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Abstract. Let X = Γ\G/K be an arithmetic quotient of a symmetric space of
non-compact type. In the case that G has Q-rank 1, we construct Γ-equivariant
deformation retractions of D = G/K onto a set D0. We prove that D0 is a
spine, having dimension equal to the virtual cohomological dimension of Γ.
In fact, there is a (k − 1)-parameter family of such deformation retractions,
where k is the number of Γ-conjugacy classes of rational parabolic subgroups
of G. The construction of the spine also gives a way to construct an exact
fundamental domain for Γ.
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1. Introduction

Let D = G/K be a symmetric space of non-compact type, where G is the group of
real points of a semisimple algebraic group G defined over Q. Let Γ be an arith-
metic subgroup of the rational points G(Q). Let (E, ρ) be a Γ-module over R.
If Γ is torsion-free, the locally symmetric space Γ\D is a K(Γ, 1) since D is con-
tractible, and the group cohomology of Γ is isomorphic to the cohomology of the
locally symmetric space, i.e. H∗(Γ, E) ∼= H∗(Γ\D; E), where E denotes the local
system defined by (E, ρ) on Γ\D. When Γ has torsion, the correct treatment in-
volves the language of orbifolds, but the isomorphism of cohomology is still valid
by using a suitable sheaf E as long as the orders of the torsion elements of Γ are
invertible in R.

The virtual cohomological dimension (vcd) of G is the smallest integer p such
that the cohomology of Γ\D vanishes in degrees above p, where Γ ⊂ G(Q) is any
torsion-free arithmetic subgroup. Borel and Serre [11] show that the discrepancy
between the dimension ofD and vcd(G) is given by the Q-rank of G, the dimension
of a maximal Q-split torus in G. Thus one can hope to find a Γ-equivariant defor-
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mation retract D0 ⊂ D of dimension equal to the virtual cohomological dimension
of G. When such a subset exists, it is called a spine.

Spines have been constructed for many groups [1,8,14,18,20,21,25,27]. In [3],
Ash describes the well-rounded retraction, a method for constructing a spine for
all linear symmetric spaces. Ash and McConnell extend [3] to the Borel-Serre
compactification in [7]. The well-rounded retraction works for algebraic groups G

where the real points are isomorphic to a product of the following groups [15]:

(i) GLn(R).
(ii) GLn(C).
(iii) GLn(H).
(iv) O(1, n− 1) × R×.
(v) The non-compact Lie group with Lie algebra e6(−26) ⊕ R.

The retraction has been used in the computation of cohomology [2,4–6,18,21,23,
25–27].

The well-rounded retraction proves the existence and gives a method of ex-
plicitly describing spines in linear symmetric spaces. However, for non-linear sym-
metric spaces, no general technique to construct spines is known. In fact, there
were no examples until MacPherson and McConnell [20] constructed a spine in
the Siegel upper half-space for the Q-rank 2 group Sp4(R).

In this paper, we deal with the case when G has Q-rank 1, and use a family
of exhaustion functions to construct a deformation retraction of D onto a spine.
Each exhaustion function can be thought of as a measure of height with respect
to a cusp or a rational parabolic subgroup of G.

The existence of such functions is not new. For example, for G = SL2, the
associated symmetric space is the Poincaré upper half-plane H and the cusps can
be identified with Q∪{∞}. Let f∞(z) = Im(z) and let fγ·∞(z) = Im(γ−1 · z). For
λ = p/q in reduced form, the level set fλ(z) = c is a circle of radius (2cq2)−1 that
is tangent to the real axis at λ. For c = 1, all of the level sets together form the
Farey circle packing. For c > 1, the level sets are disjoint. This family of exhaustion
functions yields the same deformation retraction as the well-rounded retraction,
which is the familiar infinite trivalent tree in H (Figure 1). The retraction can be
visualized by shrinking c and allowing the level sets to flatten against each other.

Siegel defined a notion of distance from a cusp when G is the restriction
of scalars, G = Resk/Q(SL2), where k is a number field [24]. The cusps can be

Fig. 1. Spine for SL2(R)
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identified with k∪{∞} and the distance can be expressed in terms of the norms of
certain ideals on Ok, the ring of integers in k. Siegel used these distance functions
to construct a fundamental domain. One can show that his distance functions are
a negative power of our exhaustion functions. For example, when k is an imaginary
quadratic field, the associated symmetric space is hyperbolic 3-space

H3 = {(z, r) | z ∈ C, r ∈ R and r > 0}.
For a cusp λ = α/β in reduced form, the distance from (z, r) to λ is

dλ(z, r) =
|βz − α|2 + |βr|2

rN〈α, β〉 ,

where N〈α, β〉 is the norm of the ideal of Ok generated by α and β. The level set
dλ(z, r) = 1/c is the sphere of radius N〈α, β〉/(2c|β|2) that is tangent to the plane
r = 0 at the point z = α/β. The level set d∞(z, r) = 1/c is the plane r = c. When
c is sufficiently large, these level sets are disjoint, and the retraction to the spine
can again be visualized by shrinking c until the level sets flatten out against each
other. The resulting spine is computed in [21, 27].

More directly, our exhaustion functions come out of Saper’s work on tilings
in [22]. In fact, our exhaustion functions are nothing more than the composition
of his normalized parameters (in the Q-rank 1 case) with the rational root. We use
the exhaustion functions to construct a deformation retraction of D onto a spine.
More precisely, we prove the following theorem:

Main Result. Let D = G/K be a symmetric space of non-compact type, where
G is the group of real points of a semisimple algebraic group G defined over Q

with Q-rank 1. Let Γ be an arithmetic subgroup of the rational points G(Q). There
exists a Γ-equivariant retraction of the symmetric space onto a set D0 ⊂ D with
the following properties:

(i) D0 is a locally finite union of semi-analytic sets.
(ii) dim(Γ\D0) = vcd(Γ).
(iii) D0 has a decomposition D0 =

∐

D′(I), where I ranges over certain (at least
2-element) subsets of parabolic Q-subgroups.

(iv) The decomposition satisfies γ ·D′(I) = D′(γI) for every γ ∈ Γ.
(v) The quotient Γ\D0 is compact.

In fact, there is a (k− 1)-parameter family of different retractions, where k is the
number of Γ-conjugacy classes of parabolic Q-subgroups.

Since each D′(I) is a semi-analytic set, it follows from [19] that the decom-
position of the spine D0 =

∐

D′(I) may be refined to a regular cell complex.
Thus, the cohomology can be described by finite combinatorial data. In [29] we
develop machinery for the computation of cohomology using D0, and use it to-
gether with the results of this paper to investigate the cohomology of SU(2, 1)
over the Gaussian integers.

Sections 2 and 3 set notation and define the main objects of this paper.
Sections 4 and 5 give another interpretation of the exhaustion functions and prove
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some of their properties. The main results are presented in Section 6. Section 7
introduces the notion of a strictly separated linear algebraic group, and show
that for these groups, each D′(I) is a smooth, contractible submanifold. Section 8
concludes by looking at a few examples of spines in low-dimensional cases and
comparing to known results.

2. Notation and background

In order to set notation, we briefly recall without proof some standard results
regarding algebraic groups over Q, the geodesic action, and the Borel–Serre com-
pactification [11]. We follow the exposition of [22]. Throughout this paper, G is
the identity component of the real points of a semisimple Q-rank 1 algebraic group
defined over Q. In order to lighten the notation and exposition, we will denote the
algebraic group and its group of real points by the same Roman type (G = G(R)),
and we may refer to the algebraic group when properly we should be referring to
the group of real points. For example, we will speak of parabolic Q-subgroups of G,
when we properly should be referring to the group of real points of a parabolic
Q-subgroup of the algebraic group G.

2.1. Algebraic groups defined over Q

For a reductive algebraic group H which is defined over Q, let SH denote the
maximal Q-split torus in the center of H, and set AH = SH(R)0. Set

0H =
⋂

χ∈X(H)Q

ker(χ2),

where X(H)Q denotes the rational characters of H defined over Q. Then H splits
as a direct product

H = AH × 0H.

The group 0H ⊂ H contains all compact and arithmetic subgroups of H.
For a parabolic subgroup P ⊂ G, let NP denote its unipotent radical and let

νP : P → LP = P/NP

denote the projection to the Levi quotient. Let MP denote the group 0LP . If
SP ⊂ LP denotes the maximal Q-split torus in the center of LP , then LP splits
as a commuting direct product LP = APMP , where AP = SP (R)0. Note that LP
is the centralizer of AP , and the connected component of the center of MP is a
Q-anisotropic torus.

Let Q∆P = {αP } denote the simple root of the adjoint action of AP on nP ,
the Lie algebra of NP . The roots will be viewed as characters of AP and as elements
of a∗P . Since G has Q-rank 1, αP gives an isomorphism AP → R>0. Let

ψP : R>0 → AP (1)

be the isomorphism of groups given by ψP (t) = α−1
P (t).
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For two rational parabolic subgroups P and Q, there is a canonical isomor-
phism

AP
∼→ AQ

induced by an element of G(Q). In particular, the characters {αP }P∈P can be
identified and will be denoted α.

Any lift i : LP → P determines a Langlands decomposition, which is a semi-
direct product

P = NP i(APMP ).

Let K ⊂ G be a maximal compact subgroup and define D = G/K. There is a
unique basepoint x ∈ D such that K = StabG(x). This choice of K also determines
the following data [17]:

(i) A maximal compact subgroup KP = K ∩ P ⊂ G and a diffeomorphism
P/KP → D.

(ii) A Cartan involution θx : G→ G such that K is the subgroup fixed by θx.
(iii) A unique θx-equivariant lifting ix : LP → P . For a subset T ⊂ LP , denote

its lift by T (x).

Definition 2.1 ([16]). Let P ⊂ G be a rational parabolic subgroup and x a point
in D. If the lift LP (x) is an algebraic subgroup of P , then x is a rational basepoint
for P .

If the basepoint x can be chosen so that the associated maximal compact
subgroupK is defined over Q, then x is rational for all rational parabolic subgroups
of G.

Definition 2.2. Let S be a maximal Q-split torus of G. The Weyl group over Q or
Q-Weyl group is the quotient of the normalizer N (S) of S by the centralizer Z(S)
of S, and is denoted

QW = N (S)/Z(S).

The following is the rational version of the standard Bruhat decomposition
for Lie groups.

Theorem 2.3 ([9]). Let P ⊂ G be a minimal rational parabolic subgroup. Then G(Q)
is the disjoint union of the classes P (Q)wP (Q) with [w] ∈ QW . In particular, given
g ∈ G(Q), there exist ug ∈ NP , [w] ∈ QW , and pg ∈ P such that g = ugwpg.

2.2. Borel–Serre compactification [11]

Let x denote the point of D fixed by K. Then P ∈ P acts transitively on D, so
every point z ∈ D can be written as z = p · x for some p ∈ P . The geodesic action
of AP on D is given by

a ◦ z = (pã) · x,
where ã is the image of a in AP (x). The geodesic action commutes with the usual
action of P on D and is independent of the choice of basepoint. Let AP × 0P act
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on D by (a, p) · z = p · (a ◦ z) = a ◦ (p · z). Then there is an analytic isomorphism
of AP × 0P -homogeneous spaces

(aP,x, qP ) : D
∼→ AP × e(P ), (2)

where e(P ) = AP \D is the quotient of D by the geodesic action of AP . Normalize
aP,x so that aP,x(x) = e. Via (2), D is a trivial principal AP -bundle with canonical
cross-sections given by the orbits of 0P .

The Borel–Serre compactification is then constructed as follows: The simple
root αP induces an isomorphism AP

∼→ R>0 defined by a 7→ aα. The partial
bordification Dc(P ) associated to P is defined to be AP ×AP

D. Equivalently,
extend (2) to

(aP,x, qP ) : Dc(P )
∼→ AP × e(P ).

The Borel–Serre compactificationD ≡ ⋃

P∈P D
c(P ) is then given the unique struc-

ture of an analytic manifold with boundary so that each Dc(P ) is an open sub-
manifold with boundary.

The action of G(Q) on D extends to an action on D, and for an arithmetic
subgroup Γ ⊂ G(Q), the quotient Γ\D is compact.

2.3. Γ-conjugacy classes of parabolic Q-subgroups

Fix a proper parabolic Q-subgroup P of G. The parabolic Q-subgroups of G are all
conjugate to P via elements of G(Q). Thus, the set of Q-parabolic subgroups P is
in one-to-one correspondence with points of G(Q)/P (Q), where [g] ∈ G(Q)/P (Q)

corresponds to the parabolic Q-subgroup gP = P g
−1 ≡ gPg−1. For an arithmetic

subgroup Γ ⊂ G(Q), the double coset space Γ\G(Q)/P (Q) is finite [10] and the
number of elements in the space is known as the class number. In particular, there
are only finitely many Γ-conjugacy classes of parabolic Q-subgroups of G. For
P ∈ P, let ΓP ≡ Γ ∩ P ⊂ 0P . Then there is a bijection between Γ/ΓP and the
parabolic subgroups that are Γ-conjugate to P via γΓP 7→ γP .

3. Main definitions

In this section, we define a family {fP }P∈P of exhaustion functions depending on
a Γ-invariant parameter. We also define subsets of D associated to the family of
exhaustion functions. In Section 6, these functions are used to give a Γ-equivariant
retraction of D onto a codimension 1 set D0.

Definition 3.1. A parameter is a family {OP }P∈P of closed submanifolds of D such
that each OP has the form

OP = 0P · xP for some xP ∈ D.

A parameter is Γ-invariant if

γ ·OP = OγP for all γ ∈ Γ and P ∈ P.
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Recall that by conjugation by G(Q), one can canonically identify the AP and
corresponding simple roots αP for different P ∈ P. Denote the simple root by α
and view it as a character on each AP .

For P ⊂ G a rational parabolic subgroup, let

aP : D ×D → AP (3)

be the map aP (z, x) = aP,x(z). Thus aP (z, x) can be viewed as the amount of
geodesic action required to push 0P · x to 0P · z. The following is immediate from
the definitions and the 0P -invariance of aP,x.

Proposition 3.2 ([11]). Let P ⊂ G be a rational parabolic subgroup. Then

(i) aP (z, x) = aP (x, z)−1 for all z, x ∈ D.
(ii) agP (g · z, g · x) = aP (z, x) for all z, x ∈ D and g ∈ G(Q).
(iii) aP (z, x) = aP (p · z, x) = aP (z, p · x) for all p ∈ 0P .
(iv) aP (z, s)aP (s, x) = aP (z, x) for all z, x, and s in D.

Given a point x ∈ D and a rational parabolic subgroup P ∈ P, consider the
function f : D → R>0 given by f(z) = aP (z, x)α. Proposition 3.2 implies that f
only depends on the orbit 0P · x. This leads to the following definitions.

Definition 3.3. The exhaustion functions associated to a parameter {0P · xP }P∈P

is the family {fP }P∈P of functions fP : D → R>0 given by

fP (z) = aP (z, xP )α.

A family of exhaustion functions associated to a Γ-invariant parameter is called a
family of Γ-invariant exhaustion functions.

Notice that Proposition 3.2 implies that

fgP (g · z) = fP (z)fgP (g · xP ) for all g ∈ G(Q), (4)

so that in particular, for exhaustion functions associated to a Γ-invariant param-
eter,

fγP (γ · z) = fP (z) for all γ ∈ Γ. (5)

For a parabolic P , define D(P ) ⊂ D to be the set of z ∈ D such that
fP (z) ≥ fQ(z) for every Q ∈ P \ {P}. More generally, for a subset I ⊆ P,

E(I) = {z ∈ D | fP (z) = fQ(z) for every pair P,Q ∈ I}, (6)

D(I) =
⋂

P∈I

D(P ), (7)

D′(I) = D(I) \
⋃

I′)I

D(I ′). (8)

It follows that D′(I) ⊆ D(I) ⊂ E(I) and D(I) =
∐

Ĩ⊇I D
′(Ĩ).

Definition 3.4. The set D′(I) will be called a degenerate tile. Let fI denote the
restriction to E(I) of fP for P ∈ I.
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Definition 3.5. Let I ⊆ P, P ∈ I, and z ∈ E(I). Then z is called a first contact
for I if fI(z) is a global maximum of fI on E(I).

Definition 3.6. A subset I ⊂ P is called admissible if D(I) is non-empty, and
strongly admissible if D′(I) is non-empty.

Proposition 3.7. Let S denote the collection of strongly admissible subsets of P.
Then the symmetric space D has a Γ-invariant degenerate tiling

D =
∐

I∈S

D′(I)

such that γ ·D′(I) = D′(γI) for all γ ∈ Γ and I ∈ S.

Definition 3.8. Given a family of Γ-invariant exhaustion functions, define a subset
D0 ⊂ D by

D0 =
∐

I∈S
|I|>1

D′(I).

Let fD0
denote the function on D0 given by

fD0
(z) = fI(z) for z ∈ D(I). (9)

4. Exhaustion functions via representation theory

In this section we describe a systematic way to construct exhaustion functions.
Fix a parabolic Q-subgroup P ⊂ G. Choose a rational basepoint x∗ ∈ D for

P so that the θx∗ -stable lift AP (x∗) of AP to P is the connected component of
the real points of a maximally Q-split torus of G. Let MP (x∗) denote the θx∗ -
stable lift of MP = 0LP to P , and let aP denote the Lie algebra of AP (x∗). The
simple Q-root α can be viewed as a linear functional on aP . Let gC denote the
complexification of g. Fix a Cartan subalgebra containing the complexification of
aP , and let {α̃1, . . . , α̃m} be the simple roots. Order them so that α̃j |aP

= α for
1 ≤ j ≤ l and α̃j |aP

= 0 for l + 1 ≤ j ≤ m. Let {ω̃1, . . . , ω̃m} be the associated

fundamental weights. Consider the weight ω̃ = s
∑l
j=1 ω̃j . Then for s a sufficiently

large positive integer, ω̃ is the highest weight of a finite-dimensional (strongly
rational) representation of G [12].

Let (V, π) denote this representation, and ω the restriction of ω̃ to aP . The
restrictions of weights to aP are called restricted Q-weights. Every restricted Q-
weight of V is of the form ω − jα, where j is a non-negative integer, and the
lowest restricted Q-weight is −ω. Thus V has a decomposition as a direct sum of
restricted Q-weight spaces,

V =
⊕

λ

Vλ =

N
⊕

k=0

Vω−kα, where ω −Nα = −ω. (10)
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Fix an admissible inner product 〈·, ·〉 on V [13], that is, one for which

π(g)∗ = π(θx∗g)−1 for all g ∈ G,

so that in particular,

π(k)∗ = π(k)−1 for all k ∈ K.

Since the Q-Weyl group QW is finite, by averaging over QW one can arrange
that the inner product is also QW -invariant. The data (V, π, 〈·, ·〉 , x∗) will be called
a P -adapted representation.

Proposition 4.1. Let P ⊂ G be a parabolic Q-subgroup with rational basepoint x∗,
and let (V, π, 〈·, ·〉 , x∗) be a P -adapted representation. Then MP (x∗) preserves the
restricted Q-weight spaces of V . The highest and lowest restricted weight spaces
are one-dimensional, and MP (x∗) preserves length on both.

Proof. Since MP (x∗) centralizes AP (x∗), it follows that MP (x∗) preserves the re-
stricted weight space decomposition of V . Since ω̃ is orthogonal to α̃j for l + 1 ≤
j ≤ m, it follows that the highest weight space Vω is 1-dimensional. Furthermore,
this implies that the connected component of MP (x∗) acts trivially on Vω. Now
MP (x∗) has only finitely many connected components because MP × AP ∼= LP ,
the real points of the Levi quotient, which has only finitely many connected com-
ponents since it is Zariski connected [28]. It follows that MP (x∗) preserves length
when restricted to Vω. An analogous argument shows that V−ω is 1-dimensional,
and MP (x∗) preserves length on V−ω. �

Write z ∈ D as z = p · x with p ∈ P . Using Langlands decomposition, write
p as uãP (z, x∗)m, where u ∈ NP , ãP (z, x∗) ∈ AP (x∗), and m ∈ MP (x∗). Fix
g ∈ G(Q). From (10) there exist unit vectors vk ∈ Vω−kα and constants ck(z) ∈ C

such that
π(p−1g)v = π(ãP (z, x∗))−1

∑

k

ck(z)vk. (11)

Note that ck(z) is only defined up to multiplication by norm 1 scalars. Since
MP (x∗) centralizes AP (x∗), the ck(z) only depend on m and u. Thus for each
fixed g, the norm |ck| can be viewed as a function from D to R≥0 that is invariant
under the geodesic action of AP .

Proposition 4.2. Fix g ∈ G(Q) and two distinct rational parabolic subgroups P and
Q = gP . Fix a rational basepoint x∗ for P and let (V, π, 〈·, ·〉 , x∗) be a P -adapted
representation. Then the functions |ck| : D → R (defined above) satisfy

fQ(z) =
fQ(g · xP )fP (z)

(
∑N
k=0 |ck(z)|2fP (x∗)−2kfP (z)2k)1/N

for all z ∈ D.

Proof. From the definition of the P -adapted representation, α = 2ω/N . Write
z ∈ D as z = p · x∗, where p ∈ P . Let v ∈ V denote a norm 1 highest weight
vector. Since NP fixes v, Proposition 4.1 implies

‖π(p−1)v‖−2/N = ‖π(m−1ãP (z, x∗)−1u−1)v‖−2/N = aP (z, x∗)α. (12)
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Then from the definition of fP and (12),

fP (z) = aP (z, x∗)αfP (x∗) = ‖π(p−1)v‖−2/NfP (x∗). (13)

Then (4), (13), and the orthogonality of the restricted weight spaces imply

fQ(z) = fP (g−1 · z)fQ(g · xP )

= fQ(g · xP )fP (x∗)
(∥

∥

∥π(ãP (z, x∗))−1
N

∑

k=0

ck(z)vk

∥

∥

∥

2)−1/N

= fQ(g · xP )fP (x∗)
(∥

∥

∥

N
∑

k=0

ck(z)aP (z, x∗)−ω+kαvk

∥

∥

∥

2)−1/N

= fQ(g · xP )fP (x∗)
(

N
∑

k=0

|ck(z)|2aP (z, x∗)−2ω+2kα
)−1/N

= fQ(g · xP )fP (x∗)aP (z, x∗)2ω/N
(

N
∑

k=0

|ck(z)|2aP (z, x∗)2kα
)−1/N

= fQ(g · xP )fP (z)
(

N
∑

k=0

|ck(z)|2fP (x∗)−2kfP (z)2k
)−1/N

. �

Proposition 4.3. Let P and Q = gP be two distinct Q-parabolic subgroups with
g ∈ G(Q). Let g = ugwpg be the Q-Bruhat decomposition of g as in Proposition 2.3.
Use the Langlands decomposition to express z ∈ D as z = uãP (z, x∗)m · x∗ for a
rational basepoint x∗ for P , u ∈ NP , m ∈MP (x∗), and ãP (z, x∗) ∈ AP (x∗). Then

|cN (z)| = aP (pg · x∗, x∗)ω.
If |ck(z)| = 0 for k = 0, . . . , N − 1, then

(i) u = ug.
(ii) z is a first contact for {P,Q}.
(iii) fP (z) = fQ(g · xP )1/2aP (pg · x∗, x∗)−α/2fP (x∗).

Proof. From the definition of |ck(z)|,
|ck(z)| = ‖prVω−kα

(π(m−1u−1g)v)‖ = ‖prVω−kα
(π(m−1u−1ugwpg)v)‖

= aP (pg · x∗, x∗)ω‖prVω−kα
(π(m−1u−1ugw)v)‖. (14)

Notice that π(w)v ∈ V−ω and for n ∈ NP ,

π(nw)v = π(w)v + higher weight vectors.

Since MP (x∗) preserves weight spaces and preserves length on V−ω by Proposi-
tion 4.1,

|cN (z)| = aP (pg · x∗, x∗)ω‖prV−ω
(π(m−1u−1ugw)v)‖ = aP (pg · x∗, x∗)ω. (15)
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Now suppose |ck(z)| = 0 for k = 0, . . . , N − 1. Then from (14), π(m−1u−1ugw)v
∈ V−ω. Since π(m−1) preserves weight spaces by Proposition 4.1, π(u−1ug) pre-
serves V−ω. It follows that u = ug.

Note that since z ∈ E({P,Q}),

fQ(g · xP )N =

N
∑

k=0

|ck(z)|2
fP (x∗)2k

fP (z)2k ≤ |cN (z)|2
fP (x∗)2N

fP (z)2N .

Since |cN (z)| 6= 0 and is independent of z from (15),

fP (z) ≤ fQ(g · xP )1/2fP (x∗)

|cN (z)|1/N on E({P,Q}). (16)

The bound is attained when u(z) = ug and

fP (z) =
fQ(g · xP )1/2fP (x∗)

|cN (z)|1/N =
fQ(g · xP )1/2fP (x∗)

aP (pg · x∗, x∗)α/2
. �

5. Properties of exhaustion functions

Notice that for a family of Γ-invariant exhaustion functions,

fγP (γ · xP ) = 1 for every γ ∈ Γ. (17)

Proposition 3.2 implies the following.

Proposition 5.1. Let P ⊂ G be a rational parabolic subgroup and {fP }P∈P a family
of exhaustion functions associated to a Γ-invariant parameter {0P ·xP }P∈P . Then

(i) fP (xP ) = 1.
(ii) fP (a ◦ z) = aαfP (z) for all z ∈ D and a ∈ AP .
(iii) fP (z) = aP (z, x)αfP (x) for all z, x ∈ D.
(iv) fP (p · z) = fP (z) for all z ∈ D and p ∈ 0P .
(v) fgP (z) = fP (g−1z)fgP (g · xP ) for all z ∈ D and g ∈ G(Q).

The following proposition follows from reduction theory [10].

Proposition 5.2. Let {fP }P∈P be a Γ-invariant family of exhaustion functions.
Then there exists a constant C > 0, depending on the Γ-invariant parameter, such
that

sup
P∈P

fP (z) ≥ C for all z ∈ D.

Lemma 5.3. Let M be a Riemannian manifold and ψ an isometry of M . Let f and
h be smooth functions on M such that h(x) = f(ψ(x)). Then

∇h(x) = (dψ−1)ψ(x)∇f(ψ(x)) for all x ∈M .

Proposition 5.4. Let x, x′ ∈ D. If fP (x) = fP (x′) then ‖∇fP (x)‖ = ‖∇fP (x′)‖.
Proof. If fP (x) = fP (x′), then there exists p ∈ 0P such that p · x = x′. Since
fP is 0P -invariant, fP (p · z) = fP (z) for all z ∈ D. The result then follows from
Lemma 5.3 by noting that 0P ⊂ G acts by isometries on D. �
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Lemma 5.5. Let P ⊂ G be a rational parabolic subgroup. The geodesic action of
AP induces an isometry on the 1-dimensional tangent space Tz(AP ◦ z).

Proof. Since the geodesic action of AP is equal to the regular action of its θz-
invariant lift on the orbit AP ◦ z, the geodesic action induces an isometry on the
1-dimensional tangent space Tz(AP ◦ z). Furthermore, the geodesic action of AP
commutes with the regular action of P on D. The result follows. �

Proposition 5.6. Fix two distinct rational parabolic subgroups P and Q. Then

fP (z)‖∇fQ(z)‖ = fQ(z)‖∇fP (z)‖ for all z ∈ D.

In particular, if z ∈ E({P,Q}), then ‖∇fP (z)‖ = ‖∇fQ(z)‖.

Proof. There exists a g ∈ G(Q) such that Q = gP . By Proposition 5.1,

fQ(z) = fP (g−1 · z)fQ(g · xP ). (18)

Then Lemma 5.3 implies that

∇fQ(z) = fQ(g · xP )(dLg)g−1·z∇fP (g−1 · z), (19)

where Lg : D → D is the isometry given by left translation by g ∈ G. Since fP is
0P -invariant,

∇fp(g−1 · z) = (dLp−1)pg−1·z∇fP (pg−1 · z) for any p ∈ 0P . (20)

There exists a p ∈ 0P such that pg−1z = t ◦ z, where t = ψP
( fP (g−1z)

fP (z)

)

. Note that

fP (t ◦ z) =

(

fP (g−1z)

fP (z)

)

fP (z). (21)

Then by Lemma 5.3 and (21),

∇fP (pg−1 · z) =

(

fP (g−1z)

fP (z)

)

d(t ◦ ·)z∇fP (z). (22)

Combining (19), (20), and (22) yields

∇fQ(z) =
fQ(z)

fP (z)
(dLgp−1)pg−1·zd(t ◦ ·)z∇fP (z). (23)

Thus by Lemma 5.5, fP (z)‖∇fQ(z)‖ = fQ(z)‖∇fP (z)‖. �

Proposition 5.7. Let P and Q be distinct parabolic Q-subgroups of G, and z ∈
E({P,Q}). Then the following are equivalent:

(i) z is a first contact for {P,Q}.
(ii) z is a critical point for fP |E({P,Q}).
(iii) ∇fP (z) = −∇fQ(z).



Vol. 12 (2006) Existence of spines for Q-rank 1 groups 553

Proof. Let E = E({P,Q}). By Proposition 5.6, ‖∇fP (z)‖ = ‖∇fQ(z)‖ for z ∈ E.
It follows that

∇fP |E(z) = prTzE(∇fP (z)) =
1

2
(∇fP (z) + ∇fQ(z)),

and hence (ii) is equivalent to (iii).
It is clear that if z is a first contact for {P,Q}, then ∇fP (z) and ∇fQ(z) point

in opposite directions. Thus Proposition 5.6 implies that ∇fP (z) = −∇fQ(z) and
hence (i) implies (ii).

Now suppose ∇fP (z) = −∇fQ(z) for some z ∈ E({P,Q}). By Proposi-
tion 4.3, to show that z is a first contact for {P,Q}, it suffices to show that
|ck| = 0 for k = 0, . . . , N − 1. Let y = fP (z) and fix g ∈ G(Q) such that Q = gP .
Then by Proposition 4.2,

fQ(z) =
fQ(g · xP )y

(
∑N
k=0 |ck(z)|2fP (x∗)−2ky2k)1/N

for all z ∈ D.

Let ∂
∂y be the vector field on D which is tangent to the flow of the geodesic action

of AP such that ∂
∂y (fP ) = 1. For z ∈ E({P,Q}),

N
∑

k=0

|ck(z)|2fP (x∗)−2ky2k = fQ(g · xP )N , (24)

and hence,

|cN (z)|2fP (x∗)−2Ny2N = fQ(g · xP )N −
N−1
∑

k=0

|ck(z)|2fP (x∗)−2ky2k. (25)

If ∇fP (z) = −∇fQ(z), then in particular, ∂fP

∂y (z) = −∂fQ

∂y (z). This implies that

1 = −
(

1 − y

NfQ(g · xP )N

N
∑

k=0

2k|ck(z)|2fP (x∗)−2ky2k−1

)

= −1 +
N

∑

k=0

2k|ck(z)|2
NfQ(g · xP )NfP (x∗)2k

y2k. (26)

Combining (25) and (26) gives

1 = −1 + 2

(

1 −
N−1
∑

k=0

N − k

N

|ck(z)|2
fQ(g · xP )NfP (x∗)2k

y2k

)

. (27)

Since y > 0, we have |ck(z)| = 0 for k = 0, . . . , N − 1. �

Propositions 5.6 and 5.7 immediately yield the following.

Proposition 5.8. Let P and Q be two distinct parabolics in P. Then

〈∇fP ,∇fP 〉 ≥ |〈∇fP ,∇fQ〉|
on E({P,Q}) with equality on the set of first contacts for {P,Q}.
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6. The spine

For z ∈ D, denote by M(z) the strongly admissible set I for which z ∈ D′(I).

Proposition 6.1. Let z be a point in D. Then the set M(z) ⊂ P is StabΓ(z)-stable.

Proof. Let P ∈M(z) and γ−1 ∈ StabΓ(z). Then fP (z) = fP (γ−1 · z) = fγP (z). It
follows that γP ∈M(z). �

Theorem 6.2. D0 is a Γ-invariant deformation retract of D.

Proof. Since Γ acts on P by conjugation, it also acts on subsets I of P in the
obvious way. Suppose z ∈ D0. Then z ∈ D′(I) for some I. This means that

(i) fP (z) = fQ(z) for every pair P,Q ∈ I.
(ii) fP (z) > fR(z) for every P ∈ I and R ∈ P \ I.

The Γ-invariance of {fP } implies that

(i) fγP (γ · z) = fγQ(γ · z) for every pair P,Q ∈ I.
(ii) fγP (γ · z) > fγR(γ · z) for every P ∈ I and R ∈ P \ I.

Thus γ · z ∈ D′(γI) for every γ ∈ Γ, and so D0 is Γ-invariant.

Proposition 3.7 and Definition 3.8 imply a decomposition of D as a disjoint
union

D = D0 ⊔
∐

P∈P

D′(P ). (28)

From Proposition 5.1,

fP (a ◦ z) = aαfP (z) for all z ∈ D and a ∈ AP .

Thus for z ∈ D′(P ), Proposition 5.2 implies that there exists an a(z) ∈ AP such
that a(z) ◦ z ∈ D0. Thus we can define a function µ : D → R>0 by µ(z) = a(z)α,
where it is understood that if z ∈ D0 then µ(z) = 1.

Recall that there is a natural isomorphism ψP : R>0 → AP defined in (1).
Define a family of maps r̃t : D → D by

r̃t(z) = ψP ((1 − t) + tµ(z)) ◦ z for z ∈ D(P ). (29)

Note that this is well defined because µ ≡ 1 on D0. It is clear that r̃0 = idD and
r̃1(D) ⊂ D0. The Γ-invariance of the exhaustion functions implies that

γ · r̃t(z) = r̃t(γ · z) for every γ ∈ Γ and z ∈ D.

It is clear that r̃ is a continuous function of t. To see that it is a continuous function
of z, it suffices to note that µ is a continuous function. Thus r̃ gives a Γ-equivariant
deformation retraction of D onto D0. �

Proposition 6.3. For every z ∈ D,

StabΓ(z) = StabΓ(r̃t(z)) for t < 1 and StabΓ(z) ⊆ StabΓ(r̃1(z)).
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Proof. Let γ be an element of StabΓ(z). Then γ · r̃t(z) = r̃t(γ · z) = r̃t(z). Hence
γ ∈ StabΓ(r̃t(z)). Notice that for each z /∈ D0, c(t) = r̃t(z), 0 ≤ t ≤ 1, is a reparam-
eterization of a geodesic, and Γ acts by isometries. Thus every γ ∈ StabΓ(z) fixes
the geodesic through r̃1(z) and z. In particular, StabΓ(z′) = StabΓ(z) whenever
z = r̃t(z

′) for some t < 1. �

Theorem 6.4. If I ⊂ P is a 2-element subset then E(I) is a contractible, smooth
codimension 1 submanifold of D. If I has three elements, then E(I) is a smooth
codimension 2 submanifold of D.

Proof. Let I = {P,Q} and E = E(I). Then E is the zero set of fP − fQ. Thus to
show smoothness, it suffices to show that ∇fP (z) −∇fQ(z) 6= 0 for every z ∈ E.
Suppose otherwise. Consider the geodesic c(t) with c(0) = z and c′(0) = ∇fP (z).
For t sufficiently large, c(t) is contained in the degenerate tile D′(P ). Similarly,
since c′(0) = ∇fQ(z), for t sufficiently large, c(t) is in D′(Q). This contradicts the
fact that D′(P ) ∩D′(Q) = ∅.

To show contractibility, we will use the gradient flow of fP |E to contract E
to the set of first contacts for fP |E and show that this set is contractible. Proposi-
tion 4.3 implies that on this set, fP (z) and u(z) are constant, and m(z) is free to
range over MP (x). In particular, the set of critical points is diffeomorphic to the
symmetric space DMP

for MP . Since DMP
is contractible, this proves the result.

Now suppose I = {P,Q,R}. The set E(I) is defined by h1 = 0, h2 = 0,
and h3 = 0, where h1 = fP − fQ, h2 = fP − fR, and h3 = fQ − fR. One must
show that {∇h1,∇h2,∇h3} has constant rank on E(I). Fix a point z ∈ E(I).
Note that ∇h3 = ∇h2 − ∇h1, so the rank is less than 3. All of ∇h1, ∇h2, and
∇h3 are non-zero, so that the rank is either 1 or 2. We prove the rank is not 1
by contradiction. Suppose it is 1. Then for each z ∈ E(I) there exist non-zero
constants d1 and d2 such that

∇h1(z) = d1∇h3(z), (30)

∇h2(z) = d2∇h3(z). (31)

Using Proposition 5.8 and taking the inner product of (30) with ∇fQ(z), it follows
that d1 < 0. Similarly, by taking the inner product of (31) with ∇fR(z), it follows
that d2 > 0. Taking the inner product of (30) with ∇fP (z) yields

〈∇f3(z),∇fP (z)〉 < 0.

Similarly, taking the inner product of (31) with ∇fP (z) yields

〈∇f3(z),∇fP (z)〉 > 0,

which gives the desired contradiction. �

Theorem 6.5. D0 is a spine for G. In particular,

(i) D0 ⊂ D is a Γ-equivariant deformation retract.
(ii) dimR(Γ\D0) = vcd(Γ).
(iii) Γ\D0 is compact.
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Proof. The first statement is Theorem 6.2. By [11], the virtual cohomological di-
mension of G is given by

vcd(G) = dimR(D) − rankQ(G) = dimR(D) − 1.

Theorem 6.4 implies that dimR(Γ\D0) = vcd(G). To see that Γ\D0 is compact,
notice that D0 ⊂ D ⊂ D is closed and Γ\D is compact by [11]. �

7. Separated groups

One would like to know when the decomposition of D0 given in Definition 3.8 is
nice in some sense. To this end, Theorem 6.4 shows that the 2-element strongly
admissible sets correspond to open subsets of contractible, smooth, codimension 1
submanifolds of D, and that the 3-element strongly admissible sets correspond to
open subsets of smooth, codimension 2 submanifolds of D.

The example of SL2(Z[
√

2]), described in [14] and recalled in Section 8, shows
that it is too much to hope that the strongly admissible sets always correspond
to smooth contractible sets. Thus we try to give a criterion ensuring that this
happens. First we prove some geometric lemmas, and then we apply these lemmas
to the gradient vector fields for the exhaustion functions to define a separation
condition that ensures that the strongly admissible sets correspond to smooth
contractible sets. This condition is sufficient but not necessary. We hope to define
a refinement of D0 to give a more satisfactory solution in a future paper.

7.1. Geometric lemmas

For this section, let V be a finite-dimensional real vector space with inner product
〈·, ·〉. Fix a basis ∆ = {α1, . . . , αn} of V such that 〈αi, αj〉 ≤ 0 for i 6= j. Let

∆̂ = {β1, . . . , βn} ⊂ V be defined by 〈βi, αj〉 = δij .

Definition 7.1. Call a vector v ∈ V dominant (with respect to ∆) if 〈v, αi〉 ≥ 0
for all i. If these inequalities are strict for all i, then v is strictly dominant. Call
a vector v ∈ V codominant (with respect to ∆) if 〈v, βi〉 ≥ 0 for all i. If these
inequalities are strict for all i, then v is strictly codominant.

The dominant vectors in V form a convex cone generated by ∆̂, while the
codominant vectors form the dual cone generated by ∆.

We recall without proof a geometric lemma due to Langlands [13].

Lemma 7.2. The dominant cone is contained in the codominant cone. Equivalently,
βi =

∑

ejiαj with eji ≥ 0 for all 1 ≤ i, j ≤ n. Consequently, 〈βi, βj〉 ≥ 0 for
1 ≤ i, j ≤ n.

Lemma 7.3. Let {v0, . . . , vk} ⊂ V be a set of vectors such that 〈vi, vj〉 < 0 for all
0 ≤ i < j ≤ k. Then the span of {v0, . . . , vk} ⊂ V is either k- or k+1-dimensional.
In particular, any k-element subset of {v0, . . . , vk} is linearly independent.
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Proof. Let W be the span of S = {v0, . . . , vk}. Let ∆ ⊆ {v0, . . . , vk} be a linearly
independent subset. Let C be the dominant cone in W with respect to ∆. Since
〈vi, vj〉 < 0 for all 0 ≤ i ≤ j ≤ k, every vector in S\∆ must lie in the anti-dominant
cone −C. By Lemma 7.2, the vectors in C and −C have pairwise non-negative
inner products. Hence S \ ∆ has at most one element. �

Lemma 7.4. Let {v0, . . . , vk} ⊂ V be a set of vectors such that 〈vi, vj〉 < 0 for all
0 ≤ i < j ≤ k. Then the span of {vi − vj}0≤i,j≤k has dimension k.

Proof. It is clear that the span of {vi − vj} is equal to the span of {η1, . . . , ηk}
where ηi = v0 − vi. Thus it suffices to show that the ηi are linearly independent.
Assume the contrary. Then there exist ai ∈ R, not all zero, such that

k
∑

i=1

aiηi =

k
∑

i=1

ai(v0 − vi) = 0.

Then (
∑k
i=1 ai)v0 =

∑k
i=1 aivi. By Lemma 7.3, v1, . . . , vk are linearly independent,

so
∑

ai 6= 0. Thus

v0 =

k
∑

i=1

(

ai
∑

aj

)

vi.

By Lemma 7.2, ai
∑

aj
≤ 0 for 1 ≤ i ≤ k, which contradicts

∑k
i=1

ai
∑

aj
= 1. �

Lemma 7.5. Let {v0, . . . , vk} ⊂ V be a set of linearly independent vectors such that
〈vi, vj〉 ≤ 0 for all 0 ≤ i < j ≤ k. Let u ∈ V be a vector such that 〈vi, u〉 ≤ 0
for all 0 ≤ i ≤ k. Then the orthogonal projection pr(v0) of v0 to the orthogonal
complement of span{vi − vj}0≤i,j≤k in V satisfies

〈pr(v0), vi − u〉 > 0 for all 0 ≤ i ≤ k.

Proof. Let ∆ = {v0, . . . , vk} and W ⊂ V the subspace spanned by ∆. Since the vi
are linearly independent, pr(v0) 6= 0. Furthermore, since v0 − vi is perpendicular
to pr(v0),

〈pr(v0), vi〉 = 〈pr(v0), vi + (v0 − vi)〉 = 〈pr(v0), v0〉
= ‖pr(v0)‖2 > 0 for all i.

It follows that pr(v0) lies in the dominant cone C in W with respect to ∆ and
has non-negative inner product with any other vector in C by Lemma 7.2. Since
〈vi, u〉 ≤ 0 for all 0 ≤ i ≤ k, one can write u as u = ǫ−uC , where ǫ is perpendicular
to W and uC lies in C. Therefore

〈pr(v0), vi − u〉 = 〈pr(v0), vi − (ǫ− uC)〉
= ‖pr(v0)‖2 + 〈pr(v0), uC〉 > 0 for all i. �
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7.2. Consequences

One can imagine the strongly admissible sets growing from their first contact as
the parameter gets pushed lower. Thus a retraction to the set of first contacts
should be possible by “going backward”. More precisely, one would like to show
that the negative gradient flow for fP (for any P ∈ I), restricted to D′(I), defines
a retraction onto the set of first contact points for I. Thus we need the restriction
of the gradient flow to push each boundary piece into D′(I).

Lemma 7.6. Let (M, g) be a Riemannian manifold and f0, . . . , fk be smooth func-
tions defined on M . Then the set

{p ∈M | f0(p) = · · · = fk(p)} ∩ {p ∈M | 〈∇fi,∇fj〉p < 0 for 0 ≤ i < j ≤ k}

is either empty or a smooth codimension k submanifold of M .

Proof. This is immediate from the implicit function theorem and Lemma 7.4. �

Definition 7.7. Given a strongly admissible set I, let Î denote a minimal set of
parabolics such that D(Î) = D(I). A strongly admissible set I is said to be

separated if 〈∇fP ,∇fQ〉 ≤ 0 on D(I) for every P,Q ∈ Î, and strictly separated if
the inequality is strict on D(I). An algebraic group G is (strictly) separated if its
strongly admissible sets are (strictly) separated.

Theorem 7.8. Let G be a strictly separated group and I a strongly admissible set of
order k. Then D′(I) is a smooth codimension k submanifold of D. Furthermore,

if D′(I) is compact and there is a unique critical point for fI , then D′(I) is
contractible.

Proof. The first statement follows from the definition of a strictly separated group
and Lemma 7.6.

We claim that the gradient flow for fI pushes the boundary of D(I) into
the interior. The boundary is a union of pieces of the form D(I ∪ {P}) for some
rational parabolic subgroup P . This piece flows into the interior of D(I) if

〈∇fI ,∇fI −∇fP 〉 > 0. (32)

Write I = {Q0, . . . , Qk} and apply Lemma 7.5 with vi = ∇fQi
for i = 0, . . . , k and

u = ∇fP to show that (32) is satisfied. Thus the gradient flow of fI will define a
deformation retraction of D(I) onto the critical point. �

8. Examples

We apply the methods of Sections 3–5 to briefly describe the spines in some ex-
amples and compare our method with other known methods.
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8.1. Bianchi groups

The arithmetic group SL2(Ok) for k an imaginary quadratic field, viewed as a
subgroup of SL2(C), acts on hyperbolic 3-space H3. H3 is a linear symmetric
space, and hence the existence of a spine (the well-rounded retract) is guaranteed
by [3]. Mendoza [21] and Vogtmann [27] use a notion of distance to a cusp due
to Siegel [24] to explicitly compute a spine. Ash [1] shows that the spines they
compute are the same as the well-rounded retract. The distance functions are a
power of the exhaustion functions that we define in 3.3, and thus the spines also
coincide with our spines.

8.2. Hilbert modular group

The arithmetic group SL2(Ok) for k a real quadratic field acts on the product of
two upper half-planes H×H. H×H is a linear symmetric space, and hence the ex-
istence of a spine (the well-rounded retract) is guaranteed by [3]. Brownstein again
uses Siegel’s notion of distance to a cusp to explicitly compute the spine in [14] for

k = Q(
√

5). He also conjectures a spine for k = Q(
√

2). One can easily show that
these spines are different from those obtained by Ash. On the other hand, the dis-
tance functions considered by Brownstein are powers of the exhaustion functions
that we define in 3.3, and thus Brownstein’s spines also coincide with ours.

We consider the example of Q(
√

2) in some detail. Fix the following sets Lnm
of cusps in k ∪ {∞} ≃ O∗\O2:

L2
1 = {∞, 0}, L2

2 = {∞, 1/
√

2},
L3

1 = {∞, 0, 1}, L3
2 = {∞, 0, 1/

√
2},

L4
1 = {∞, 0, 1, 1/

√
2}, L4

2 = {∞, 0,
√

2, 1/
√

2},
L5 = {∞, 0, 1,

√
2, 1/

√
2}.

Let Knm denote the set of rational parabolics associated to Lnm. Then D(Knm) ⊂
H × H is defined by the equality of n exhaustion functions and has codimension
equal to n− 1.

These subsets of cusps correspond to geometrically different pieces of the
spine. However, a given type may contain more than one Γ-conjugacy class of
strongly admissible sets. D(K5) is a vertex. D(K4

1) is a line segment, and D(K4
2)

is the union of two transverse line segments. D(K3
1) is a dodecagon, and D(K3

2)
is the union of two quadrilaterals joined at a vertex. Figure 2 shows that D(K2

1)
is an infinite tube with boundary faces of types D(K3

1) and D(K3
2), and D(K2

2) is
homeomorphic to an infinite string of 3-cells with boundary faces of type D(K3

2).
The strongly admissible sets of more than two elements have finite stabilizers.
On the other hand, stabilizers of the 2-element strongly admissible sets contain
a subgroup of finite index that is isomorphic to the group of units O∗

k, acting by
translation along the infinite direction. However, it is clear that the sets may be
refined so that the spine has the structure of a regular cell complex, on which Γ
acts with finite stabilizers.
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Fig. 2. The two SL2(Z[
√

2])-conjugacy classes of 2-element
strongly admissible sets are both infinite in length, and the bound-
ary pieces can be identified with certain configurations of vectors
in Z[

√
2]2. The boundary of D(K2

2) consists of pieces which are
the union of two quadrilaterals joined at a vertex. The boundary
of D(K2

1) consists of dodecagons and the union of quadrilaterals
described above.

Table 1. Incidence types

K2
1 K2

2 K3
1 K3

2 K4
1 K4

2 K5

K2
1 ∗ ∗ 3 2 5 4 8

K2
2 ∗ ∗ 0 1 1 2 2

K3
1 ∞ 0 ∗ ∗ 2 0 4

K3
2 ∞ ∞ ∗ ∗ 2 4 6

K4
1 ∞ ∞ 12 4 ∗ ∗ 4

K4
2 ∞ ∞ 0 1 ∗ ∗ 1

K5 ∞ ∞ 12 6 2 4 ∗

The incidence table is given in Table 1, where the entry below the diagonal
means that each column cell has that many row cells in its boundary, and the
entry above the diagonal means the column cell appears in the boundary of this
many row cells.
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8.3. Picard modular group

The symmetric space of SU(2, 1) is a complex 2-ball. It is not a linear symmet-
ric space, and hence the well-rounded retraction does not apply for this group.
Our method of exhaustion functions applied to this group exhibits the second
known example of a spine in the non-linear case (after Sp4(Z) by MacPherson and
McConnell in [20]). Details about this spine, including stabilizer information and
cohomology computations, can be found in [29].

We can identify the cusps with isotropic vectors in Z[i]3 modulo scaling by
Z[i]∗. Fix the following sets J n

m of cusps:

J 2
1 =











1
0
0



 ,





0
0
1











, J 2
2 =











1
0
0



 ,





i
1 + i
1 + i











,

J 3
1 = J 2

1 ∪











1
0
1











, J 3
2 = J 2

1 ∪











i
1 + i

1











, J 3
3 = J 2

1 ∪











1 + i
1 + i

1











,

J 4
1 = J 3

1 ∪











i
1 + i

1











, J 4
2 = J 3

3 ∪











−1
−1 + i
1 + i











,

J 5 = J 4
1 ∪











1 + i
1 + i

1











,

J 8 =











1
0
0



 ,





0
0
1



 ,





−1
1 + i
1 + i



 ,





−1 + i
1 + i

1



 ,





1 + i
1 − i

1



 ,





i
1 + i
1 + i



 ,





2i
2
1



 ,





i
2
2











.

Let Inm denote the set of rational parabolics associated to J n
m.
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Fig. 3. The two SU(2, 1; Z[i])-conjugacy classes of 2-element
strongly admissible sets. D(I2

1 ) is homeomorphic to a polytope
with dodecagon, hexagon and quadrilateral faces, while D(I2

2 )
has only quadrilateral faces. The strongly admissible sets are pa-
rameterized by certain configurations of vectors in Z[i]3.
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These subsets of cusps correspond to geometrically different pieces of the
spine. Each class contains exactly one Γ-conjugacy class of strongly admissible
sets. D(I8) is a vertex, and vertices that occur where four quadrilaterals come
together are all Γ-conjugate to D(I8). The other vertices are conjugate to D(I5).
The Γ-translates of D(I4

1 ) are the edges that do not terminate in a vertex of type
D(I8). The other edges have type D(I4

2 ). D(I3
1 ) is a dodecagon, and D(I3

3 ) is
a hexagon. Figure 3 shows D(I2

1 ) and D(I2
2 ). They are both homeomorphic to

polytopes.

Table 2. Incidence types

I2
1 I2

2 I3
1 I3

2 I3
3 I4

1 I4
2 I5 I8

I2
1 ∗ ∗ 3 3 2 5 4 8 16

I2
2 ∗ ∗ 0 0 1 1 2 2 8

I3
1 2 0 ∗ ∗ ∗ 1 0 2 0

I3
2 4 0 ∗ ∗ ∗ 1 0 2 0

I3
3 12 8 ∗ ∗ ∗ 2 4 6 32

I4
1 40 8 12 6 2 ∗ ∗ 4 0

I4
2 16 8 0 0 2 ∗ ∗ 1 16

I5 32 8 12 6 3 2 1 ∗ ∗
I8 4 2 0 0 1 0 1 ∗ ∗

The incidence table is given in Table 2, where as in 8.2 the entry below the
diagonal means that each column cell has that many row cells in its boundary,
and the entry above the diagonal means the column cell appears in the boundary
of this many row cells.
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