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Abstract We explicitly compute the elliptic points and isotropy groups for the action
of the Picard modular group over the Gaussian integers on 2-dimensional complex
hyperbolic space.
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1 Introduction

Let D = G(R)/K be a symmetric space of non-compact type, where G is a semisimple
algebraic group defined over Q. An arithmetic group � ⊂ G(Z) acts on D by left
translation, and one can study the elliptic points of this action, the points in the interior
of D with non-trivial stabilizer.

One application of this computation is to the study of arithmetic quotients �\D.
The quotient is not smooth in general. It has orbifold singularities arising from the
elliptic elements of �. An explicit knowledge of the fixed points in D with associated
stabilizer groups in � allow one to study the types of singularities that occur.

When the Q-rank of G is 1, one can use a family of exhaustion functions to find ellip-
tic points. In [3], we define one such family of exhaustion functions. These exhaustion
functions come out of Saper’s work on tilings in [2]. In fact, our exhaustion functions
are nothing more than the composition of his normalized parameters (in the Q-rank 1
case) with the rational root. In [4], we use the exhaustion functions to construct an
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392 D. Yasaki

explicit deformation retraction of D onto a spine D0 in the case where G = SU(2, 1;
Z[i]) is the Picard modular group over the Gaussian integers.

In this paper, we use the spine from [4], or rather the �-invariant decomposition of
D that it induces to study the elliptic elements of SU(2, 1; Z[i]). Section 2 recalls a
general decomposition of D in the Q-rank 1 case and outlines a procedure for using the
decomposition to compute elliptic points. Section 3 specializes to the case where G =
SU(2, 1; Z[i]). Finally, we compute the stabilizer groups and elliptic points in Sect. 4.

I would like to thank Paul Gunnells for many helpful suggestions.

2 General Q-rank 1

In this section we briefly describe a �-invariant decomposition of D into codimension
0 sets using exhaustion functions. This construction is described for the general Q-rank
1 case in [3].

Let G = G(R) be the group of real points of a Q-rank 1 semisimple algebraic
group defined over Q. Let P denote the set of proper rational parabolic subgroups
of G. To ease the notation, when there is no risk of confusion, we will use the same
roman letter to denote an algebraic group and its group of real points.

2.1 The exhaustion functions

There exists an exhaustion function fP for every rational parabolic subgroup P ⊆ G.
Since the rational parabolic subgroups correspond to cusps, these functions can be
thought of as height functions with respect to the various cusps.

The family of exhaustion functions defined above is �-invariant in the sense that

fγP (z) = fP (γ −1 · z) for γ ∈ �. (1)

2.2 Induced decomposition of D

These exhaustion functions are used to define a decomposition of D into sets D(I)

for I ⊂ P . For a parabolic subgroup P , define D(P) ⊂ D to be the set of z ∈ D such
that fP (z) ≥ fQ(z) for every Q ∈ P\{P}. In other words, D(P) consists of the points
that are higher with respect to P than any other cusp. This gives a decomposition of
the symmetric space parameterized by rational parabolic subgroups,

D =
⋃

P∈P
D(P). (2)

More generally, for a subset I ⊆ P ,

D(I) =
⋂

P∈I
D(P) (3)

D′(I) = D(I)\
⋃

Ĩ�I
D(Ĩ). (4)

It follows that D′(I) ⊆ D(I) and D(I) = ∐
Ĩ⊇I D′(Ĩ).
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Elliptic points of the Picard modular group 393

Definition 2.1 A subset I ⊂ P is called admissible if D(I) is non-empty and strongly
admissible if D′(I) is non-empty.

Proposition 2.2 [3, Proposition 3.7] Let S denote the collection of strongly admissible
subsets of P . Then the symmetric space has a �-invariant decomposition

D =
∐

I∈S
D′(I),

such that γ · D′(I) = D′(γI) for all γ ∈ � and I ∈ S.

Definition 2.3 Given a family of �-invariant exhaustion functions, define a subset
D0 ⊂ D by

D0 =
∐

I∈S|I|>1

D′(I).

2.3 Application to fixed points

One can use the decompositions above to study the fixed points of D. If z ∈ D is a
fixed point, then z ∈ D′(I) for some strongly admissible set I. The �-invariance of
the decomposition implies that γI = I for every γ ∈ � that fixes z. In particular,
if z ∈ D\D0, then I = {P}, for some rational parabolic subgroup P . Parabolic
subgroups are self-normalizing, which implies that Stab�(z) ⊂ � ∩ P . On the other
hand, if z ∈ D0 and γ fixes z, then γ could permute the members of I.

The retraction D0 depends on the choice of exhaustion functions, and hence is not
in general unique. In fact, there is a (k − 1)-parameter family of different retractions,
where k is the number of �-conjugacy classes of parabolic Q-subgroups. However,
the �-invariance of the exhaustion functions ensures that this choice is immaterial for
the purposes of computing elliptic points. In particular, suppose a point z ∈ D has
stabilizer �z ⊂ � that is not contained in � ∩ Q for any rational parabolic subgroup
Q. Pick a family of exhaustion functions. Then z ∈ D(P) for some rational parabolic
subgroup P . Since �z is not a subgroups of a rational parabolic subgroup, there exists
a γ ∈ �z such that γP �= P . Then (1) implies that fγP (z) = fP (z). It follows that
z ∈ D0.

3 Background

3.1 The unitary group

Let G be the identity component of the real points of the algebraic group G = SU(2, 1),
realized explicitly as

G = G(R) = SU(2, 1; C) = {g ∈ SL(3, C) | g∗Cg = C},
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where C =
⎡

⎣
0 0 i
0 −1 0
−i 0 0

⎤

⎦. Let O = Z[i] and let � be the arithmetic subgroup

� = G(Z) = G ∩ SL3(O). Let θ denote the Cartan involution given by inverse
conjugate transpose and let K be the fixed points under θ . Then K is the maximal
compact subgroup K = G ∩ SU(3).

Because these elements of � will be used frequently, set once and for all

w =
⎡

⎣
0 0 −1
0 1 0
1 0 0

⎤

⎦ , σ =
⎡

⎣
1 1 + i i
0 1 1 + i
0 0 1

⎤

⎦ , τ =
⎡

⎣
1 0 1
0 1 0
0 0 1

⎤

⎦ ,

ε =
⎡

⎣
i 0 0
0 −1 0
0 0 i

⎤

⎦ , and ξ =
⎡

⎣
1 −1 − i i

1 − i −1 0
1 − i −1 − i i

⎤

⎦ .

3.2 The symmetric space

Let D = G/K be the associated Riemannian symmetric space of non-compact type.
Then D is 2-dimensional complex hyperbolic space or the complex 2-ball with the
Bergmann metric. We will put coordinates on D using Langlands decomposition.

Let P0 ⊂ G be the rational parabolic subgroup of upper triangular matrices,

P0 =

⎧
⎪⎨

⎪⎩

⎡

⎢⎣
yζ βζ−2 ζ

(
r + i |β|2/2

)
/y

0 ζ−2 iβζ/y

0 0 ζ/y

⎤

⎥⎦

∣∣∣∣∣∣∣

ζ,β ∈ C, |ζ | = 1,

r ∈ R, y ∈ R>0

⎫
⎪⎬

⎪⎭
. (5)

Zink showed that � has class number 1 [5]. Thus �\G(Q)/P0(Q) consists of a single
point, and all the rational parabolic subgroups of G are �-conjugate to P0.

P0 acts transitively on D, and every point z ∈ D can be written as z = pK for
some p ∈ P0. When p is written as above, the point z = pK is independent of ζ , and
so we will denote such a point z = (y, β, r). These are also known as horospherical
coordinates.

A computation shows that every point z ∈ D is conjugate under �P0 to a point in
S, where

S = {(y, β, r) ∈ D| − 1/2 < r ≤ 1/2, β ∈ �} , where

� is the square in the complex plane with vertices 0, (1 + i)/2, i, and (−1 + i)/2.

4 Implementation

Using Proposition 2.2, we divide D into a codimension 1 piece D0 and a codimension
0 piece D\D0 and study the fixed points on each separately. We deal with D\D0 first.
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4.1 Elliptic points in D\D0

Proposition 4.1 Every non-trivial isotropy group of a point in D\D0 is �-conjugate
to exactly one of

�1 = 〈ε〉 ∼= Z/4Z, �2 = 〈ξ2〉 ∼= Z/4Z, or �3 = 〈σε2〉 ∼= Z/2Z.

Proof Notice that D\D0 = ∐
P∈P D′(P). Since all of the rational parabolic sub-

groups are �-conjugate, Proposition 2.2 implies that every point in D\D0 is a
�-translate of a point in D′(P0). Since parabolic subgroups are self-normalizing, the
subgroup of � that stabilizes D′(P0) is exactly �P0 = � ∩ P0.

Let z ∈ D\D0 be a fixed point. Then z is a �-translate of a point z0 = (y0, β0, r0)

in D′(P0). If p is an element of � that fixes z0, then p ∈ P0 and can be written in
coordinates as in (5). Then

p · z0 =
(

yy0, yζ 3β0 + β, y2r0 + r − Im(ββ̄0ζ
−3 y)

)
.

Then since y0 > 0 and p · z0 = z0,

y = 1, β = β0(1 − ζ 3), and r = |β0|2 Im(ζ−3). (6)

Since p ∈ �, we must have r ∈ Z, ζ ∈ O∗, and β ∈ O such that 2 | |β|2. It follows
that Stab�(z0) consists of the intersection {I, γ, γ 2, γ 3} ∩ �, where

γ =
⎡

⎢⎣
i −(1 + i)β0 −(1 − i)|β0|2
0 −1 −(1 − i)β0

0 0 i

⎤

⎥⎦. (7)

The points of S for which the intersection is non-trivial have β0 ∈ {0, (1 + i)/2, i}.
The intersection has order four for β0 ∈ {0, i} and order two for β0 = (1+ i)/2. Since
every point of D is �-conjugate to a point in S, the result then follows. ��

4.2 Isotropy groups of points in D0

A fundamental domain for the action of � on D0 is given in [4]. In particular, D0
is given the structure of a cell complex such that the stabilizer of a cell fixes the cell
pointwise. We mention that this cell structure is just a subdivision of the decomposition
given in Definition 2.3.

The space D0 is given the structure of a cell-complex such that the stabilizer of a
cell fixes the cell pointwise. The cells of D0 fall into 24 equivalence classes modulo
� consisting of two 3-cells, seven 2-cells, nine 1-cells, and six 0-cells.

Since the stabilizer of a cell fixes it pointwise, the cells with non-trivial stabilizer
form a set of�-representatives of the fixed points that we are looking for. The stabilizers
are computed in [4, Table 3], and the only new ones up to �-conjugacy are precisely
�4, . . . , �9 in Table 1.
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Table 1 Isotropy groups for
points in D

a This is the order 32 group with
Hall-Senior number 31 [1] and
Magma small group library
number 11

Stabilizer Generators Fixed points

�1 Z/4Z 〈ε〉 β = 0

�2 Z/4Z 〈ξ2〉 β = i

�3 Z/2Z 〈σε2〉 β = (1 + i)/2

�4 Z/2Z 〈εw〉 y2 + |β|2/2 = 1

�5 Z/12Z 〈τεw〉 (
4√3/

√
2, 0, 1/2)

�6 Z/2Z × Z/4Z 〈εw, ε〉 (1, 0, 0)

�7 Ga
31 〈εw, ξ2〉

(
1/

√
2, i, 0

)

�8 S3 〈εw, σε2〉 (
√

3/2, (1 + i)/2, 0)

�9 Z/8Z 〈ξ〉 (1/
4√2, i, 1/2)

Note that �1, �2, and �3 occur as subgroups of the groups in Table 1 since Di = D�i

contains points with y small and points with y large for i = 1, 2, 3. In particular, the
surface Di intersects the spine D0 and so the isotropy group of some point in D0
contains �i .

Theorem 4.2 The isotropy group of a point in D is �-conjugate to exactly one of the
groups in Table 1. The fixed points for each group are also tabulated.
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