetric? Which are antisymmetric? Which are transitive? Justify.
(a) {(a, b) | a and b are the same height}
(b) {(a, b) | a and b live in the same state}
(c) {(a, b) | a and b have met}
(d) {(a, b) | a and b are blood relatives}1
(e) {(a, b) | a and b speak a common language}

4. Which of these relations on {1, 2, 3, 4} are reflexive? Which are symmet-
ric? Which are antisymmetric? Which are transitive? Justify.
(a) {(1, 1), (2, 2), (3, 3), (4, 4)}
(b) {(1, 2), (2, 1), (1, 3), (3, 1), (1, 4), (4, 1)}
(c) {(1, 1), (2, 2), (1, 2), (2, 1), (3, 3), (4, 4)}
(d) {(1, 1), (2, 2), (1, 2), (2, 1), (1, 3), (3, 1), (3, 3), (4, 4)}

5. Consider the following relations R on the set of real numbers. For each
of these relations, determine whether or not it is reflexive, symmetric,
antisymmetric, and/or transitive. Justify.
(a) (x, y) ∈ R if and only if x+ y = 0
(b) (x, y) ∈ R if and only if x− y ∈ Z
(c) (x, y) ∈ R if and only if x = 253
(d) (x, y) ∈ R if and only if xy = 0
(e) (x, y) ∈ R if and only if x = 1 or y = 1

6. Let A = {0, 1, 2, 3, 4}, and let B = {0, 1, 2, 3}. Consider the following
relations from A to B. For each of these relations, list the ordered pairs
in the relation.
(a) (a, b) ∈ R if and only if a = b
(b) (a, b) ∈ R if and only if a > b
(c) (a, b) ∈ R if and only if gcd(a, b) = 1
(d) (a, b) ∈ R if and only if lcm(a, b) = 2
(e) (a, b) ∈ R if and only if a | b
(f) (a, b) ∈ R if and only if a+ b = 4

7. Let R and S be the relations

R = {(1, 2), (2, 3), (3, 4)}
S = {(1, 1), (1, 2), (2, 1), (2, 3), (3, 1), (3, 4)}

Compute the following relations.
(a) R ∪ S

1A person who is related to another through a common ancestor, and not by marriage or
adoption.

6.2. Equivalence relations 169

(b) R ∩ S
(c) R− S
(d) S −R

8. Let R and S be relations on {1, 2, 3, 4} defined by

R = {(2, 2), (2, 3), (3, 4), (4, 4)}
S = {(1, 2), (2, 1), (2, 4), (3, 1), (3, 4)}.

Compute the following relations.
(a) R ◦R
(b) R ◦ S
(c) R ◦R
(d) S ◦ S

9. Let P be the relation on the set of people consisting of pairs (a, b), where
a is a parent of b. Let S be the relation consisting of pairs (a, b), where a
and b are siblings (brothers or sisters). Describe the composition relations
P ◦ S and S ◦ P .

10. Let B be the relation on the set of states in the US consisting of pairs
(a, b) where a shares a land border with b.
(a) Give three examples of elements in B.
(b) Give three examples of elements not in B.
(c) Is B symmetric?
(d) Is B transitive?

11. Give an example of a relation on a set that is reflexive, but not symmetric.
12. Give an example of a relation on a set that is symmetric, but not reflexive.
13. Give an example of a relation on a set that is reflexive and symmetric,

but not transitive.

6.2. Equivalence relations

Goals. To study equivalence relations and their equivalence classes.

6.2.1. A special class of binary relation.

Definition 6.2.1. A relation R on a set A is called an equivalence rela-
tion if R is reflexive, symmetric, and transitive.

Equivalence relations are important throughout mathematics and com-
puter science. It makes the notion of equivalent objects precise.

Definition 6.2.2. Two elements a and b are equivalent if they are related
by an equivalence relation.

170 6. Relations

Figure 6.2.1. xkcd: Soda Sugar Comparisons. (https://xkcd.com/
1793/) The key is portion control, which is why I’ve switched to eating
smaller cans of frosting instead of full bottles.

This is a notion that makes precise when two thing are “the same” up to
differences that we are willing to ignore. We have seen this before.

For example, we regularly think of a $1 note as “the same” as four quarters,
though they are different. According to the United States Mint, a quarter
is 5.670 grams. That means $1000 in quarters weighs about 50 pounds. On
the other hand, a $1 note weighs about 1 gram, so $1000 in $1 notes weighs
about 2.2 pounds. Would you rather run a race carrying $1000 in $1 notes
or quarters?

For a more mathematical example, we think of 2
6 as equal to 1

3 . In what
sense are they the same? In this case, two objects are equal as rational
numbers, but differ in representation.

Remark 6.2.3. We often use ∼ instead for equivalence relations, so if a and
b are equivalent, we might write a ∼ b.

https://xkcd.com/1793/
https://xkcd.com/1793/
https://www.usmint.gov/learn/coin-and-medal-programs/coin-specifications

6.2. Equivalence relations 171

How do we prove a relation R on a set A is an equivalence relation? We
need to verify that R is reflexive, symmetric, and transitive. Recall that these
are characterized by universal conditions. To show something is true “for all
x in A”, we fix a generic element a in A, and show that the conditions are
satisfied for the generic element a. Then since the condition is satisfied for
the generic element, it is satisfied by all the elements. How do we do this in
practice?

Proof Technique 6.2.4 (Show R is an equivalence relation). Suppose R
is a relation on a set A, and we want to prove R is an equivalence relation.
The proof has three parts.

(1) Use Proof Technique 6.1.11 to show R is reflexive.
(2) Use Proof Technique 6.1.13 to show R is symmetric.
(3) Use Proof Technique 6.1.16 to show R is transitive.
(4) Conclude R is an equivalence relation.

Example 6.2.5. Let R be the relation on Z defined by aRb if and only if
|a| = |b|. Let’s show that R is an equivalence relation.

Proof. We check the three defining characteristics.

Reflexive: Let a ∈ Z. Then |a| = |a|, so aRa. Thus R is reflexive.

Symmetric: Let a, b ∈ Z. Suppose aRb so that |a| = |b|. Then |b| = |a|,
so bRa. Thus R is symmetric.

Transitive: Let a, b, c ∈ Z. Suppose aRb and bRc so that |a| = |b| and
|b| = |c|. Then |a| = |c|, so aRc. Thus R is transitive.

Therefore R is an equivalence relation. �

Example 6.2.6. Define a relation R on R by aRb if and only of a− b ∈ Z.
Is R an equivalence relation?

Proof. We check the three defining characteristics.

Reflexive: Let a ∈ R. Then a− a = 0 ∈ Z, so aRa. Thus R is reflexive.

Symmetric: Let a, b ∈ R. Suppose aRb so that a − b = k ∈ Z. Then
b− a = −k ∈ Z, so bRa. Thus R is symmetric.

Transitive: Let a, b, c ∈ R. Suppose aRb and bRc so that a− b = k ∈ Z
and b − c = ` ∈ Z. Then a − c = k − ` ∈ Z, since the difference of
integers is an integers, so aRc. Thus R is transitive.

Therefore R is an equivalence relation. �

172 6. Relations

Theorem 6.2.7. Let m > 1 be an integer. Let R be the relation on Z
R = {(a, b) ∈ Z2 | a ≡ b (mod m)}.

Then R is an equivalence relation.

Proof. We check the three defining conditions.

Reflexive: Let a ∈ Z. Then m | (a− a), so a ≡ a (mod m). Then aRa.
Thus R is reflexive.

Symmetric: Let a, b ∈ Z. Suppose aRb so that a ≡ b (mod m). Then
a− b = km for some integer k. Then b−a = (−k)m, so b ≡ a (mod m).
Then bRa. Thus R is symmetric.

Transitive: Let a, b, c ∈ Z. Suppose aRb and bRc so that a ≡ b (mod m)
and b ≡ c (mod m). Then a = b+km for some integer k, and b = c+`m
for some integer `. Then

a = b+ km = (c+ `m) + km = c+ (`+ k)m.

Since k and ` are integers, k + ` is an integer. Then a ≡ c (mod m),
and so aRc. Thus R is transitive.

Therefore R is an equivalence relation. �

6.2.2. Equivalence classes and partitions.

Definition 6.2.8. Let R be an equivalence relation on A, and let a be an
element of A. The equivalence class of a, denoted [a]R or [a] is the set of
elements that are related to a. In other words,

[a] = {b ∈ A | aRb}.

Remark 6.2.9. Since equivalence relations are symmetric, this is the same
as

[a] = {b ∈ A | bRa}.

Example 6.2.10. LetR denote the congruence modulo 7 equivalence relation.
Then

[0] = {. . . ,−14,−7, 0, 7, 14, . . .}
[14] = {. . . ,−14,−7, 0, 7, 14, . . .}
[3] = {. . . ,−11,−4, 3, 10, 17, . . .}

Note that [a] = [a′] precisely when aRa′.

6.2. Equivalence relations 173

Definition 6.2.11. A partition of a set A is a collection of non-empty
subsets Ai ⊆ A, i ∈ I, such that

(1) Ai ∩Aj = ∅ for all i 6= j;

(2)
⋃

i∈I
Ai.

A1

A2

A4

A3

A5

Theorem 6.2.12. Let ∼ be an equivalence relation on A. Then for all
a, b ∈ A, the following are equivalent.

(1) a ∼ b
(2) [a] = [b]

(3) [a] ∩ [b] 6= ∅

Proof. We prove 1→ 2→ 3→ 1.

1→ 2: Suppose a ∼ b. Let c ∈ [a]. Then c ∼ a. By transitivity, we have
c ∼ b. Thus c ∈ [b]. Therefore [a] ⊆ [b]. Now let c ∈ [b]. Then b ∼ c.
By transitivity, we have a ∼ c. Thus c ∈ [a]. Therefore [b] ⊆ [a]. Then
[a] = [b], as desired.

2→ 3: Suppose [a] = [b]. Since ∼ is reflexive, a ∈ [a], so [a] 6= ∅. Then
[a] ∩ [b] = [a] 6= ∅.

3→ 1: Suppose [a] ∩ [b] 6= ∅. Let c ∈ [a] ∩ [b]. Then a ∼ c and c ∼ b. By
transitivity, we have a ∼ b.

�

174 6. Relations

Theorem 6.2.13. Let ∼ be an equivalence relation on a set A. Then the
equivalence classes form a partition of A. Conversely, given a partition
{Ai | i ∈ I} of a set A, there is an equivalence relation ∼ that has the sets
Ai as equivalence classes.

Example 6.2.14. Consider the equivalence relation R on the set of people
in the world defined by aRb if and only if a has the same birthday (month
and date). Then [Thom Yorke] is the set of all people with a birthday on
October 7. The equivalence relation partitions the set of all people into
equivalence classes, where each equivalence class contains all the people with
a given birthday. Specifically, there are 366 equivalence classes (don’t forget
February 29!).

Given a partition of a set A, we compute the corresponding equivalence
relation R on A using the subsets in the partition as equivalence classes.

Example 6.2.15. Suppose A = {1, 2, 3, 4, 5, 6}. Given the partition A1 =
{1, 2}, A2 = {3, 5, 6}, and A3 = {4}, the ordered pairs in the equivalence
relation R produced by this partition is

R = {(1, 2), (2, 1), (3, 5), (5, 3), (3, 6), (6, 3), (5, 6), (6, 5), (4, 4)}.

Example 6.2.16. How many different equivalence relations are there on
A = {1, 2, 3}? By Theorem 6.2.13, it is enough to enumerate partitions of A.

(1) A = {1, 2, 3}
(2) A = {1, 2} ∪ {3}
(3) A = {1} ∪ {2, 3}
(4) A = {1, 3} ∪ {3}
(5) A = {1} ∪ {2} ∪ {3}

Thus there are five equivalence relations on A.

Exercises

1. Give the definition for these terms. Be sure to set up any notation that
is required.
(a) equivalence relation
(b) equivalent elements
(c) equivalence class
(d) partition of a set

2. Define an equivalence relation on the set of restaurants in Greensboro.
3. Define an equivalence relation on the set of classes offered at UNCG.

6.2. Equivalence relations 175

4. Let ∼ be an equivalence relation on a set A, and let a and b be elements
of A. Prove that if a is equivalent to b, then the equivalence class of a is
equal to the equivalence class of b. In other words, show if a ∼ b, then
[a] = [b].

5. Consider the relation R = {(a, b) | a divides b} on the set {1, 2, 3, 4}. Is
R an equivalence relation? Justify.

6. Let R be the relation on the set of all people, defined by

R = {(a, b) | a and b were born in the same month}.
Prove that R is an equivalence relation.

7. Suppose ∼ is an equivalence relation on a set A, and a and b are elements
of A. Prove that if [a] ∩ [b] 6= ∅, then a ∼ b.

8. LetR be the relation on Z2 such that (a, b)R(c, d) if and only if a+d = b+c.
Is R an equivalence relation? Justify.

9. Let R be the relation on Z2 such that (a, b)R(c, d) if and only if ad = bc.
Is R an equivalence relation? Justify.

10. Which of these relations on the set of all people are equivalence relations?
Justify.
(a) {(a, b) | a and b are the same height}
(b) {(a, b) | a and b live in the same state}
(c) {(a, b) | a and b have met}
(d) {(a, b) | a and b are blood relatives}2
(e) {(a, b) | a and b speak a common language}

11. Which of these relations on {1, 2, 3, 4} are equivalence relations? Justify.
(a) {(1, 1), (2, 2), (3, 3), (4, 4)}
(b) {(1, 2), (2, 1), (1, 3), (3, 1), (1, 4), (4, 1)}
(c) {(1, 1), (2, 2), (1, 2), (2, 1), (3, 3), (4, 4)}
(d) {(1, 1), (2, 2), (1, 2), (2, 1), (1, 3), (3, 1), (3, 3), (4, 4)}

12. Let A and B be sets, and let f : A → B be a function. Let R be the
relation on A defined by

R = {(a1, a2) ∈ A2 | f(a1) = f(a2)}.
(a) Prove that R is an equivalence relation.
(b) Describe the equivalence classes of R.

2A person who is related to another through a common ancestor, and not by marriage or
adoption.

Appendix A

Programming
assignments

The good news about computers is that they do
what you tell them to do. The bad news is that
they do what you tell them to do.

Ted Nelson (1937–)

Computers can be used to great benefit in mathematics, both in education
and research. Many results in this course lend themselves to computational
exploration. The following Python programming exercises have you im-
plementing algorithms from class and using these algorithms to explore
mathematics.

The language chosen for these assignments is Python 3. There are several
additional resources you may find helpful. Choose based on your programming
background and desired difficulty level.

• Python 3 Tutorial: This tutorial does not attempt to be comprehensive
and cover every single feature, or even every commonly used feature.
Instead, it introduces many of Python’s most noteworthy features, and
will give you a good idea of the language’s flavor and style. After reading
it, you will be able to read and write Python modules and programs,
and you will be ready to learn more about the various Python library
modules described in The Python Standard Library. This will be the
main source of information for the programming assignments in the
Appendix.

https://docs.python.org/3/tutorial/

177

https://docs.python.org/3/tutorial/

178 A. Programming assignments

• Non-Programmer’s Tutorial for Python 3: The Non-Programmers’ Tu-
torial For Python 3 is a tutorial designed to be an introduction to the
Python programming language. This guide is for someone with no
programming experience.
https://en.wikibooks.org/wiki/Non-Programmer%27s_Tutorial_

for_Python_3
• Python for Non-Programmers: If you’ve never programmed before, the
tutorials on this page are recommended for you; they don’t assume that
you have previous experience.
https://wiki.python.org/moin/BeginnersGuide/NonProgrammers

• Python for Programmers: The tutorials on this page are aimed at people
who have previous experience with other programming languages (C,
Perl, Lisp, Visual Basic, etc.).

https://wiki.python.org/moin/BeginnersGuide/Programmers
• The Python Wiki: This Wiki is a community place to gather and
organize all things about Python. Feel free to exercise your editorial
skills and expertise to make it a useful knowledge base and up-to-date
reference on all Python-related topics.

https://wiki.python.org/moin/FrontPage
• Learn Python the Hard Way: This book instructs you in Python by
slowly building and establishing skills through techniques like practice
and memorization, then applying them to increasingly difficult problems.
By the end of the book you will have the tools needed to begin learning
more complex programming topics.

https://learnpythonthehardway.org/book/

https://en.wikibooks.org/wiki/Non-Programmer%27s_Tutorial_for_Python_3
https://en.wikibooks.org/wiki/Non-Programmer%27s_Tutorial_for_Python_3
https://wiki.python.org/moin/BeginnersGuide/NonProgrammers
https://wiki.python.org/moin/BeginnersGuide/Programmers
https://wiki.python.org/moin/FrontPage
https://learnpythonthehardway.org/book/

A. Programming assignments 179

• P0: Hello world
• P1: For and if
• P2: Sets
• P3: Functions
• P4: More functions and lists
• P5: Fast exponentiation
• P6: Extended Euclidean Algorithm and primality testing
• P7: Birthday problem
• P8: Dictionaries and analysis of languages
• Poptional: Fun with turtles (optional)
• RSA Exercise

P0: HELLO WORLD

Directions. Name your script 253-yourlastname-#.py . For example, my submission for
P3 would be a file 253-yasaki-3.py . Each project script should be uploaded to Canvas
by clicking the assignment.

The Python Tutorial (PT) is available at
http://docs.python.org/py3k/tutorial/

the Non-Programmer’s Tutorial for Python 3 (NP) is available at
http://en.wikibooks.org/wiki/Non-Programmer%27s_Tutorial_for_Python_3

• (PT) Read and work through the examples in
– §1. Whetting Your Appetite
– §3. An Informal Introduction to Python

• (NP)
– Hello, World

• Write a script that does the following.
(1) Print “Hello, world.”
(2) Print your full name.
(3) Define year to be your year (Freshman, Sophomore, Junior, Senior, Other) and

major to be your major, both as strings. Then print these values.
(4) Print at least three more things I might not know about you. This can include

things such as an interesting fact about yourself, a description of your program-
ming background, what you hope to get out of this course, your plans for after
graduation,

Rubric
10–9 pts: Script runs without errors. All required components are correctly addressed.

The difference between 9 and 10 comes from coding style (comments, structure) and
writing style (grammar and spelling in responses).

8–6 pts: Script runs without errors but some required component is missing or incor-
rect. The score in this range depends on the what is missed.

5 pts: Script does not run because of errors.
0 pts: No submission.

1

P1: FOR AND IF

Directions. Name your script 253-yourlastname-#.py . For example, my submission for
P3 would be a file 253-yasaki-3.py . Each project script should be uploaded to Canvas
by clicking the assignment.

The Python Tutorial (PT) is available at
http://docs.python.org/py3k/tutorial/

the Non-Programmer’s Tutorial for Python 3 (NP) is available at
http://en.wikibooks.org/wiki/Non-Programmer%27s_Tutorial_for_Python_3

• (PT) Read and work through the examples in
– §3.1.1. Numbers
– §3.2 First Steps Towards Programming
– §4.1 if Statements
– §4.2. for Statements
– §4.3. The range() function

• (NP) Read and work through the examples in
– Count to 10
– Decisions
– For Loops

• Write a script that solves the following problems. For each problem, print the problem
number before the answer to make it easier to grade.
(1) Compute the first 20 positive perfect squares using a for or while loop. (Note:

This is the same as the square of the first 20 positive integers.)
(2) Compute the last digit of each of the first 20 positive perfect squares. You can

get the last digit of a using a % 10. As before, use a for or while loop.
(3) Make a conjecture about the digits that can never arise as the last digit of a

positive perfect square. Use complete sentences.
(4) Verify your conjecture for the first 10,000 positive perfect squares. To avoid

human error, use a for loop with an if statement that tells you when the con-
jecture fails. Print the statement Beginning verification... before the for
loop and the statement Verification complete. at the end of the for loop.
Print Conjecture is false! if you find a counterexample to your conjecture
in the for loop. Hint: You can define a set conjectured_set, and check if the
last digit is in there.

Rubric
10–9 pts: Script runs without errors. All required components are correctly addressed.

The difference between 9 and 10 comes from coding style (comments, structure) and
writing style (grammar and spelling in responses).

8–6 pts: Script runs without errors but some required component is missing or incor-
rect. The score in this range depends on the what is missed.

5 pts: Script does not run because of errors.
0 pts: No submission.

1

P2: SETS

Directions. Name your script 253-yourlastname-#.py . For example, my submission for
P3 would be a file 253-yasaki-3.py . Each project script should be uploaded to Canvas
by clicking the assignment.

The Python Tutorial (PT) is available at
http://docs.python.org/py3k/tutorial/

the Non-Programmer’s Tutorial for Python 3 (NP) is available at
http://en.wikibooks.org/wiki/Non-Programmer%27s_Tutorial_for_Python_3

• (PT) Read and work through the examples in
– §5.1.3 List Comprehensions
– §5.4. Sets

• (NP) Read and work through the examples in
– For Loops
– Boolean Expressions

• Write a script that solves the following problems. For each problem, first print the
problem number to make it easier to grade.
(1) Let A = {0, 1, 2, 3, 5, 10, 12}, and let B = {2, 4, 6, 8, 10, 12, 14, 16}. Use Python

to compute A ∪ B, A ∩ B, A− B, and B − A. Put in enough print statements
so that the output is clear.

(2) Let E be the first 50 positive integer multiples of 2.

E = {2n | n ∈ {1, 2, . . . , 50}} .
Construct E in Python using a for loop with update or as a list comprehension.
Print E.

(3) Let F be the set of set of positive integers n up to 100 that are 0 modulo 2

F = {n | n ∈ {1, 2, . . . 100} and n mod 2 ≡ 0} .
Construct F in Python using a for loop with update or as a list comprehension.
Note that n mod 2 can be computed in Python as n % 2.

(4) It should be clear from the definitions that E and F are the same set. Suppose
it wasn’t clear. Use Python to verify E = F in two ways.

– Use for loops to verify that each element of E is in F and each element
of F is in E.

– Use the built-in == to check the equality of Python sets.
Rubric

10–9 pts: Script runs without errors. All required components are correctly addressed.
The difference between 9 and 10 comes from coding style (comments, structure) and
writing style (grammar and spelling in responses).

8–6 pts: Script runs without errors but some required component is missing or incor-
rect. The score in this range depends on the what is missed.

5 pts: Script does not run because of errors.
0 pts: No submission.

1

P3: FUNCTIONS

Directions. Name your script 253-yourlastname-#.py . For example, my submission for
P3 would be a file 253-yasaki-3.py . Each project script should be uploaded to Canvas
by clicking the assignment.

The Python Tutorial (PT) is available at
http://docs.python.org/py3k/tutorial/

the Non-Programmer’s Tutorial for Python 3 (NP) is available at
http://en.wikibooks.org/wiki/Non-Programmer%27s_Tutorial_for_Python_3

• (PT) Read and work through the examples in
– §4.6. Defining Functions
– §4.7.6. Documentation Strings

• (NP) Read and work through the examples in
– Defining Functions

• Write the functions described below to your script. Be sure to include some comments
and a short docstring for each function.
– Write a function triangular(n) which takes as input an integer n and returns

the nth triangular number Tn = n(n + 1)/2. Remember to use // instead of /
to keep the result an integer.

– Write a function sumupto(n) which takes as input a positive integer n and
returns the sum

Sn = 1 + 2 + 3 + · · ·+ n.

The code should not create a list [1, 2, . . . , n] and then add the terms. Within
the function, define a variable total that is initialized to 0. Then run a for
loop to keep adding to total. e.g., total += i or total = total + i.

– Write a function sumpower(n,k) which takes as input integers n and k, and
returns the sum of the kth powers of the first n positive integers. For example,
sumpower(100,7) should return 1300583304167500 since

17 + 27 + · · ·+ 1007 = 1300583304167500.

• Write a script that solves the following problems. For each problem, first print the
problem number followed by the answer to make it easier to grade. Be sure your
script includes all the necessary code to produce the results.
(1) Use a for loop to print n, Sn, and Tn on a line for each n = 1, 2, . . . , 100.
(2) Make a conjecture about the relationship between Sn and Tn.
(3) Compute the sum Tn + Tn−1 for n = 1, 2, . . . 20, and make a conjecture about

the relationship between Tn + Tn−1 and n.
(4) Compute the sum

15 + 25 + 35 + · · ·+ 20165.

(5) Describe what sumpower(100,-2) computes.
1

2 P3: FUNCTIONS

(6) Compute sumpower(500,-2), sumpower(5000,-2), and sumpower(50000,-2).
Use this to explain why it is reasonable to guess that

1

1
+

1

22
+

1

32
+

1

42
+ · · · = π2

6
.

You can use import math to teach Python some math. You can get approxima-
tion of π with math.pi.

Rubric
10–9 pts: Script runs without errors. All required components are correctly addressed.

The difference between 9 and 10 comes from coding style (comments, structure) and
writing style (grammar and spelling in responses).

8–6 pts: Script runs without errors but some required component is missing or incor-
rect. The score in this range depends on the what is missed.

5 pts: Script does not run because of errors.
0 pts: No submission.

P4: MORE FUNCTIONS AND LISTS

Directions. Name your script 253-yourlastname-#.py . For example, my submission for
P3 would be a file 253-yasaki-3.py . Each project script should be uploaded to Canvas
by clicking the assignment.

The Python Tutorial (PT) is available at
http://docs.python.org/py3k/tutorial/

the Non-Programmer’s Tutorial for Python 3 (NP) is available at
http://en.wikibooks.org/wiki/Non-Programmer%27s_Tutorial_for_Python_3

• (PT) Read and work through the examples in
– §4.7. More on Defining Functions
– §3.1.4. Lists
– §5.1 More on Lists (§5.1.1–4)

• (NP) Read and work through the examples in
– Lists
– More on Lists

• Write the functions described below to your script. Be sure to include some comments
and a short docstring for each function.
– Let f be a function defined on positive integers by

f(n) =

{n

2
if n is even,

3n+ 1 if n is odd.

Write a function hailstone(n) which takes as input a positive integer n and
returns a list called the hailstone sequence [a0, a1, · · ·], where a0 = n and ak =
f(ak−1) for k > 0. The sequence terminates whenever it reaches 1. The still un-
proven Collatz conjecture or 3x+1 conjecture claims that all hailstone sequences
have finite length.

• Write a script that solves the following problems. For each problem, first print the
problem number followed by the answer to make it easier to grade. Be sure your
script includes all the necessary code to produce the results.
(1) Compute the hailstone sequence for 1.
(2) Compute the hailstone sequence for 27.
(3) Which positive integer n ≤ 20,000 has the longest hailstone sequence? How long

is the hailstone sequence of this integer?
Rubric

10–9 pts: Script runs without errors. All required components are correctly addressed.
The difference between 9 and 10 comes from coding style (comments, structure) and
writing style (grammar and spelling in responses).

8–6 pts: Script runs without errors but some required component is missing or incor-
rect. The score in this range depends on the what is missed.

5 pts: Script does not run because of errors.
0 pts: No submission.

1

P5: FAST EXPONENTIATION

Directions. Name your script 253-yourlastname-#.py . For example, my submission for
P3 would be a file 253-yasaki-3.py . Each project script should be uploaded to Canvas
by clicking the assignment.

The Python Tutorial (PT) is available at
http://docs.python.org/py3k/tutorial/

the Non-Programmer’s Tutorial for Python 3 (NP) is available at
http://en.wikibooks.org/wiki/Non-Programmer%27s_Tutorial_for_Python_3

• (PT) Read and work through the examples in
– §7.1

• Review lectures and textbook: base b expansion and modular exponentiation
• Write the functions described below to your script. Be sure to include docstrings and
some comments.
– Write a function fast_power_mod(b,n,m) which takes inputs b, n,m and returns
bn mod m. Your code should implement the fast exponentiation described in
lecture. You can use Python’s pow function to check your code.

• Write a script that solves the following problems. For each problem, first print the
problem number followed by the answer to make it easier to grade. Be sure your
script includes all the necessary code to produce the results.
(1) Enter (253**520126) % 123 to compute 253520126 mod 123. Compare the time

it takes to compute with the time required for fast_power_mod(253,520126,123).
(2) Use your function fast_power_mod to compute

123422343256789101112 mod 24123456789101112.

(3) Use your function fast_power_mod to compute a10 mod 11 for a = 1, 2, · · · , 10.
Repeat your experiment, computing ap−1 mod p for a = 1, 2, . . . p − 1 for the
primes p = 13, 17, and 19. You can use formatted printing to make it look nice.
Use your findings to conjecture the value of ap−1 mod p for any prime p.

(4) Repeat the experiment above replacing the primes p with composites n = 15,
256, and 765. Use your function fast_power_mod to compute an−1 mod n for
a = 1, 2, . . . n−1. Does your conjecture from (1) appear to be true for composite
moduli as well?

Rubric
10–9 pts: Script runs without errors. All required components are correctly addressed.

The difference between 9 and 10 comes from coding style (comments, structure) and
writing style (grammar and spelling in responses).

8–6 pts: Script runs without errors but some required component is missing or incor-
rect. The score in this range depends on the what is missed.

5 pts: Script does not run because of errors.
0 pts: No submission.

1

P6: EXTENDED EUCLIDEAN ALGORITHM AND PRIMALITY
TESTING

Directions. Name your script 253-yourlastname-#.py . For example, my submission for
P3 would be a file 253-yasaki-3.py . Each project script should be uploaded to Canvas
by clicking the assignment.

The Python Tutorial (PT) is available at
http://docs.python.org/py3k/tutorial/

the Non-Programmer’s Tutorial for Python 3 (NP) is available at
http://en.wikibooks.org/wiki/Non-Programmer%27s_Tutorial_for_Python_3

• (PT) Read and work through the examples in
– 3.1.1. Numbers
– Learn about divmod at

http://docs.python.org/py3k/library/functions.html
• Review lecture notes on Extended Euclidean algorithm (page 273) and Fermat’s Little
Theorem (page 281).
• Write the functions described below to your script. Be sure to include docstrings and
some comments.
– Write a function XGCD(a,b) which takes as input 2 non-negative integers a, b

and returns the [d, s, t], where d = (a, b) and s and t are integers so that

d = sa+ tb.

Your code should implement the Extended Euclidean algorithm as described in
lecture or on page 273 of the textbook or in the lecture notes.

– Recall that Fermat’s Little Theorem says that for a prime p and integer a with
gcd(a, p) = 1, we have that ap−1 ≡ 1 (mod p), or equivalently ap−1 mod p = 1.
The contrapositive gives us a primality test. Specifically, suppose we want to
test if a positive integer n is composite. Fix an integer a such that gcd(a, n) = 1.
If an−1 mod n 6= 1, then n is not prime. Write a function maybeprime which
takes as input positive integer n and a prime a and outputs True if a = n or
an−1 mod n = 1, and False otherwise. Be sure to use fast exponentiation.

– Note that for a fixed positive integer n, if maybeprime(n,a) returns True for
several prime values of a, then it is perhaps likely that n is prime. Write a
function probablyprime that takes as input a positive integer n that returns
true if maybeprime(n,a) returns True for a ∈ {2, 3, 5, 7} and False otherwise.

• Write a script that solves the following problems. For each problem, first print the
problem number followed by the answer to make it easier to grade. Be sure your
script includes all the necessary code to produce the results.
(1) Use your XGCD code on a = 1873452387876123 and b = 2664867585108574408 to

find the greatest common divisor d and integers s, t so that as+ bt = d.
(2) Use the following to find the positive integers n less than or equal to 100,000

that are probably prime.
P = [n for n in range(2,100001) if probablyprime(n)]

1

2 P6: EXTENDED EUCLIDEAN ALGORITHM AND PRIMALITY TESTING

(3) There are 9,592 actual primes less than or equal to 100,000. How many composite
integers faked their way past your probablyprime test? Hint: len(P) will return
the number of elements in P.

Rubric
10–9 pts: Script runs without errors. All required components are correctly addressed.

The difference between 9 and 10 comes from coding style (comments, structure) and
writing style (grammar and spelling in responses).

8–6 pts: Script runs without errors but some required component is missing or incor-
rect. The score in this range depends on the what is missed.

5 pts: Script does not run because of errors.
0 pts: No submission.

P7: BIRTHDAY PROBLEM

Directions. Name your script 253-yourlastname-#.py . For example, my submission for
P3 would be a file 253-yasaki-3.py . Each project script should be uploaded to Canvas
by clicking the assignment.

The Python Tutorial (PT) is available at
http://docs.python.org/py3k/tutorial/

the Non-Programmer’s Tutorial for Python 3 (NP) is available at
http://en.wikibooks.org/wiki/Non-Programmer%27s_Tutorial_for_Python_3

• (NP) Read and work through the examples in
– Advanced Function Example
– Recursion

• Review lecture notes on the Product Rule for counting.
• Write the functions described below to your script. Be sure to include docstrings and
some comments.
– Write a function birthday_noclash which takes as input a positive integer n

and returns the probability that no two people in a group of n people share a
birthday. For simplicity, assume no one was born on February 29 so that there
are 365 different possibilities for birthdays. Hint: It may be helpful to have a
factorial function. You can write your own or import math to teach Python
some math, and use math.factorial.

• Write a script that solves the following problems. For each problem, first print the
problem number followed by the answer to make it easier to grade. Be sure your
script includes all the necessary code to produce the results.
(1) Compute the probability of no two people from a group of 22 share a birthday.

Compare your answer with the lecture notes.
(2) Assuming there are 30 people in the class, compute the probability that no two

people from the class share a birthday.
(3) How large must a group be before the probability that no two people share a

birthday is less than 1%?
Rubric

10–9 pts: Script runs without errors. All required components are correctly addressed.
The difference between 9 and 10 comes from coding style (comments, structure) and
writing style (grammar and spelling in responses).

8–6 pts: Script runs without errors but some required component is missing or incor-
rect. The score in this range depends on the what is missed.

5 pts: Script does not run because of errors.
0 pts: No submission.

1

P8: DICTIONARIES AND ANALYSIS OF LANGUAGES

Directions. Name your script 253-yourlastname-#.py . For example, my submission for
P3 would be a file 253-yasaki-3.py . Each project script should be uploaded to Canvas
by clicking the assignment.

The Python Tutorial (PT) is available at
http://docs.python.org/py3k/tutorial/

the Non-Programmer’s Tutorial for Python 3 (NP) is available at
http://en.wikibooks.org/wiki/Non-Programmer%27s_Tutorial_for_Python_3

• (PT) Read and work through the examples in
– §5.5. Dictionaries
– §7.2 Reading and Writing Files

• Write the functions described below to your script. Be sure to include some com-
ments.
– Write a function count_chars(s) that takes as input a string s, and returns

a dictionary that gives the number of occurences of every character in s. It
suffices to only count the 26 lowercase letters of the English alphabet. It may
help to start with a list of letters to use as keys. Something like the following
will produce such a list.
alphabet = list(’abcdefghijklmnopqrstuvwxyz’)

• Use your functions to answer the following questions. Put in print statements to
make the output more readable.
(1) Download the files english.txt and german.txt. Use open and read to read

the contents in as strings. Use lower to convert to all characters to lower case.
Something like the following would work for the english file.
with open(’english.txt’) as infile:

english = infile.read().lower()
(2) Use count_chars to compare the frequency of each letter in the two texts. You

should give the data as percentages, since the texts are not of equal length.
(3) Bonus: Name a novel that does not use the letter ’e’.

Rubric
10–9 pts: Script runs without errors. All required components are correctly addressed.

The difference between 9 and 10 comes from coding style (comments, structure) and
writing style (grammar and spelling in responses).

8–6 pts: Script runs without errors but some required component is missing or incor-
rect. The score in this range depends on the what is missed.

5 pts: Script does not run because of errors.
0 pts: No submission.

1

POPTIONAL: FUN WITH TURTLES (OPTIONAL)

Directions. Name your script 253-yourlastname-#.py . For example, my submission for
P3 would be a file 253-yasaki-3.py . Each project script should be uploaded to Canvas
by clicking the assignment.

The Python Tutorial (PT) is available at
http://docs.python.org/py3k/tutorial/

the Non-Programmer’s Tutorial for Python 3 (NP) is available at
http://en.wikibooks.org/wiki/Non-Programmer%27s_Tutorial_for_Python_3

• Read and work through the examples in
– turtle module

http://docs.python.org/3.3/library/turtle.html
Write a script that utilizes the turtle module to do something fun. Use some of the func-

tionality of Python and math that we have covered this semester. e.g., functions, recursion,
conditional statements, for and while loops, if statements.

In order to receive full credit, your script must satisfy the following criteria:
• Use at least two of the functions in the turtle module.
• Use at least one function that you define.
• Utilize at least one of the following: for loop, while loop, if statement, recursion.
• Make me smile when I run your code. I will be grading for creativity, use of colors,
and overall awesomeness.

This assignment is optional. Your lowest Homework and Programming Assignment grades
will be replaced with the grade on this assigmnent.

1

RSA EXERCISE

1. Some history

Rivest, Shamir, and Adleman first publicly described this algorithm for public key encryp-
tion in 19781. They posted one of the first public-key encryption messages using a 129 digit
number which later became known as RSA-129.

RSA-129 = 114381625757888867669235779976146612010218296721242362562

561842935706935245733897830597123563958705058989075147599290026879543541

= 3490529510847650949147849619903898133417764638493387843990820577

× 32769132993266709549961988190834461413177642967992942539798288533.

They offered a $100 prize and remarked that using technology and factoring techniques
available at that time, it would take 40 quadrillion years to crack. Advances in factoring
techniques and computers cracked the code in April 1994 to find that the secret message was:

The Magic Words are Squeamish Ossifrage
According to Wikipedia,

Ossifrage is an older name for the lammergeier, a scavenging vulture that is
famous for dropping animal bones and live tortoises onto rocks to crack them
open. It might perhaps be considered among the least squeamish of creatures.

2. The set-up

Suppose Alice wants to send Bob an encrypted message. Bob lets her know his public key.

Definition 2.1. The RSA public encryption key consists of a pair of integers (N, e), where
N is the product of two distinct primes.

The set of integers {1, · · · , N} is the set of possible messages, but we will see that you do
not want the message to be 1 or N . To encrypt a message M , Alice computes

C =M e mod N.

Notice that with fast exponentiation, this is fast.
If a Eve captures C while it is being transmitted, she will have a hard time computing the

original message M . See the lecture notes for more information.
How is it any easier for Bob? The trick is that Bob has a bit of extra information. When

constructing the key, Bob chooses N to be a product of two distinct primes p and q. Then
φ(N) = φ(pq) = (p− 1)(q − 1). This is the Euler-phi function at N , the number of positive
integers less than or equal to N that are relatively prime to N . The exponent e is chosen so
that gcd(e, φ(N)) = 1. Then using the Euclidean algorithm, Bob can compute an inverse
to e modulo φ(N), an integer d such that ed ≡ 1 (mod φ(N)). Then there is an integer k

1Clifford Cocks described an equivalent system in 1973, but it was classified by the UK intelligence agency
GCHQ until 1997

1

2 RSA EXERCISE

so that ed = 1 + kφ(N). Now Euler’s generalization to Fermat’s little theorem says that if
gcd(C,N) = 1,

Cd ≡ (M e)d (mod N)

≡M1+kφ(N) (mod N)

≡M · (Mφ(N))k (mod N)

≡M (mod N).

In other words, to decrypt the message, Bob does not need to take an eth root of C modulo
N . Instead, he can raise C to the dth power and achieve the same result, where d is an
inverse of e modulo φ(N). Thank you, Euler! Again, with fast exponentiation, this is fast.
Note: Choose d to be a positive integer since our fast exponentiation algorithm requires the
exponent to be positive.

3. ASCII encoding

ASCII is a standard way to represent characters as numbers. For example, a space is
represented by 32, a comma is 44, and a period is 46. The capital letters are also 2 digit
integers, starting with 65 for A and going to 90 for Z. The Python functions chr and ord to
convert the ASCII to characters. e.g., chr(66) returns the string A. If you want to go the
other way, ord(’A’) returns the integer 65. This is known as encoding.

In order to encode messages longer than one character, we will view each number as a digit
in a base 256 expansion of an integer M . For example, suppose I want to send the message
Help!. We have

ord(H) = 72, ord(e) = 101, ord(l) = 108, ord(p) = 112, ord(!) = 33,

so the encoded message is

M = (72, 101, 108, 112, 33)256.

That means

M = 72 · 2564 + 101 · 2563 + 108 · 2562 + 112 · 2561 + 33 · 2560 = 310939250721.

This allows use to convert messages written as strings into integers.
We can decode the message by computing the base 256 expansion and decoding each

character. For example, suppose the encoded message is M = 310939249775. The base 256
expansion of M is

M = (72, 101, 108, 108, 111)256.

Then

chr(72) = H, chr(101) = e, chr(108) = l, chr(108) = l, chr(111) = o,

so the decoded message is ‘Hello’.
Since it is easy to encode and decode string messages, we can now use RSA to encrypt

messages.

RSA EXERCISE 3

4. Exercises

(1) Encode your birthday using ASCII as described above to get an integer M .
(2) Use my public key

N = 913336127711006102170609898942942716906241096981411826716803

e = 65537

to encrypt your message to get an integer C. Enter this integer on the assignment in
Canvas.

(3) Go to http://magma.maths.usyd.edu.au/calc/ and enter
Factorization(913336127711006102170609898942942716906241096981411826716803);
and click ‘Submit’ to find a factorization of N = pq. Note: The fact that the computer
can factor my public key is an indication that the key is too small.

(4) Use your knowledge of the factorization to compute φ(N) = (p− 1)(q − 1).
(5) Use Extended Euclidean Algorithm to find the decryption exponent d, which is a

positive integer that is an inverse of e modulo φ(N).
(6) Use the decryption exponent to decrypt my secret message.

C = 902366426828977962222652187660968416915888050115990141594121

(7) Use the decoding procedure described above to convert the integer to a string. Post
this string to the Discussion Board in Python for RSA.

Bibliography

[1] D. Atkins, M. Graff, A. K. Lenstra, and P. C. Leyland, The magic words are
squeamish ossifrage (extended abstract), Advances in cryptology—ASIACRYPT
’94 (Wollongong, 1994), Lecture Notes in Comput. Sci., vol. 917, Springer, Berlin,
1995, pp. 263–277.

[2] M. Gardner, Mathematical games: A new kind of cipher that would take millions
of years to break, Scientific American (August 1977), 120–124.

[3] T. Oliveira e Silva, S. Herzog, and S. Pardi, Empirical verification of the even
Goldbach conjecture and computation of prime gaps up to 4 · 1018, Math. Comp.
83 (2014), no. 288, 2033–2060.

[4] R. L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital
signatures and public-key cryptosystems, Comm. ACM 21 (1978), no. 2, 120–126.

[5] K. H. Rosen, Discrete mathematics and its applications, McGraw-Hill Higher
Education, 2012.

195

Index

r-combination, 157
r-permutation, 155

Absorption laws, 19, 53
and, 4
antisymmetric, 164
arithmetic progression, 71
Associative laws, 19, 53

base b expansion, 89
base case, 130
basis step, 130
biconditional, 7
bijection, 65
bijective, 65
binary, 89, 91
binary relation, 163

Caesar cipher, 120
Cantor diagonalization argument, 144
cardinality, 44, 142
Cartesian product, 45
casting out nines, 96
ceiling, 60
Chinese Remainder Theorem, 115
closed formula, 73
codomain, 56
combination, 157
combinatorics, 141
common difference, 71
common ratio, 70

Commutative laws, 19, 53
complement, 50
Complement laws, 53
Complementation law, 53
composite, 99, 166
composition, 67, 166
compound propositions, 3
conclusion, 6
conditional, 6
congruence class, 84
congruent, 83
conjunction, 4
constructive existence proof, 35
contingency, 17
contradiction, 17
contrapositive, 9
Contrapositive law, 19
converse, 9
coprime, 103
count, 141
countable, 142
counterexample, 23

dangerous bend, xii
De Morgan’s laws for propositions, 18
De Morgan’s laws for quantifiers, 26
De Morgan’s laws for sets, 54
decimal, 89
decoding, 121
decryption exponent, 123

197

198 Index

difference, 48
direct proof, 30
discrete log problem, 123
disjoint, 50
disjunction, 5
Distributive laws, 19, 53
dividend, 83
divides, 81
Division algorithm, 82
Division Rule, 149
divisor, 83
domain, 23, 56
Domination laws, 19, 53
Double negation law, 19

elements, 41
empty set, 42
encoding, 121
encrypting, 121
encryption exponent, 122
equal, 42
equivalence class, 172
equivalence relation, 169
equivalent, 169
Euclidean algorithm, 105
Euler phi function, 104
Euler totient function, 104
Euler’s generalization, 118
even, 31
exclusive disjunction, 6
exclusive or, 6
existential quantification, 24
existential quantifier, 24
Extended Pigeonhole Principle, 153
Extended Euclidean Algorithm, 106

factor, 81
fast exponentiation, 92–94
Fermat’s little theorem, 118
Fibonacci sequence, 73
finite set, 44
floor, 59
function, 56

geometric progression, 70
Goldbach conjecture, 103
graph, 163
greatest common divisor, 103

hexadecimal, 90
hypothesis, 6

Idempotent laws, 19, 53
Identity laws, 19, 53
if and only if, 7
if then, 6
iff, 7
image, 56, 57
inductive hypothesis, 130
inductive step, 130
Infinitude of primes, 102
initial term, 70, 71
injection, 61
injective, 61
injectivity, 60
integers, 41
integers mod m, 85
intersection, 48
inverse, 9, 66, 113
irrational, 34

least common multiple, 104
linear congruence, 113
logically equivalent, 18

mapping, 56
mathematical induction, 129, 130
members, 41
membership table, 52
modular arithmetic, 83
multiple, 81

negation, 4
Negation law, 19
nonconstructive proofs, 36
number theory, 81

odd, 31
one-to-one, 61
one-to-one correspondence, 65
onto, 63
or, 5

partition, 173
permutation, 155
Pigeonhole Principle, 152
power set, 44
predicate, 22

Index 199

preimage, 56
prime, 99
Prime Number Theorem, 102
primitive root, 86
Principle of Mathematical Induction,

130
Principle of Strong Induction, 136
Product Rule, 146
proof, 1
proof by contradiction, 34
proof by contraposition, 33
proper subset, 42
proposition, 2
propositional equivalence, 16
propositional function, 22
propositional logic, 1
propositional variables, 3

quantification, 23
quotient, 83

range, 57
rational, 34
rational numbers, 42
real numbers, 42
recurrence relation, 72
reflexive, 164
related, 163
relation, 46, 163
relatively prime, 103
remainder, 83
roster method, 41

sequence, 70
set, 41
set builder notation, 41
shift cipher, 121
Sieve of Eratosthenes, 100
solution, 72
strong induction, 136
subject, 22
subset, 42
Subtraction Rule, 149
sum, 74
Sum Rule, 148
surjection, 63
surjective, 63
surjectivity, 63

symmetric, 164
symmetric difference, 49

tautology, 17
term, 70
theorem, 1
Tower of Hanoi, 132
transformation, 56
transitive, 164
truth table, 9
truth value, 2
Twin prime conjecture, 102
twin primes, 102

uncountable, 142
union, 47
universal quantification, 23
universal quantifier, 23

well-ordering property, 137, 138
witness, 24, 35

xor, 6

	List of Figures
	List of Tables
	List of Symbols
	Preface
	Chapter 1. Logic and Proofs
	1.1. Propositional logic
	1.2. Propositional equivalence
	1.3. Predicates and quantifiers
	1.4. Introduction to proofs

	Chapter 2. Basic Structures
	2.1. Sets
	2.2. Set operations
	2.3. Functions
	2.4. Sequences and summations

	Chapter 3. Number Theory and Applications
	3.1. Divisibility and modular arithmetic
	3.2. Integer representations and applications
	3.3. Primes and greatest common divisors
	3.4. Solving congruences
	3.5. Cryptography

	Chapter 4. Induction
	4.1. Mathematical induction
	4.2. Strong induction

	Chapter 5. Counting
	5.1. Basics of counting
	5.2. Pigeonhole Principle
	5.3. Permutations and combinations

	Chapter 6. Relations
	6.1. Relations and their properties
	6.2. Equivalence relations

	Appendix A. Programming assignments
	Bibliography
	Index

