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Perfect unary forms over real quadratic fields

par Dan Yasaki

Résumé. Soit F = Q(
√
d) un corps quadratique réel avec an-

neau d’entiers O. En cet article, nous analysons le nombre hd de
GL1(O)-orbites des classes homothétie de formes parfaites unaire
sur F en fonction de d. Nous calculons hd exactement pour sans
carré d ≤ 200000. Nous faisons le lien entre les formes parfaites
et ces fractions continues, nous donnons des barrière sur hd et
répondre à certaines questions de Watanabe, Yano, et Hayashi.

Abstract. Let F = Q(
√
d) be a real quadratic field with ring of

integers O. In this paper we analyze the number hd of GL1(O)-
orbits of homothety classes of perfect unary forms over F as a
function of d. We compute hd exactly for square-free d ≤ 200000.
By relating perfect forms to continued fractions, we give bounds
on hd and address some questions raised by Watanabe, Yano, and
Hayashi.

1. Introduction

The study of n-ary quadratic forms over the rational numbers is classi-
cal. Work of Minkowski and Voronoi brought a more geometric viewpoint,
and the study of arithmetic minima of quadratic forms could be viewed
as a study of lattice sphere packings. Perfect forms are a special class
of positive definite quadratic forms that are uniquely determined by their
minimal vectors and minimum. The natural action of GLn(Z) on the space
of positive definite quadratic forms preserves the set of perfect forms, and
one wishes to understand the equivalence classes of perfect forms. For a
nice survey of the literature, we refer the reader to [10].

These ideas have natural generalizations to number fields. Let F be
a totally real number field of degree d. Then F has d real embeddings.
Identify the infinite places of F with its embeddings. For each infinite
place v of F , let Vv be the real vector space of n × n symmetric matrices
Symn(R). Let Cv ⊂ Vv be the corresponding cone of positive definite
matrices. Set V =

∏
v Vv and C =

∏
v Cv, where the products are taken

2000 Mathematics Subject Classification. 11E12.
Mots clefs. quadratic forms, perfect forms, continued fractions, real quadratic fields.



2 Dan Yasaki

over the infinite places of F . If α ∈ F , let αv denote its image in Fv. We
extend this notation to matrices and vectors with coefficients in F .

One can think of V as the space of positive definite n-ary quadratic forms
over F and the cone C as the space of positive definite forms. Namely,
if A = (Av) ∈ V and x ∈ Fn, then A determines a quadratic form on
QA : Fn → Q by

(1.1) QA(x) =
∑
v

xtvAvxv.

Note that if A ∈ Symn(F ) is identified with its image (Av) ∈ V , then

QA(x) = TrF/Q(xtAx).

Work of Koecher [4] generalizing Voronoi [12], allows one to compute
perfect forms in this setting. Outside of explicit computation, however, not
much is known about the number of perfect forms in n-variables, even for
F = Q. For F a real quadratic field and n = 2, examples of perfect forms
has been computed in [2, 5, 7]. For F a cyclotomic field and n = 1, many
computations have been done in [11]. Related ideas in a different context
have been investigated in [1]. For a more general treatment of Voronoi
reduction for GL(Λ0), where Λ0 is a projective O-module, we refer the
reader to [8] and a recent preprint of Watanabe, Yano, and Hayashi [13]
for additional details and references.

In this paper, we consider perhaps the simplest non-trivial case where
F is a real quadratic field and Λ0 = O. The main result given in The-
orem 5.1, bounds the number of unary forms over F in terms of period
lengths of continued fractions by relating perfect forms with well-rounded
binary quadratic forms. This gives an efficient method for computing per-
fect unary forms over F .

That paper is organized as follows. In Section 2, we set notation and
given background on perfect unary forms over real quadratic fields. In
Section 3, we recall some results about well-rounded quadratic forms and
relate perfect unary forms over F to well-rounded forms over Q. In Sec-
tion 4, we collect some data plots of our computations of perfect unary
forms for F = Q(

√
d) for positive squarefree integers d ≤ 200000. This

consists of 10,732,735 perfect forms divided among 121,580 fields. Finally,
in Section 5, we give the main bound on the number of perfect forms by
relating it to certain continued fractions and address some questions raised
by Watanabe, Yano, and Hayashi [13].

Acknowledgments. I thank P. Gunnells and T. Watanabe for helpful
discussions. I also thank the referee for many useful suggestions.



Perfect unary forms over real quadratic fields 3

2. Background and notation

In this section we fix notation for the real quadratic field F and recall
the notion of perfect unary forms in this case.

2.1. Real quadratic fields. LetO be ring of integers of the real quadratic
field F = Q(

√
d), where d > 0 is a square-free integer. Let F+ ⊂ F denote

the totally positive elements of F . The fundamental discriminant of F is

D =

{
4d if d ≡ 2, 3 mod 4,

d if d ≡ 1 mod 4.

The ring of integers is O = Z[ω], where

(2.1) ω =


√
d if d ≡ 2, 3 mod 4,

1 +
√
d

2
if d ≡ 1 mod 4.

Then F has two real embeddings v1, v2.

2.2. Unary forms and perfection. Let V = R2, and let C ⊂ V be the
open cone C = R2

>0. Define trace Tr: V → R by

Tr((A1, A2)) = A1 +A2.

Define addition and multiplication on V componentwise. Using the real
embeddings of F , we identify a point x ∈ F with its image (v1(x), v2(x)) ∈
V . By doing so, the arithmetic on V is compatible with the arithmetic on
F , and trace restricted to F is just TrF/Q.

As described in Section 1, we view a point in C as a positive definite
quadratic form on F = F 1. Specifically, A = (A1, A2) ∈ C determines a
unary quadratic form F → R by

QA(x) = Tr(Ax2) = A1v1(x2) +A2v2(x2).

We will write A[x] for QA(x).
The left action of GL1(O) = O× on V is given by

(2.2) g ·A = gAgt = g2A,

where g ∈ GL1(O) and A ∈ V . Note that since g ∈ GL1(O), g = gt and
multiplication is commutative. This action preserves C ⊂ V and F+ ⊂ C.

Definition. Let A ∈ C be a positive definite unary form over F . The
minimum of A, denoted m(a), is

m(A) = inf
x∈O\{0}

A[x].

An element α ∈ O is a minimal vector of A if A[α] = m(A).
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Since O is discrete in V , for each A, the minimum m(A) is attained by
finitely many minimal vectors. Let M(A) denote the set of minimal vectors
for A.

Endow V with the standard inner product 〈·, ·〉 on R2. Define a map
q : O → V by q(x) = x2 = (v1(x2), v2(x2)). Then for A ∈ C and x ∈ O,

(2.3) A[x] = 〈A, q(x)〉 .
In particular, each x ∈ O gives rise to a linear functional q(x) on V .

Definition. A positive definite form A ∈ C is perfect if

spanR{q(v) | x ∈M(A)} = V.

From the definition, it is clear that a form is perfect if and only if it is
uniquely determined by its minimum and its minimal vectors.

The following proposition is immediate from the definitions.

Proposition 2.1. Let A ∈ C be a perfect form, and let λ ∈ R>0. Then

(1) m(λA) = λm(A)
(2) M(λA) = M(A)

In particular, if A is perfect, then λA is perfect.

Thus to classify perfect unary forms over F , it suffices to consider homo-
thety classes of forms. Specializing work of Koecher [4] and Okuda-Yano [8]
to this case, we get the following.

Proposition 2.2 ( [4, 8]).

(1) There are finitely many GL1(O)-inequivalent homothety classes of
perfect forms.

(2) If A ∈ C is perfect, then there exists λ ∈ R>0 such that λA ∈ F+.

Let hd denote the number of GL1(O)-orbits of homothety classes of per-
fect unary forms. From Proposition 2.2, we know that hd < ∞ for all d,
and we wish to understand how hd behaves as we vary d.

3. Unary forms over F and binary forms over R

In this section, we reinterpret unary forms over F as binary forms over
R. By doing so, we are able to identify the set perfect unary forms over
F as the intersection between a certain geodesic in the upper half plane h
and the trivalent tree W of well-rounded forms shown in Figure (1).

3.1. Unary forms and h. A Z-basis for O is given by B = {1, ω}, where
ω is defined in (2.1). In terms of this basis, A ∈ V can be viewed as a
binary quadratic form corresponding to the symmetric matrix

(3.1) SA =

[
Tr(A) Tr(Aω)

Tr(Aω) Tr(Aω2)

]
.
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Specifically, for x = a+ bω,

A[x] =
[
a b

]
SA

[
a
b

]
.

We wish to study the forms up to real homothety (real positive scaling).
If we scale A so that Tr(A) = 1, then the corresponding matrix SA of the
unary form A has a particularly nice form. A straightforward computation
shows the following.

Proposition 3.1. Let A = s+ tω ∈ C with Tr(A) = 1. Let SA denote the
real 2× 2 symmetric matrix corresponding to A. Then

(3.2) SA =



[
1 2dt

2dt d

]
if d ≡ 2, 3 mod 4,[

1 (1 + dt)/2

(1 + dt)/2 (1 + d+ 2dt)/4

]
if d ≡ 1 mod 4.

We can identify the complex upper half-plane h with positive definite
symmetric matrices by

(3.3) x+ iy 7→
[

1 −x
−x x2 + y2

]
.

Up to scaling by positive homothety, this is consistent with the identifica-
tion

(3.4) g · i 7→ (ggt)−1,

where g ∈ SL2(Z).
Let XB denote the image of C modulo scaling in h using Proposition 3.1,

(3.1), and (3.3). Then a simple computation shows the following.

Proposition 3.2. The set XB is the geodesic in h defined by

x2 + y2 = d if d ≡ 2, 3 mod 4,(
x+

1

2

)2

+ y2 =
d

4
if d ≡ 1 mod 4.

3.2. Well-rounded binary forms. The well-rounded retract W ⊂ h is
the infinite trivalent tree shown in Figure 1. The tree W represents the pos-
itive definite binary quadratic forms over R that are well-rounded. Recall
that well-rounded forms are those binary quadratic forms whose minimal
vectors span R2.

The well-rounded binary quadratic forms are completely understood. We
collect some known facts about well-rounded forms. Let P1(Q) = Q∪{∞},
with the usual convention that the cusp at ∞ is 1/0.
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Figure 1. Well-rounded binary quadratic forms W ⊂ h

Theorem 3.1. Identify the space of homothety classes of binary quadratic
forms with h using (3.4). Let W ⊆ h denote the space of well-rounded
forms.

(1) There is a decomposition of h into a disjoint union of sets

h = W ∪
⊔

α∈P1(Q)

H(α),

parameterized by points of P1(Q). A binary form φ is in H(α) if and

only if M(φ) =

{[
p
q

]}
, where α = p/q.

(2) For α ∈ P1(Q), let W (α) ⊂W denote the boundary of H(α). Then

W = ∪α∈P1(Q)W (α).

A binary form φ ∈ W is in W (α) if and only if

[
p
q

]
∈ M(φ), where

α = p/q.
(3) Let φ ∈W . If φ is perfect then φ is a vertex of W , and φ is GL2(Z)-

equivalent to a binary form φ′ with

M(φ′) = {e1, e2, e1 + e2} .
Otherwise, φ is GL2(Z)-equivalent to a binary form φ′ with

M(φ′) = {e1, e2} .

Remark. The term perfect in Theorem 3.1 refers to perfection of φ as a
binary form over Q. This is not to be confused with perfect unary forms
over F . In particular, a perfect unary form over F is not necessarily perfect
as a binary form over Q.

We now give a different characterization of perfect unary forms over F
by relating them to well-rounded binary forms.

Theorem 3.2. Let A ∈ C be a unary form. Then A is perfect if and only
if SA is well-rounded.
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Proof. First suppose A ∈ C is perfect. Then there exists α, β ∈M(A) such
that

{
α2, β2

}
is linearly independent in V . It follows that {α, β} is linearly

independent, and hence SA is well-rounded.
Now suppose SA is well-rounded. Then A has minimal vectors α and

β such that {α, β} is linearly independent in V . We wish to show that{
α2, β2

}
is linearly independent. Suppose not. Then there exists λ ∈ R

such that β2 = λα2. Then A[β] = λA[α]. Since α and β are minimal
vectors of A, we have

A[α] = A[β] = m(A).

Then λ = 1 and so β = ±α, which gives the desired contradiction. �

Since the well-rounded binary forms over R have either two or three
minimal vectors (up to sign), we immediately get the following.

Corollary 3.1. A perfect unary form over F has either two or three (up
to sign) minimal vectors.

By varying d, we see that both types of perfect unary forms arise. See
Examples 5.4 and 5.4.

Voronoi’s algorithm allows us to compute explicit representatives of the
GL1(O)-equivalence classes of perfect unary forms given an initial input of
a perfect unary form. From the explicit description of XB and W , one can
explicitly compute an initial perfect form.

Define cd to be

(3.5) cd =


√
d if d ≡ 2, 3 mod 4,

−1 +
√
d

2
if d ≡ 1 mod 4.

It is easy to see that the geodesic XB intersects the real axis at cd.

Proposition 3.3. Let x0 = min {X(bcdc), X(bcdc+ 1)}, where

X(n) =


n2 + d− 1

2n
if d ≡ 2, 3 mod 4,

4n2 + d− 5

4 + 8n
if d ≡ 1 mod 4.

Let n0 ∈ {bcdc, bcdc+ 1} satisfy x0 = X(n0). Define A ∈ C to be

A =


1

2
− x0

2d
ω if d ≡ 2, 3 mod 4,

d+ 1 + 2x0

2d
− 2x0 + 1

d
ω if d ≡ 1 mod 4.

Then A is a perfect unary form with {1, n0 + ω} ⊆M(A).
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Proof. The form A is one of the intersection points of XB with the top
crenellation W (∞) ⊆ W consisting of portions of semicircles of radius 1,
centered at (k, 0) for k ∈ Z.

From Proposition 3.2, we see that XB is a semicircle with center on the
real axis and radius strictly larger than 1. It follows that XB intersects
W (∞) exactly twice. We compute explicitly the intersection x0 + iy0 ∈ h
with x0 > 0.

One can check that XB intersects the semicircles

(x− n)2 + y2 = 1,

for n = bcdc and bcdc + 1. Choose n0 ∈ {bcdc , bcdc+ 1} such that the
x-coordinate of the intersection x0 + iy0 is smaller. This is the intersection
of XB with W (∞).

For d ≡ 2, 3 mod 4, we compute the x-coordinate of the intersection of
x2 + y2 = d and (x− n0)2 + y2 = 1 to be

x0 =
n2

0 + d− 1

2n0
.

From (3.3) and Proposition 3.1, we see that this intersection point corre-
sponds to the perfect form A = s + tω with s = 1/2 and t = −x0/(2d) as
desired.

Similarly, for d ≡ 1 mod 4, the x-coordinate of the intersection of (x +
1/2)2 + y2 = d/4 and (x− n0)2 + y2 = 1 is

x0 =
4n2

0 + d− 5

4 + 8n0
.

From (3.3) and Proposition 3.1, we see that this intersection point corre-
sponds to the perfect form A = s + tω with s = (d + 1 + 2x0)/(2d) and
t = −(2x0 + 1)/d as desired.

From Theorem 3.1, W (∞)∩W (n0) is the set of well-rounded forms with
e1 and n0e1 +e2 as a minimal vector. Converting this to minimal vectors of
the unary form A, we see that 1 and n0 + ω are minimal vectors of A. �

Note that the perfect form A constructed above may have more than just
1 and n0 + ω as minimal vectors. Specifically, when there are two integers
n such that X(n) = x0, this gives rise to an additional minimal vector for
A. In terms of the well-rounded tree, such a situation occurs when the
geodesic XB goes through a vertex of W .

Proposition 3.4. Let u ∈ O×. Then there are exactly two homothety
classes of perfect unary forms over F that have u as a minimal vector.

Proof. Note that the action of u ∈ GL1(O) = O× on a quadratic unary
form A is given by

u ·A = u2A.
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Figure 2. Number of GL1(O)-equivalence classes of perfect
unary forms parameterized by discriminant of F

It follows that the minimal vectors change by a factor of u−1. Specifically,

M(u ·A) =
{
u−1x | x ∈M(A)

}
.

The construction in Proposition 3.3 shows there are exactly two perfect
unary forms with 1 as a minimal vector. Acting on these forms with GL1(O)
gives the desired result. �

4. Data

In this section, we collect some data plots of our computations of perfect
unary forms. We explain these results by relating unary forms to continued
fractions in Section 5.

We first plot the number of forms by discriminant. See Figure 4. Notice
that on average there are far fewer perfect forms for discriminants that
are D = 4d, where d ≡ 2, 3 mod 4. Because of this, we compute more
examples and parameterize by d. Indeed the different cases are much more
similar when viewed as functions of d. See Figure 4. The perfect forms
for F = Q(

√
d) are computed for d ≤ 200000. This consists of 10,732,735

perfect forms divided among 121,580 fields.
Next we sort the fields by the class number of the field. Specifically, we

plot hd for d ≤ 200000 with class number hd ≤ 20. The results are shown in
Figure 4. Notice that the fields with large class number tend to have small
number of perfect forms when compared to fields with small class number
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Figure 3. Number of GL1(O)-equivalence classes of perfect
unary forms parameterized by d

and similar size d. It is possible that this discrepancy can be explained if
one considers Λ0-perfect forms, where Λ0 ranges over representatives of the
class group of F . We hope to address this in a future project.

5. Minimal vectors and continued fractions

In this section, we describe a relationship between the minimal vectors
of perfect unary forms and continued fractions. This yields a faster method
of computing perfect unary forms.

5.1. Continued fractions. We set notation and recall known facts about
continued fractions. A reference for the this material is [9].

Definition. A finite (simple) continued fraction is an expression of the
form

a0 +
1

a1 +
1

a2 +
1

. . . +

. . .

an−1 +
1

an

,
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Figure 4. Number of perfect forms sorted by class number

where ai ∈ Z for all i and ai > 0 for i > 0. We denote such an expression
[a0; a1, · · · , an].

Definition. The continued fraction tk = [a0; a1, . . . , ak], where 0 ≤ k ≤ n
is called the kth convergent of the continued fraction [a0; a1, . . . , an].

Using the Euclidean algorithm, one can see that every rational number
can be written as a finite simple continued fraction. One can extend this
theory to irrational numbers in the following way.

Proposition 5.1. Let a0, a1, . . . be an infinite sequence of integers with
ai > 0 for i > 0. Then the convergents tk tend to a limit t, that is,

lim
k→∞

tk = t.

In this case, t is called the value of the infinite simple continued fraction
[a0; a1, . . . ], and we write t = [a0; a1, . . . ].

Proposition 5.2. Let t = α0 be an irrational number, and define the
sequence a0, a1, a2, . . . recursively by

ak = bαkc , αk+1 =
1

αk − ak
for k = 0, 1, 2, . . . . Then t = [a0; a1, a2, . . . ].

Proposition 5.3 ( [9, Theorems 12.10, 12.11, 12.21]). Let t be a real num-
ber with convergents tk = pk/qk in reduced form. Then
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(1) tk ≥ t for k odd and tk ≤ t for k even.

(2) det

([
pi pi+1

qi qi+1

])
∈ {±1}.

(3) The continued fraction expansion of t is periodic if and only if t is a
quadratic irrational.

Remark. Let [a0; a1, . . . ] be the continued fraction expansion of t ∈ R.
The convergents form a sequence of rational numbers converging to t. This
can be interpreted as giving a sequence of cusps in P1(Q), where p/q is
identified with the line through (p, q).

Proposition 5.4. Fix a positive, square-free integer d. Let cd be defined
as in (3.5), and let ω be defined as in (2.1). Let `d denote the period of the

continued fraction for cd. Then p+ qω is the fundamental unit for Q(
√
d),

where p/q is the (`d − 1)-th convergent of cd, written in reduced form.

5.2. Minimal vectors of perfect unary forms. Let A1 denote the per-
fect form from Proposition 3.3 with minimal vectors including 1 and n+ω.
From Proposition 3.4, there are two perfect forms with minimal vector 1.
Continuing along the geodesic away from the other perfect form, we come
to another intersection with W . Hence we obtain another perfect form A2.
We continue in this manner until we find a form An+1 ∈ {ε2A1, ε

−2A1},
where ε is the fundamental unit of O. Then {A1, · · · , An} form a complete
set of representatives for the GL1(O)-conjugacy classes of perfect forms
over F .

Adjacent forms Ai and Ai+1 share exactly one minimal vector. Thus
there is a well-defined sequence of elements of O associated to {A1, · · · , An}
given by the ordered list of minimal vectors, deleting repeats for the shared
minimal vectors. Each element s + tω ∈ O can be identified with a cusp
s/t ∈ P1(Q). Thus there is a well-defined sequence of cusps associated
to each sequence of representative perfect forms. Each cusp α ∈ P1(Q)
corresponds to a connected component H(α) as described in Theorem 3.1.
Other than the first cusp ∞, the remaining cusps can be identified with
elements of Q. It is this sequence of cusps that is related to convergents
of cd, where cd is defined in (3.5). This relationship is made precise in the
proof of Theorem 5.1.

5.3. Bounding hd.

Theorem 5.1. Let hd be the number of GL1(O)-orbits of homothety classes
of perfect unary forms over F , and let `d denote the period length of cd.
Then

`d
2
≤ hd ≤ `d.
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Proof. We identify unary forms over F with binary quadratic forms over
R and identify cusps with minimal vectors as described in Section 3. In

particular, a cusp p/q ∈ Q is identified with p+ qω ∈ O and

[
p
q

]
∈ Z2, and

the cusp ∞ is identified with 1 ∈ O and

[
1
0

]
∈ Z2.

From Theorem 3.2, it suffices to understand the intersection of the geo-
desic XB defined in Proposition 3.2 and the well-rounded binary quadratic
forms W shown in Figure 1. To this end, we consider the Farey tessella-
tion [3]. This is a tessellation of h by ideal triangles that is dual to the
tree of well-rounded binary quadratic forms. For each vertex of W , there
is a triangle with vertices in P1(Q), and two triangles meet along an edge
if and only if there is an edge in W joining the corresponding vertices. See
Figure 5.

Let ∆ be an ideal triangle of the tessellation with vertices {α1, α2, α3}.
Then W divides ∆ into three regions, and we can write ∆ as

(5.1) ∆ = ∆W t∆1 t∆2 t∆3,

where ∆W = ∆ ∩W and ∆i = ∆ ∩H(αi) for i = 1, 2, 3.
Starting with the initial perfect unary form A1, there is a sequence of

adjacent perfect unary forms {A1, · · · , An} that form a complete set of
representatives for the GL1(O)-conjugacy classes. Let A0 denote the perfect
form that is adjacent to A1 that shares the minimal vector 1. Let t =
{tk}∞k=−1 denote the sequence of convergents of cd, identified with cusps and
minimal vectors as described above, where we set t−1 =∞. Let {α1, α2, α3}
be a subsequence of consecutive elements of t, where α1 corresponds to
a minimal vector shared by two adjacent unary forms Ak and Ak+1 in
{A0, . . . , An}. For example, the minimal vector shared by A0 and A1 is 1,
which corresponds to cusp ∞. Then α1 = ∞, α2 = t0, and α3 = t2. We
will show in general that {α1, αi} ⊆M(Ak+1) for i = 2 or i = 3.

Since α1 corresponds to a minimal vector shared by Ak and Ak+1, the
geodesic XB intersects ∆1 of the decomposition in (5.1) non-trivially. Fur-
thermore, since cd is between α2 and α3 and XB terminates at cd, XB
must intersect the geodesic joining α2 and α3. It follows that XB intersects
∆i non-trivially for i = 2 or i = 3. Since XB is a continuous path, XB
must intersect ∆W . This intersection point ∆W ∩XB corresponds to Ak+1,
showing that α2 or α3 is a minimal vector of Ak+1.

Therefore, the minimal vectors arising in the adjacent forms {A1, . . . An}
can be identified with a subsequence of the cusps t = {∞, t1, t2, . . . } coming
from the convergents of cd. We are counting perfect forms up to the action
GL1(O), which scales the minimal vectors of a perfect form by a unit. Thus
hd ≤ `d. Furthermore, the argument above shows that this subsequence of
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Figure 5. Well-rounded binary quadratic forms (black)
with dual tessellation by ideal triangles (green)

minimal vectors cannot miss two consecutive terms of t. Then `d ≤ 2hd,
and the result follows. �

Watanabe, Yano, and Hayashi [13] pose two questions about the nature
of hd.

(1) Are there infinitely many d such that hd = 1?
(2) Is hd unbounded?

We answer both of these in the affirmative using our bounds in Theorem 5.1.

Corollary 5.1. There are infinitely many squarefree d > 1 such that hd =
1.

Proof. By Theorem 5.1, it suffices to find an infinite family of squarefree d
such that `d = 1.

Let f(x) ∈ Z[x] be an irreducible quadratic polynomial. Let

Nf = gcd(f(0), f(1), f(2)).

Nagel [6] shows that if Nf is squarefree, then there are infinitely many
integers n such that f(n) is squarefree.

Let f(x) = 2x2 + 2x + 1, and let S = {f(n) | n ∈ Z, f(n) squarefree}.
One checks thatNf = 1, and so by Nagel’s result, S contains infinitely many
integers. Furthermore, since S consists of odd integers, T = {2s | s ∈ S} is
also infinite. The set T provides the desired family. Namely, for d ∈ T , we
have d ≡ 2 mod 4, and so cd =

√
d. The continued fraction expansion of cd

in this case is cd = [a, 2a], where a = b
√
dc. Since `d = 1 for every d ∈ T ,

Theorem 5.1 gives the desired result. �
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Figure 6. Geodesic XB (blue) and well-rounded retract
W (black) for F = Q(

√
19) with the sequence of geodesics

(green) associated to the continued fraction expansion of c19

Remark. In our computations of the exact values of hd for squarefree
positive d < 200000, we found four disjoint families with hd = 1. They are

T1 =
{
n2 + 1: n2 + 1 is square free and n is odd

}
,(5.2)

T2 =
{
n2 − 1: n2 − 1 is square free and n is even

}
,(5.3)

T3 =
{
n2 + 4: n2 + 4 is square free and n is odd

}
, and(5.4)

T4 =
{
n2 − 4: n2 − 4 is square free and n is odd, n > 3

}
.(5.5)

The set T1 is the family given in the proof of Corollary 5.1.

We next consider the question about the unboundedness of hd. From the
lower bound in Theorem 5.1, to show that hd is unbounded, it suffices to
produce infinite families with `d unbounded. Indeed there are explicit infi-
nite families of d such that period length of the continued fraction expansion
of cd grows without bound. Thus by Theorem 5.1, hd is unbounded.

5.4. Examples.

Example. Let F = Q(
√

19), and let O ⊂ F be its ring of integers. Then
O = Z[ω], where ω =

√
19. Then F has class number 1 and narrow class

number 2. There are four GL1(O)-equivalence classes of perfect unary
forms {A1, A2, A3, A4}. The minimal vectors are

M(A1) = {1, ω + 4}
M(A2) = {ω + 4, 2ω + 9, 3ω + 13}
M(A3) = {3ω + 13, 11ω + 48, 14ω + 61}
M(A4) = {14ω + 61, 39ω + 170}
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which gives rise to the sequence of cusps

1

0
,

4

1
,

9

2
,

13

3
,

48

11
,

61

14
,

170

39
.

The continued fraction expansion of c19 =
√

19 is

c19 = [4; 2, 1, 3, 1, 2, 8].

The convergents are

4,
9

2
,

13

3
,

48

11
,

61

14
,

170

39
, . . . .

In this case we see that the convergents of c19 correspond exactly to the
minimal vectors of perfect unary forms over F = Q(

√
19).

Next we examine a case where the sequence of minimal vectors is a proper
subsequence of the convergents.

Example. Let F = Q(
√

23), and let O ⊂ F be its ring of integers. Then
O = Z[ω], where ω =

√
23. Then F has class number 1 and narrow class

number 2. There are two GL1(O)-classes of perfect unary forms {A1, A2}.
The minimal vectors of the form are

A1 = {1, ω + 5}
A2 = {ω + 5, 5ω + 24}

which gives rise to the sequence of cusps

1

0
,

5

1
,

24

5
.

We compute the continued fraction expansion of c23 =
√

23 and find
√

23 = [4; 1, 3, 1, 8].

The convergents are

4, 5,
19

4
,

24

5
, . . . .

In this case, the sequence of cusps corresponding to minimal vectors is a
proper subsequence of the convergents.
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fields. J. Théor. Nombres Bordeaux, 17(2):437–454, 2005.
[2] Paul E. Gunnells and Dan Yasaki. Hecke operators and Hilbert modular forms. In Algorith-

mic number theory, volume 5011 of Lecture Notes in Comput. Sci., pages 387–401. Springer,

Berlin, 2008.
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