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Abstract. Modular forms are holomorphic functions on the complex upper half plane

with special conditions imposed upon them. We examine computational methods on these

structures. This involves looking at modular symbols and Manin symbols, as well as the

corresponding Hecke operators on them. I discuss computations on higher weight modular

forms and highlight their differences from computing weight 2 modular forms.

1. Background

The goal of this paper is to give some insight into computing spaces of cusp forms as a

whole, particularly leaning towards the differences between weight 2 cusp forms and those

of weight higher than 2.

1.1. Modular Forms. Modular forms are holomorphic functions on the complex upper half

plane with special conditions imposed on them. These conditions allow for interesting prop-

erties to occur, some of which will be studied here. A few basic definitions are necessary

before beginning to study modular forms.

The complex upper half plane is defined as the part of the complex plane with positive

imaginary part,

H = {z ∈ C | z = a+ bi, b > 0}.

The special linear group of 2× 2 integer matrices, denoted SL2(Z), is defined as

SL2(Z) =

{[
a b

c d

]∣∣∣∣∣ad− bc = 1, and a, b, c, d ∈ Z

}
.

This group is generated by

σ =

[
0 −1

1 0

]
and τ =

[
1 1

0 1

]
.
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The group SL2(Z) acts onH by fractional linear transformation. For g =

[
a b

c d

]
∈ SL2(Z)

and z ∈ H, we have

g(z) =

[
a b

c d

]
(z) =

az + b

cz + d

With this action, we can look at the definition of a modular form.

Definition 1.1. Let k be an integer. Then a modular form of weight k is a function f :

H → C such that:

(i) f is holomorphic on H.

(ii) f(g(z)) = (cz + d)kf(z) for all g ∈ SL2(Z), z ∈ H.

(iii) f is holomorphic at ∞.

The space of modular forms of weight k is written Mk.

The second condition defines a symmetry on modular forms, where taking an SL2(Z)-

translate of a point on the upper half plane pulls out a symmetry factor of (cz + d)k. After

finding a particular modular form, this can be confirmed by acting by the generators σ and

τ of SL2(Z).

In order to understand the meaning of f holomorphic at ∞, we will first consider the

change of coordinates from the upper half plane to the punctured unit disk:

H → D′ = {q ∈ C \ {0} | |q| < 1}

z 7→ e2πiz = q.

This map is well-defined because τ(z) = z+ 1 and using the condition (ii), this gives f(z) =

f(z + 1). Then f is holomorphic at ∞ if there exists a holomorphic function

g : D′ → C

q 7→
∞∑
n=0

anq
n.

This means that if f is a modular form, then it has a Fourier expansion in q. We can write

f(z) =
∞∑
n=0

anq
n.

We will look at two types of modular forms: Eisenstein series and cusp forms.
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Definition 1.2. Let k be an even integer and k ≥ 4. Then an Eisenstein series of weight k

at z ∈ H is defined by

Gk(z) =
∑

(c,d)∈Z2\{(0,0)}

1

(cz + d)k
.

Definition 1.3. Let k be an integer. A cusp form of weight k is a modular form of weight

k such that f(∞) = 0.

The space of cusp forms of weight k is written Sk.

The Fourier expansion of a cusp form has a zero constant term. If f is a cusp form, then

its Fourier expansion can be written starting at n = 1:

f(z) =
∞∑
n=1

anq
n.

Furthermore, we have that every modular form can be written as a sum of cusp forms and

Eisenstein series [Ste07]. With this knowledge, if we can find the basis for Sk and Gk for a

given weight k, then we know exactly the space Mk as well.

Definition 1.4. The principal congruence subgroup of level N , Γ(N), is a subgroup of SL2(Z)

defined by

Γ(N) =

{[
a b

c d

]
∈ SL2(Z)

∣∣∣∣∣
[
a b

c d

]
=

[
1 0

0 1

]
mod N

}
.

Note that Γ(1) = SL2(Z).

Any subgroup Γ of SL2(Z) such that Γ(N) ⊂ Γ is a congruence subgroup. We will

commonly be using a specific congruence subgroup of level N , denoted Γ0(N), which is a

subgroup of SL2(Z) defined by

Γ0(N) =

{[
a b

c d

]
∈ SL2(Z)

∣∣∣∣∣
[
a b

c d

]
=

[
∗ ∗
0 ∗

]
mod N

}
.

We define a right action of a congruence subgroup Γ on a modular form f , called the

weight k operator or slash operator, by

(f [g]k)(z) = det(g)k−1(cz + d)−kf(g(z)) for g ∈ Γ, z ∈ H.

Since we will mostly be studying modular forms over congruence subgroups Γ of level N ,

we need to alter our definition of a modular form to take into account the new cusps that

are introduced with the congruence subgroup.
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Definition 1.5. Let k be an integer, and let Γ be a congruence subgroup of level N . Then

a modular form of weight k for Γ is a function f : H → C such that:

(i) f is holomorphic on H.

(ii) f(g(z)) = (cz + d)kf(z) for all g ∈ Γ, z ∈ H.

(iii) f is holomorphic at its cusps.

The space of modular forms of weight k for Γ is written Mk(Γ).

The main difference between Definition 1.1 and Definition 1.5 is the inclusion of more

cusps than just∞. We determine that a function is holomorphic at those points in a similar

manner to determining that a function is holomorphic at ∞. It’s also possible to check that

the product of two modular forms for Γ, one of weight k and one of weight l, is a modular

form of weight k + l for Γ.

Theorem 1.1. [Ste07] Let f1 ∈Mk(Γ) and f2 ∈Ml(Γ). Then f1f2 ∈Mk+l(Γ).

Proof. We need to check that the three properties of a modular form hold for the product

f1f2.

(i) The product of two holomorphic functions is holomorphic.

(ii) Let g ∈ Γ. Then we have f1(g(z)) = (cz + d)kf1(z) and f2(g(z)) = (cz + d)lf2(z), so

f1(g(z))f2(g(z)) = (cz + d)kf1(z)(cz + d)lf2(z) = (cz + d)k+lf1(z)f2(z).

(iii) It is possible to show that f1f2 is holomorphic at each of its cusps.

Therefore, f1f2 is a modular form of weight k + l for Γ. �

We can similarly define cusp forms of weight k for Γ.

Definition 1.6. Let k be an integer, and let Γ be a congruence subgroup of level N . A cusp

form of weight k for Γ is a modular form of weight k and level N such that f(a) = 0 for any

cusp a.

The space of cusp forms of weight k and level N is written Sk(Γ).

1.2. Hecke Operators. The next objects we need to define are Hecke Operators. Comput-

ing these operators allows us to construct bases for the spaces of modular forms, and so we

must understand them before doing so. We will be referring to the congruence subgroup of

level N , Γ0(N), for the following definitions.
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Before we are able to talk about Hecke Operators, we must define another set of matrices.

Xp =




1 j

0 p

∣∣∣∣∣∣0 ≤ j < p

 if p|N.


1 j

0 p

∣∣∣∣∣∣0 ≤ j < p

 ∪

p 0

0 1

 if p - N.

Definition 1.7. Let p be prime. The pth Hecke operator of weight k for Γ0(N) on f ∈
Mk(Γ0(N)), denoted Tp, is

Tp(f) =
∑
g∈Xp

f [g]k.

The following theorem by Hecke gives us several useful properties of Hecke operators,

which causes the only necessary Hecke operator computations to be on the prime operators.

I will refer to the proof of this theorem by Serre [Ser73].

Theorem 1.2. For all n,m with n 6= m, the following properties about Hecke Operators

hold:

(i) TnTm = TmTn.

(ii) Tnm = TnTm if (n,m) = 1.

(iii) Tpn = Tpn−1Tp − pk−1Tpn−2 for p prime.

We can construct all Tn for n composite using these properties if we have Tp for p prime.

Each Tp operator is a linear transformation on the space of modular forms,

Tp :Mk(Γ0(N))→Mk(Γ0(N))

The transformation matrix [Tp] has several nice properties. The set of [Tp] operators are

simultaneously diagonalizable, which allows us to look at specific modular forms which are

determined by every Hecke operator simultaneously, called eigenforms. The eigenvalues of

[Tp] are exactly the pth coefficients, ap, in the q-expansions of these eigenforms.

Definition 1.8. An eigenform of weight k for Γ0(N) is a modular form which is a simulta-

neous eigenvector for every Hecke operator.

These weight k eigenforms for Γ0(N) generate the corresponding space of modular forms.

Therefore, if we can compute these eigenforms, then we have our space of modular forms.
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1.3. Tensor Products. We will be using tensor products in the next section, so we will

define them here.

Definition 1.9. Let V and W be vector spaces over a field F . Then the tensor product of

V and W over F , V ⊗F W , is the set of formal linear combinations of elements in V ×W
such that the following relationships hold for all v1, v2 ∈ V,w1, w2 ∈ W, c ∈ F :

(i) (v1 + v2, w) = (v1, w) + (v2, w).

(ii) (v, w1 + w2) = (v, w1) + (v, w2).

(iii) (cv, w) = (v, cw).

The tensor product of two vector spaces over F yields another vector space over F , as a

result of the relationships on tensor products. We can multiply by scalars as follows:

c · (v, w) = (cv, w) = (v, cw).

We will sometimes denote elements of the tensor product V ⊗FW as v⊗F w. Furthermore,

when the field F is understood, we may leave off the subscript on the tensor product.

2. Modular Symbols

Now that we understand the building blocks of modular forms, we can move on to comput-

ing them. This section examines modular symbols and how to compute with them through

methods involving Hecke Operators on Manin symbols and Heilbronn matrices. Through

the section, the example space of weight 4 modular symbols for Γ0(5) will be studied.

Our first goal is to define a space of modular symbols of weight k for k ≥ 4 and even. In

order to do that, we need to first understand the space of weight 2 modular symbols. We

define modular symbols corresponding to spaces of weight 2 modular forms as follows:

Definition 2.1. For α, β ∈ P1(Q), the set of symbols S is defined by

S = {{α, β} : α, β ∈ P1(Q)}.

For g ∈ GL2(Q)+, g acts on S as follows:

g · {α, β} = {g(α), g(β)}.

where g(γ) is the action given by fractional linear transformation.

There are some occurrences that differ based on the congruence subgroup taken, which

we will avoid in this paper by using Γ0 in place of a general Γ going forward. Recall

Γ0(N) =

{[
a b

c d

]
∈ SL2(Z)

∣∣∣∣∣
[
a b

c d

]
=

[
∗ ∗
0 ∗

]
mod N

}
.
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Definition 2.2. The space of weight 2 modular symbols, denoted M2, is the Q-vector space

generated by the set of symbols modulo the following relations:

(i) 2-term relation: {α, β}+ {β, α} = 0 for all α, β ∈ P1(Q).

(ii) 3-term relation: {α, β}+ {β, γ}+ {γ, α} = 0 for all α, β, γ ∈ P1(Q).

Furthermore, we can define the space of weight 2 modular symbols for Γ0(N) by modding

out by an extra Γ0(N)-action, where {α, β} − g{α, β} = 0 for g ∈ Γ0(N).

Definition 2.3. The space of weight 2 modular symbols for Γ0(N), denoted M2(Γ0(N), is

the space M2 modulo the extra relation:

Γ0(N)-action: {α, β} − g{α, β} = 0 for all g ∈ Γ0(N).

Next, for some integer n > 0, let Q[X, Y ]n be the Q-vector space of homogeneous poly-

nomials of degree n in two variables X and Y (e.g., for n = 2, this space is generated by

the three degree 2 polynomials X2, XY , and Y 2). Then Q[X, Y ]n is finitely generated with

n+ 1 basis elements. We define the left action of Γ0 on Q[X, Y ]n by

(gP )(X, Y ) = P (dX − bY,−cX + aY ) for g =

[
a b

c d

]
∈ Γ0 , P (X, Y ) ∈ Q[X, Y ]n

In order to define higher weight modular symbols, we recall these previous matrices and

define a new matrix in SL2(Z) as follows:

σ =

[
0 −1

1 0

]
, τ =

[
0 −1

1 −1

]
, J =

[
−1 0

0 −1

]
.

We now write the definition for a space of higher weight modular symbols:

Definition 2.4. For a fixed weight k ≥ 2, the space of weight k modular symbols, denoted

Mk, is the tensor product Q[X, Y ]k−2 ⊗Q M2.

We use a shortened notation to represent elements in the space of modular symbols as

follows:

[P, {α, β}] ∈ Q[X, Y ]k−2 ⊗Q M2 for P ∈ Q[X, Y ]k−2 , {α, β} ∈M2.

Note that this is consistent with our definition of the space of weight 2 modular symbols

given above, as Q[X, Y ]2−2 is the space generated by degree 0 polynomials, which has {1}
as its basis.

We define a right action on the space of weight k modular symbols by combining the

actions on the two vector spaces in the tensor product as follows:

For g ∈ SL2(Z) and [P, {α, β}] ∈Mk(Γ0), SL2(Z) acts on Mk by

[P, {α, β}]g = [g−1P, {g(α), g(β)}].
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We further define the space of weight k modular symbols for Γ0(N) in a similar way

as for the weight 2 case, by modding out by a generalized Γ0(N)-action, which is that

[P, {α, β}]− [P, {α, β}]g = 0 for g ∈ Γ0(N).

Definition 2.5. The space of weight k modular symbols for Γ0(N), denoted Mk(Γ0(N), is

the space M2 modulo the extra relation:

Γ0(N)-action: [P, {α, β}]− [P, {α, β}]g = 0 for all g ∈ Γ0(N).

2.1. Manin Symbols.

Definition 2.6. A unimodular symbol is a modular symbol {α, β} ∈ M2(Γ0) which is a

SL2(Z) translate of the modular symbol {0,∞}.

It is common to use Manin’s Trick [Man72] at this point, which uses convergents of con-

tinued fractions to express any modular symbol as a finite sum of unimodular symbols.

Theorem 2.1 (Manin’s Trick). [Man72] Let {0, a
b
} ∈M2(Γ0), and let the continued fraction

expression of a
b
be given by [[a1, a2, · · · , ar]], so the convergents are p1

qk
= [[a1, a2, · · · , ak]].

Then we can write our modular symbol in terms of unimodular symbols as follows:{
0,
a

b

}
= {0,∞}+

{
∞, p1

q1

}
+

{
p1
q1
,
p2
q2

}
+ · · ·+

{
pr−1
qr−1

,
pr
qr

}
From the definition of a unimodular symbol, we can write any unimodular symbol

{
a
b
, c
d

}
as a SL2(Z) translate of the symbol {0,∞} as follows:{a

b
,
c

d

}
=

[
a b

c d

]
{0,∞}

Definition 2.7. For any prime `, there is a bijection Γ0(`) \ SL2(Z) → P1(F`) defined by

Γ0(`)

[
a b

c d

]
7→ (c : d). The symbols [P, (c : d)] for P ∈ Q[X, Y ]k−2 and for (c : d) ∈ P1(Q)

are called Manin symbols.

Theorem 2.2. [Mer94] The Manin symbols generate Mk(Γ0(N)).

I will refer to Manin’s proof of the above theorem. Using that theorem, we can then

compute with Manin symbols instead of unimodular symbols, as long as we redefine the

relations in terms of Manin symbols. We can do this by noting the following:[
a b

c d

]
{0,∞} 7→ (0 : 1)

[
a b

c d

]
for

[
a b

c d

]
∈ SL2(Z).

Then our relations are formed in the following theorem by Merel:
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Theorem 2.3. [Mer94] For [P, (c : d)] ∈Mk(Γ0(N)), we have

[P, (c : d)] + [P, (c : d)]σ = 0 (2-term relation)(1)

[P, (c : d)] + [P, (c : d)]τ + [P, (c : d)]τ 2 = 0 (3-term relation)(2)

[P, (c : d)]− [P, (c : d)]J = 0 (J-term relation)(3)

We now go through an explicit computation for M4(Γ0(5)):

M4(Γ0(5)) = Q[X, Y ]2 ⊗Q M2(Γ0(5)).

Both spaces in the tensor product are finitely generated. We write Q[X, Y ]2 with the gen-

erating set {X2, XY, Y 2} and M2(Γ0(5)) is isomorphic to the Q-vector space generated by

P1(F5), so it has the generating set {(0 : 1), (1 : 0), (1 : 1), (1 : 2), (1 : 3), (1 : 4)}.
Then before modding out by the 2-term, 3-term, and J-term relations, we have that M4(Γ0(5))

is at most generated by the 18 element set:

{[X2, (0 : 1)], [XY, (0 : 1)], [Y 2, (0 : 1)],

[X2, (1 : 0)], [XY, (1 : 0)], [Y 2, (1 : 0)],

[X2, (1 : 1)], [XY, (1 : 1)], [Y 2, (1 : 1)],

[X2, (1 : 2)], [XY, (1 : 2)], [Y 2, (1 : 2)],

[X2, (1 : 3)], [XY, (1 : 3)], [Y 2, (1 : 3)],

[X2, (1 : 4)], [XY, (1 : 4)], [Y 2, (1 : 4)]}

Next we need to take into consideration the three relations on this set. Via the 2-term

relation, we can narrow our set down to 10 elements as follows:

[X2, (0 : 1)] + [X2, (0 : 1)]σ = 0 =⇒ [X2, (0 : 1)] = −[Y 2, (1 : 0)]

[X2, (1 : 0)] + [X2, (1 : 0)]σ = 0 =⇒ [X2, (1 : 0)] = −[Y 2, (0 : 1)]

[X2, (1 : 1)] + [X2, (1 : 1)]σ = 0 =⇒ [X2, (1 : 1)] = −[Y 2, (1 : 4)]

[X2, (1 : 2)] + [X2, (1 : 2)]σ = 0 =⇒ [X2, (1 : 2)] = −[Y 2, (1 : 2)]

[X2, (1 : 3)] + [X2, (1 : 3)]σ = 0 =⇒ [X2, (1 : 3)] = −[Y 2, (1 : 3)]

[X2, (1 : 4)] + [X2, (1 : 4)]σ = 0 =⇒ [X2, (1 : 4)] = −[Y 2, (1 : 1)]

[XY, (0 : 1)] + [XY, (0 : 1)]σ = 0 =⇒ [XY, (0 : 1)] = [XY, (1 : 0)]

[XY, (1 : 1)] + [XY, (1 : 1)]σ = 0 =⇒ [XY, (1 : 1)] = [XY, (1 : 4)]
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Via the 3-term relation, we can narrow the basis set down to 4 elements with the following

relations:

[X2, (1 : 0)] = [X2, (1 : 1)] + 2[XY, (0 : 1)]

[X2, (1 : 2)] = [X2, (1 : 1)] + 4[XY, (0 : 1)] + 2[XY, (1 : 3)]

[X2, (1 : 3)] = [X2, (1 : 1)] + 12[XY, (0 : 1)] + 2[XY, (1 : 3)]

[X2, (1 : 4)] = [X2, (1 : 1)] + 4[XY, (0 : 1)]

[XY, (1 : 1)] = 2[XY, (0 : 1)]

[XY, (1 : 2)] = −6[XY, (0 : 1)]− 3[XY, (1 : 3)]

The J-term relations give us no extra restrictions, so M4(Γ0(5)) is isomorphic to the Q-vector

space generated by

{[X2, (0 : 1)], [X2, (1 : 1)], [XY, (0 : 1)], [XY, (1 : 3)]}.

2.2. Heilbronn Computations. Computing the eigenvalues for Hecke operators gives us

the Fourier coefficents for our eigenforms. When we looked at Hecke operators in section 1.2,

they were only computable by taking a sum over all slash operators from a set of matrices

that were dependent on the prime and the level. There is a simpler method of computing

Hecke operators using Heilbronn matrices, developed by Merel and Mazur at a conference

in Heilbronn, Germany [Mer91]. These Heilbronn matrices are defined as follows:

Yp =

{
g =

[
a b

c d

]∣∣∣∣∣det(g) = p, a > b ≥ 0, d > c ≥ 0, a, b, c, d ∈ Z

}
.

These Heilbronn matrices are dependent only on the prime p corresponding to the pth

Hecke operators. As such, they only need to be computed once for every prime p. Then for

p - N , Hecke operators are defined on weight 2 Manin symbols by

Tp(c : d) =
∑
g∈Yp

(c : d)g.

Similarly, Hecke operators for p - N are defined on weight k ≥ 2 Manin symbols by

Tp[P, (c : d)] =
∑
g∈Yp

[P, (c : d)]g.

The alternative to using Heilbronn matrices is to use Manin’s trick to convert Manin

symbols into unimodular symbols, and compute Hecke operators on those. The more efficient

method is to compute with Heilbronn matrices, so we will use them.
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We will go through a computation for the Hecke operator T2 on M4(Γ0(5)). First, we can

compute the set of Heilbronn matrices for p = 2 as follows:

Y2 =

{[
1 0

0 2

]
,

[
1 0

1 2

]
,

[
2 0

0 1

]
,

[
2 1

0 1

]}
.

In order to compute the 2nd Hecke operator on, for example, the Manin symbol [X2, (0 : 1)],

we need to act on it by every matrix in Y2. We see what happens when we act on [X2, (0, 1)]

by the second matrix in the above set:

[X2, (0 : 1)]

[
1 0

1 2

]
=

[[
1 0

1 2

]
X2, (0 : 1)

[
1 0

1 2

]]
= [X2, (1 : 2)]

= [X2, (1 : 1)] + 4[XY, (0 : 1)] + 2[XY, (1 : 3)].

The last equality comes from the previous relations on M4(Γ0(5)). We can similarly act

on [X2, (0, 1)] by the other three matrices in Y2 to get the Hecke operator in terms of the

four generators of our space. Putting them all together, we get the following Hecke operator

for p = 2.

T2([X
2, (0 : 1)]) = [X2, (0 : 1)]

[
1 0

0 2

]
+ [X2, (0 : 1)]

[
1 0

1 2

]
+

[X2, (0 : 1)]

[
2 0

0 1

]
+ [X2, (0 : 1)]

[
2 1

0 1

]
= [X2, (0 : 1)] + [X2, (1 : 1)] + 4[XY, (0 : 1)] + 2[XY, (1 : 3)]+

4[X2, (0 : 1)] + 4[X2, (0 : 1)] + 4[X2, (0 : 1)]− [X2, (1 : 1)]−

2[XY, (0 : 1)]

= 9[X2, (0 : 1)] + 6[XY, (0 : 1)] + 2[XY, (1 : 3)].

We proceed to write T2 as a linear transformation on the basis we found using Manin

symbols:

[T2] =


9 0 0 0

0 9 0 0

6 56 −4 0

2 10 0 −4

 .
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The first column of this transformation matrix comes from the above computation for

T2([X
2, (0 : 1)]), and the following three columns come from computing the 2nd Hecke oper-

ator on the other three elements we computed previously.

We previously determined that the eigenvalues of the pth Hecke operators correspond

exactly to the coefficients of the q-expansions of eigenforms. The eigenvalues of this Hecke

operator can be read off the diagonal, so they are an 9 (with multiplicity 2) and −4 (with

multiplicity 2). Therefore, there we notice that there are at minimum two distinct eigenforms

in this space.

We noted that all of the transformation matrices of prime Hecke operators not dividing the

level can be simultaneously diagonalized. This tells us that the coefficients of each Fourier

series are in the same order in each Hecke transformation matrix. In order to see if there

are any differences between the first and second eigenvalues, or between the third and fourth

eigenvalues, we compute several more Hecke operators.

Through a similar computation for the primes 3 and 7, we get

[T3] =


28 0 0 0

0 28 0 0

8 112 2 0

4 20 0 2

 , [T7] =


344 0 0 0

0 344 0 0

156 1456 6 0

52 260 0 6

 .

The eigenvalues corresponding to [T3] are 28 and 2 and the eigenvalues corresponding to [T7]

are 344 and 6, again read off the diagonal.

Notice here that the first two eigenvalues are the same and the third and fourth eigenvalues

are also the same, similarly to what we saw in [T2]. This leads us to believe that there are two

eigenforms for M4(Γ0(5)). There is a difference between the first two eigenvalues for Hecke

operators on primes dividing the level, however, which can be seen in the transformation

matrix for T5, as follows:

[T5] =


126 0 0 0

20 1 0 0

0 0 −5 0

0 0 0 −5

 .

This means that we should have three different eigenforms forM4(Γ0(5)). We can find the

q-expansions more completely by using Theorem 1.2 and by computing more prime Hecke

operators. After computing Hecke operators, we get the following three Fourier series for
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eigenforms in M4(Γ0(5)):

f1 =
1

240
+ q + 9q2 + 28q3 + 73q4 + 126q5 + 252q6 + 344q7 + . . .

f2 =
1

240
+ q + 9q2 + 28q3 + 73q4 + q5 + 252q6 + 344q7 + . . .

f3 = q − 4q2 + 2q3 + 8q4 − 5q5 − 8q6 + 6q7 + . . .

In this example, f1 and f2 correspond to the Eisenstein series G4 and a different weight

4 Eisenstein series, and f3 corresponds to a cusp form in Sk(Γ0(5)). Therefore, these three

modular forms generate the entire space of weight 4, level 5 modular forms.

3. Examples

Now that we have studied the techniques for computing spaces of modular forms, this

section gives results associated with a pair of examples. Specifically, we will be looking at

spaces of level 19 modular forms, of weight 2 and of weight 4.

3.1. M2(Γ0(19)). The first space of modular forms we are studying is M2(Γ0(19)), or the

space of weight 2 and level 19 modular forms. The first thing we need to do is compute the

basis of its corresponding space of modular symbols, M2(Γ0(19)). We note that since our

congruence subgroup is Γ0, this is equivalent to taking Manin symbols from the projective

line on F19. Therefore, before modding out by any of the relations, we have possible basis

elements of our Q-vector space from the set

P1(F19) = {(0 : 1), (1 : 0), (1 : 1), . . . , (1, 18)}.

We can then find the basis of this vector space by using the 2-term and 3-term relations

on this set. Doing so produces the 3-dimensional basis of M2(Γ0(19)),

{(0 : 1), (1 : 4), (1 : 5)}.

Now that we have a basis for M2(Γ0(19)), the next thing to do is to compute Hecke

operators on each basis element. This will give us a set of 3×3 transformation matrices

which represent the set of Hecke operators. I provide the transformation matrices for the

Hecke operators for primes 2, 3, and 5 here:

[T2] =

 3 0 0

1 0 0

−1 0 0

 , [T3] =

 4 0 0

2 −2 0

−2 0 −2

 , [T5] =

 6 0 0

1 3 0

−1 0 3

 .
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We can find the eigenvectors for one of these matrices, and use it to simultaneously diag-

onalize all of them. The eigenvectors for which we can do this are found from [T3]:

u1 =

 3

1

−1

 , u2 =

0

1

0

 , u3 =

0

0

1

 .
Then we can immediately write down the basis which simultaneously diagonalizes the Hecke

operators as follows:

{3(0 : 1) + (1 : 4)− (1 : 5), (1 : 4), (1 : 5)}.

Since all of the transformation matrices for our Hecke operators are lower triangular, we

can read off the eigenvalues from the diagonal. The eigenvalues of [T2] are 3 and 0, the

eigenvalues of [T3] are 4 and -2, and the eigenvalues of [T5] are 6 and 3. From these and a few

more Hecke operators, it is possible to calculate the first several coefficients for the Fourier

expansion of the eigenforms of M2(Γ0(19)). Since there are two eigenvalues for each Hecke

operator, and the eigenvalue corresponding the Eisenstein space is not repeated, we expect

to have two eigenforms, described as follows:

f1 =
3

4
+ q + 3q2 + 4q3 + 7q4 + 6q5 + 12q6 + 8q7 + . . .

f2 = q − 2q3 − 2q4 + 3q5 − q7 + . . .

In this case, f1 corresponds to an Eisenstein series, and f2 is a cusp form. An important

result, the modularity theorem, allows us to further use this cusp form. This result was

originally stated by Taniyama, Shimura, and Weil between 1956 and 1967[Wei67], proven

for some specific cases by several mathematicians between 1995 and 2001, and finally proven

for all cases in 2001 by Breuil et al. [BCDT01].

Theorem 3.1 (Modularity Theorem). Every rational elliptic curve corresponds to a modular

form.

This result particularly applies to weight 2 cusp forms. Since we have a weight 2 cusp

form in f2 for M2(Γ0(19)), we can determine the elliptic curves which correspond to it. We

can do so by using converting each Hecke eigenvalue ap(f) to its corresponding point count

ap(E) on the elliptic curve, using the equation

ap(f) = p+ 1− ap(E) for f ∈M2(Γ0(N)) and E an elliptic curve.

Let E describe the isogeny class of elliptic curves corresponding to f2. Then we can get

some of the point counts for E, utilizing the previous equation and the cusp form f2 ∈
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M2(Γ0(19)):

a2(f2) = 0 = 2 + 1− a2(E), so a2(E) = 3

a3(f2) = −2 = 3 + 1− a3(E), so a3(E) = 6

a5(f2) = 3 = 5 + 1− a5(E), so a5(E) = 3

a7(f2) = −1 = 7 + 1− a7(E), so a7(E) = 9

There are three elliptic curves which arise from this particular cusp form, all within the

same isogeny class. This implies that all of them have the same point counts as described

above. They are given here:

Elliptic curve 19.a1: y2 + y = x3 + x2 − 769x− 8470

Elliptic curve 19.a2: y2 + y = x3 + x2 − 9x− 15

Elliptic curve 19.a3: y2 + y = x3 + x2 + x

3.2. M4(Γ0(19)). We could use the methods we have devoloped to determine the eigenforms

which generate the space of modular forms of weight 4 and level 19, or M4(Γ0(19)). The

computations are too difficult to do by hand, so they were done in magma and the results are

given here. The space of modular symbols corresponding toM4(Γ0(19)) can be represented

as a tensor product:

M4(Γ0(19)) = Q[X, Y ]2 ⊗M2(Γ0(19)).

We wrote in the section above that that Manin symbols corresponding to M2(Γ0(19))

can be represented with the basis elements in P1(F19). Also, the space of homogeneous

degree 2 rational polynomials in two variables, Q[X, Y ]2, can be represented by the basis set

{X2, XY, Y 2}, as in the example in section 2. Therefore, there are 60 possible basis elements

for M4(Γ0(19)). After modding out by the necessary relations, this is reduced down to a

10-dimensional space. The basis of M4(Γ0(19)) space follows:

{[X2, (0 : 1)], [4X2 + 4XY + Y 2, (1 : 2)], [64X2 + 16XY + Y 2(1 : 8)],

[9X2 + 6XY + Y 2, (1 : 3)], [225X2 + 30XY + Y 2, (1 : 15)],

[196X2 + 28XY + Y 2], (1 : 14)], [36X2 + 12XY + Y 2, (1 : 6)],

[81X2 + 18XY + Y 2, (1 : 9)], [324X2 + 36XY + Y 2, (1 : 18)], [Y 2, (1 : 0)]}
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We can compute Hecke operators in a similar way to the example in section 2 as well, and

use those eigenvalues to compute the eigenforms for the space M4(Γ0(19)). After doing so,

we find there is one Eisenstein series and 4 cusp forms. The Eisenstein series is the same G4

as the one mentioned for M4(Γ0(5)), and so will not be written again. The four cusp forms

can be written as follows:

f1 = q − 3q2 − 5q3 + q4 − 12q5 + 15q6 + 11q7 + . . .

f2 = q +
1

324
(α4 − 12α3 − 51α2 + 684α + 738)q2

+
1

972
(−α5 + 9α4 + 87α3 − 423α2 − 3114α + 2322)q3

+
1

324
(α5 − 13α4 − 39α3 + 627α2 + 378α− 1062)q4

+
1

972
(α5 − 21α4 + 57α3 + 1035α2 − 5094α− 2430)q5

+
1

972
(−7α5 + 93α4 + 249α3 − 4491α2 − 1278α + 5346)q6

+
1

243
(−α5 + 15α4 + 15α3 − 729α2 + 990α + 1647)q7 + . . .

f3 = q +
1

324
(α4 − 12α3 − 51α2 + 360α + 1710)q2

+
1

972
(α5 − 21α4 + 57α3 + 927α2 − 2502α− 8910)q3

+
1

324
(−α5 + 17α4 − 9α3 − 723α2 + 1062α + 6282)q4

+
1

972
(−α5 + 9α4 + 87α3 − 315α2 − 1818α− 2862)q5

+
1

972
(7α5 − 117α4 + 39α3 + 4959α2 − 6714α− 44118)q6

+
1

243
(α5 − 15α4 − 15α3 + 621α2 − 342α− 3753)q7 + . . .
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f4 = q +
1

162
(−α4 + 12α3 + 51α2 − 522α− 738)q2

+
1

81
(α4 − 12α3 − 42α2 + 468α + 630)q3

+
1

81
(−α4 + 12α3 + 24α2 − 360α + 639)q4

+
1

81
(α4 − 12α3 − 60α2 + 576α + 1575)q5

+
1

81
(2α4 − 24α3 − 39α2 + 666α− 2034)q6

+
1

9
(4α2 − 24α− 237)q7 + . . .

In f2, f3, and f4, α represents a root of the sixth degree irreducible polynomial x6−18x5+

9x4 + 972x3 − 1620x2 − 11664x − 2052, which is from the splitting field generated by the

third degree polynomial x3 − 3x2 − 18x+ 38.

From Theorem 1.1, we should be able to see the square of the cusp form fromM2(Γ0(19))

as a linear combination of the cusp forms inM4(Γ0(19)). We can do this in magma as well,

and see that the square of the weight 2 cusp form, f 2, can be written as

f 2 =
1

509328
(−33α5 + 490α4 + 555α3 − 23802α2 + 29250α + 145836)f2

+
1

509328
(33α5 − 500α4 − 435α3 + 20748α2 − 13086α− 37224)f3

+
1

254664
(5α4 − 60α3 + 1527α2 − 8082α− 54306)f4.

Therefore, f 2 is a linear combination of cusp forms in M4(Γ0(19)), as theory suggests.
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[Mer91] Löı c Merel, Opérateurs de Hecke pour Γ0(N) et fractions continues, Ann. Inst. Fourier (Grenoble)

41 (1991), no. 3, 519–537. MR 1136594

[Mer94] , Universal Fourier expansions of modular forms, On Artin’s conjecture for odd 2-

dimensional representations, Lecture Notes in Math., vol. 1585, Springer, Berlin, 1994, pp. 59–94.

MR 1322319

[Ser73] J.-P. Serre, A course in arithmetic, Springer-Verlag, New York-Heidelberg, 1973, Translated from

the French, Graduate Texts in Mathematics, No. 7. MR 0344216

[Ste07] William Stein, Modular forms, a computational approach, Graduate Studies in Mathematics,

vol. 79, American Mathematical Society, Providence, RI, 2007, With an appendix by Paul E.

Gunnells. MR 2289048
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