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Abstract. Google’s PageRank algorithm is what makes Google such a strong search en-
gine. The pioneering PageRank algorithm redefined how a search engine operates and
executes. In this paper, the underlying mathematical basics for understanding how the al-
gorithm functions are provided. A basic analysis of hyperlinks with its association to the
algorithm and the PageRank algorithm is studied. Ultimately, this paper shines light on a
neat application of linear algebra coupled with graph theory.

1. Introduction

Revolutionizing how the modern world operates, the Internet is a powerful medium in
which anyone around the world, regardless of location, can access endless information about
any subject and communicate with one another without bounds. All that is needed is
a computer and the World Wide Web. One of the greatest results of the Internet was
the establishment of hyperlinks. The World Wide Web is an extensive computer network
consisting of billions of web pages holding documents of information. Hyperlinks are the
pathways from one web page to another, initiating the capability of communication between
these pages. Interactions between documents are performed by referencing one another via
links. Here lies the foundation on how the most dominant search engine, Google, does its
magic.

So, how does Google do it? Initially, Google breaks the web into sections, crawls through
these segments, and adds it to their main index kept across thousands of different machines
[2]. This process is done daily to keep Google’s index of the web up-to-date. Now, a user
visits Google, types in a query, and off the Google search engine goes to find the most
relevant and important web pages to be shown in regards to what was searched. First, the
query is decomposed into the individual words typed in the search engine [3]. Google then
deploys programs known as spiders that crawl in Google’s index in search for pages that
include the words, across many machines [1]. These spiders start off on a few pages. They
follow the links on the current page to other pages on a continuous search; and so on, until
every page regarding the query is indexed [3]. All of these pages are combined together for
Google to now apply over a hundred different ranking factors such as the quality of the page
(authoritative, low quality, or spam), the location of the words (in the title, url, etc.), the
proximity of the words (if the words are next to each in a sentence or not), time users have
spent on the pages before, etc., to sort the resulting pages based on overall rank [1].

Notably, the famous PageRank algorithm created by Google’s founders is the most critical
component in determining the overall rank of a page. Throughout the searching process,
the PageRank algorithm is main factor used to evaluate the pages that are most reputable
and authoritative across the index. The derivation of the PageRank algorithm was what set
Google apart from the rest early on and made it the successful, most powerful search engine
to date. The PageRank algorithm revolutionized how search engines retrieved pages from
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the web and truly displayed these pages in order of significance. In essence, the algorithm
proposes that the relevance or importance of a web page is dictated by the number of quality
hyperlinks linking to it. It is useful to represent these networks of hyperlinks linking web
pages to each other as directed graphs. It turns out that linear algebra coupled with graph
theory are the tools needed to calculate web page rankings by notion of the PageRank algo-
rithm. The focus of this paper is to explain the underlying mathematics behind the Google’s
PageRank algorithm. We dive into fundamentals of the Google’s PageRank algorithm, pro-
viding an overview of important linear algebra and graph theory concepts that apply to
this process. In the end, the reader should have a basic understanding of the how Google’s
PageRank algorithm computes the ranks of web pages and how to interpret the results.

2. Mathematics behind the PageRank algorithm

2.1. Markov Chains. We begin by introducing Markov chains. We define a Markov chain
as a mathematical model that describes an experiment or measurement that is performed
many times in the same way, where the outcome of a given experiment can affect the outcome
of the next experiment. The process starts at an initial state, namely x0, and transitions
successively from one state to another, say x1, x2,...,xk. The outcome of a given state depends
only on the immediately preceding state.

Definition 2.1. A probability vector is a vector with nonnegative entries that add up to
1.

We note probability vectors are the states in a Markov chain, hence these vectors are often
referred to as state vector.

Definition 2.2. A column-stochastic matrix is a square matrix in which all entries are
greater than or equal to zero (nonnegative) and whose columns are probability vectors.

Definition 2.3. A matrix is positive if all its entries are positive (greater than zero) real
numbers.

Ultimately, we are interested in analyze the chain’s long-term behavior after starting at
some initial state. Thus, a Markov Chain can be expressed as the first-order difference
equation or also referred to as a dynamical system:

(1) xk+1 = Axk for k = 0, 1, 2, . . .

where A is a column-stochastic matrix.
Note to compute xk in general, we can use

(2) xk = Akx0 for k = 0, 1, 2, . . .

So, we ask ourselves this question: what is the outcome at state xk as time goes on? When
studying these Markov Chains, usually as the system passes through time, the state vectors
seems to approach an equilibrium. This special long-term outcome leads to the concepts of
eigenvalues and eigenvectors.

Definition 2.4. A eigenvector of a square matrix A is a nonzero vector ~x such that A~x =
λ~x for some scalar λ, where λ is an eigenvalue.

Such an ~x is an eigenvector corresponding to λ. Additionally, in dynamical systems, if A
is a column-stochastic matrix, there exists an eigenvalue λ = 1.
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Theorem 2.1. If A is a column-stochastic matrix, then it has an eigenvalue λ = 1.

Theorem 2.2. If A is a positive column-stochastic matrix, then there is a unique eigenvector
corresponding to the eigenvalue λ = 1 such that it has only positive entries and the sum of
its entries equals 1.

Definition 2.5. A steady-state vector or equilibrium vector, q, is a probability vector
with eigenvalue λ = 1 such that

(3) Aq = q,

where A is a positive column-stochastic matrix.

Definition 2.6. A column-stochastic matric, A, is regular or primitive if for some posi-
tive integer k, Ak results strictly in a positive matrix.

Theorem 2.3. If A is square regular column-stochastic matrix, then A has a unique steady-
state vector, q. Furthermore, if x0 is an initial state and xk = Akx0 for k = 0,1,2,..., then
the Markov Chain xk converges to q as k →∞.

2.2. Graph Theory. Now, it will be helpful to have a conception on graph theory basics.

Definition 2.7. A graph is an object that consists of a non-empty set of vertices and
another set of edges.

In this case, we can refer to graphs as a network, vertices as nodes, and edges as links
connecting the nodes.

Definition 2.8. A directed graph or digraph is a set of nodes and a collection of directed
edges that each connects an ordered pair of vertices.

Definition 2.9. For any two vertices i and j of a directed graph, if there is an edge from i
to j or from j and i, the two vertices are adjacent.

Definition 2.10. A graph is connected if for distinct nodes i and j, there is a directed path
either from i to j or from j to i.

1 2

3 4

Figure 1. A connected graph.

Definition 2.11. A graph is strongly connected if there is a directed path from every
vertex to every other vertex.
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Figure 2. A strongly connected graph.

3. Google PageRank Algorithm

3.1. Hyperlink Analysis. Important properties and interesting outcomes of networks or
graphs can be drawn out through matrix representation. Matrix representation of graphs
successfully captures the characteristics of a given network and allows for the opportunity
to deeply analyze its behavior, thus enabling many applications to arise.

The entire web can be viewed as a network of graphs with nodes representing webpages
and edges representing the hyperlinks connecting them.

Definition 3.1. An adjacency matrix is an n× n matrix containing 1’s in its entries on
row i, column j of the matrix if there is an edge from node i to node j and 0’s otherwise.

It follows that the web or a portion of the web in which one is interested in can be
illustrated by an adjacency matrix. Any network has n finite nodes or webpages. Each
webpage is indexed by an distinct integer p for 1 ≤ p ≤ n. Now consider the web graph as
shown in Figure 3. This network can represented as the adjacency matrix A:

(4) A =


0 1 1 1
1 0 0 1
0 1 0 1
1 0 0 0


Since we are ultimately interested in how the webpages are connected throughout networks
to hopefully reach a conclusion of its long term behavior, lets take matrix A and multiply it
by itself:

(5) A2 =


0 1 1 1
1 0 0 1
0 1 0 1
1 0 0 0

 ·


0 1 1 1
1 0 0 1
0 1 0 1
1 0 0 0

 =


2 1 0 2
1 1 1 1
2 0 0 1
0 1 1 1


As it turns out, the resulting matrix from A2 reveals the number of different paths having a
distance of 2 units from webpage i to j. For instance, there are 2 paths from webpage 3 to
1 with a distance of 2: page 3 to page 2 to page 1 and page 3 to page 4 to page 1. On the
other hand, there is no path of distance 2 between page 4 to 1.

Additionally, A3 will inform the number of different paths having a distance of 3 units
from webpage i to j and so on.
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1 2

3 4

Figure 3. A strongly connected web graph representing hyperlinks linking
four different websites. Regarding pages 1 and 2, they both have a backlink
to each other.

Theorem 3.1. Consider a directed graph and a positive integer k. Then the number of
directed walks from node i to node j of length k is the entry on row i and column j of the
matrix Ak, where A is the adjacency matrix.

This neat result for adjacency matrices leads to insight on how a user starting on a
particular webpage can transition to other pages. Consequently, in time, as the user surfs
the web in relation to his/her query, he/she will eventually visit the webpages with the
most hyperlinks since many other pages lead to it. Google’s PageRank algorithm ultimately
utilizes this information of hyperlink connections to conjure up the ranks of the pages.

3.2. PageRank Algorithm Analysis. Google’s PageRank algorithm takes the hyperlink
analysis slightly further. In addition to the number of hyperlinks a particular webpage has,
the PageRank algorithm pays close attention to how reputable and authoritative those pages
from the incoming hyperlinks are. To incorporate this factor into a web graph, weights are
given to each hyperlink.

Definition 3.2. The indegree of a node is the number of edges pointing to it.

Definition 3.3. The outdegree of a node is the number of edges pointing away from it.

Weights are computed as follows: If there is an edge from i to j and the outdegree of node
i is di, then the weight for that edge is 1

di
. The application of weights brings forth fairness

in this ranking system. Think of it this way: Weights are motions. A page that links to
another is a vote that the other page is important and therefore makes a motion to raise the
page’s rank. The incorporation of weights attempts to not allow pages that link to many
others, commonly referred to as hubs, to unreasonably effect the ranks, essentially treating
each link with equal value. Additionally, a page that has many links pointing to it from
these hubs will not receive an overwhelming influence that results in an unfair rankings.

Definition 3.4. A transition matrix, corresponding to an adjacency graph, incorporates
weights to better model the behavior the network.

We note that the weight corresponding from edge i to j is placed on column i and row j.
Returning to our web graph shown in Figure 3, we now consider constructing a transition
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matrix to perform the PageRank algorithm:

(6) T =


0 1

2
0 1

1
3

0 1
2

0
1
3

0 0 0
1
3

1
2

1
2

0


We note that we have nonnegative column-stochastic matrix.

Theorem 3.2. For any strongly connected graph, the transition matrix is column-stochastic.

Google’s PageRank algorithm views this network as a dynamical system to conclude its
long term behavior. Using equation 2, this network at hand can be expressed as

(7) xk = T kx0 for k = 0, 1, 2, . . . ,

where T is our transition matrix and x0 is the vector

(8) x0 =


1
4
1
4
1
4
1
4

 ,
encompassing the fact initially the four webpages start out with equal rank.

The dynamical system above models a random user’s movement through the web with
respect to time. In this case, a user’s movement through the network illustrated in Figure 3.
At first, a user decides on visiting one of the four pages randomly with equal probability,
hence x0. After some time, the user notices the hyperlinks on the page and transitions to
another webpage. At each transition, the probability of moving to a particular website is the
weight corresponding from the current page to that page. As time passes by, the user would
have visited every website in the network. Every link to specific webpages encountered in a
currently visited page increases the probability of that page’s chance to get visited. This is
all equivalent to a page’s rank. Google’s PageRank algorithm considers these probabilities
of each page as their rank. Ultimately, this is what the PageRank algorithm calculates to
determine a page’s rank. The notion of a user surfing the web of interest and each transition
increases or decreases a page’s probability or rank is equivalent to repeatedly multiplying
the transition matrix over and over again. At some point, as time passes and the user
continuously surfs the web, the probabilities or rank of the webpages reach an equilibrium.
Seeing as this is network is a dynamical system transitioning through time, we can apply
the properties of Markov Chains. Since we have a column-stochastic matrix in our system,
applying theorem 2.1, we are guaranteed an eigenvalue of 1. Furthermore, by definition 2.5,
a steady-state vector exists. Repeatedly computing the state vectors until a steady vector is
reached or deriving the probabilistic eigenvector corresponding to eigenvalue λ = 1 is what
Google’s PageRank algorithm does. So, in our case, our transition matrix does in fact have
an eigenvalue of 1. Solving for the steady-state vector q, we arrive at

(9) q =


.387
.194
.129
.290

 .
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Thus, the ranks of the four webpages are given above. Page 1 is ranked highest with .387;
page 4 is ranked second highest with .290; followed by page 2 with .194; and lastly page 3
with .129.
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