Student: Date: Time:	Instructor: Dan Yasaki Assignment: 4.1-4.3 Homework Course: MAT 120 (Summer 2013) Book: Barnett: Calculus for Business, Economics, Life/Social Sciences, 12e
1.	Recently, a certain bank offered a 10-year CD that earns 2.29% compounded continuously.
	Use the given information to answer the questions.
	(a) If \$20,000 is invested in this CD, how much will it be worth in 10 years?
	approximately \$ (Round to the nearest cent.)
	(b) How long will it take for the account to be worth \$70,000?
	approximately years (Round to two decimal places as needed.)
2.	<i>Present value.</i> A promissory note will pay \$40,000 at maturity 7 years from now. How much should you be willing to pay for the note now if money is worth 3.5% compounded continuously?
	\$ (Round to the nearest dollar.)
3.	How many years are required for an investment to double in value if it is appreciating at the rate of 2% compounded continuously?
	At 2% compounded continuously, the investment doubles in years. (Round to one decimal place as needed.)
4.	At what nominal rate compounded continuously must money be invested to triple in 8 years?
	A rate of \(\sigma_{\circ} \) % is required for money to triple in 8 years.
	(Do not round until the final answer. Then round to the nearest tenth.)
5.	Find $f'(x)$.
	$f(x) = 4 e^{x} + 3x - \ln x$
	f'(x) =
6.	Find the equation of the line tangent to the graph of f at the indicated value of x.
	$f(x) = 3 e^{x} + 2x; x = 0$
	y = (Type your answer in slope-intercept form.)

Student: ______ Date: _____ Time:

Instructor: Dan Yasaki

Course: MAT 120 (Summer 2013) Book: Barnett: Calculus for Business, Economics, Life/Social Sciences, 12e **Assignment:** 4.1-4.3 Homework

7. Find the equation of the line tangent to the graph of f at the indicated value of x.

$$f(x) = \ln x^8; x = e^3$$

y = (Type your answer in slope-intercept form. Type an exact answer.)

8.

Look at the graph of $f(x) = 5 \ln x$ with tangent line at x = 2. Then answer the questions.

Does the line pass through the origin?

- Yes
- O No
- Cannot be determined

Will the line tangent at x = 3 pass through the origin?

- Yes
- O No

9. First use the appropriate properties of logarithms to rewrite f(x), and then find f'(x).

$$f(x) = 24x + \ln 24x$$

Rewrite f(x) using properties of logarithms.

 $f(x) = \bigcap$ (Do not simplify.)

Find f'(x).

 $f'(x) = \bigcap$ (Simplify your answer.)

Student: Date: Time:	Instructor: Dan Yasaki Course: MAT 120 (Summ Book: Barnett: Calculus for Economics, Life/Social Sc	for Business,
10.	First use appropriate properties of logarithms to $f(x) = 4 \ln \left(\frac{8}{x}\right)$ $f'(x) = \boxed{\text{(Simplify your answer.)}}$	o rewrite $f(x)$, and then find $f'(x)$.
11.	Find $\frac{dy}{dx}$. $y = 5 \ln x + 6 \log_{5} x$	
	$\frac{dy}{dx} = \Box$ (Type an exact answer in simplified for	form.)
12.	Find $\frac{dy}{dx}$ for the indicated function y. $y = 7^{x} + e^{-8}$	
	$\frac{dy}{dx} = \square$ (Simplify your answer. Do not evaluate	ate.)
13.	The salvage value S (in dollars) of a company jet formula below. Use the formula to answer the q $S(t) = 500,000(0.8)^{t}$	•
	What is the rate of depreciation (in dollars per y \$ per year (Do not round until the final answer. Then round	
	What is the rate of depreciation (in dollars per y \$\sqrt{p}\$ per year (Do not round until the final answer. Then round	
	What is the rate of depreciation (in dollars per y \$ per year (Do not round until the final answer. Then round	

14. Find f'(x).

$$f(x) = 6x^5(x^4 - 5)$$

$$f'(x) =$$

Find f'(x).

$$f(x) = \frac{9x - 8}{3x + 1}$$

$$f'(x) =$$

Find f'(x).

$$f(x) = 3x^3 \ln x$$

$$f'(x) =$$

Use the product rule to find the derivative.

$$y = (3x^2 + 2)(2x - 3)$$

18. Find f'(x).

$$f(x) = \frac{x^2 + 8}{7x - 1}$$

$$f'(x) =$$

19. Find h'(x) where f(x) is an unspecified differentiable function.

$$h(x) = \frac{f(x)}{x^6}$$

Choose the correct answer below.

OA.
$$h'(x) = \frac{f'(x)}{6x^5}$$

OB.
$$h'(x) = \frac{xf'(x) - 6f(x)}{x^7}$$

OC.
$$h'(x) = \frac{6f(x) - xf'(x)}{x^{12}}$$

OD.
$$h'(x) = \frac{6f'(x)}{x^{12}}$$

20. Find the indicated derivative and simplify.

$$y'$$
 for $y = (9 + 2x - 9x^2) e^{-x}$

Find f'(x) and find the equation of the line tangent to the graph of f at x = 1.

$$f(x) = (1 + 5x)(3 - 2x)$$

$$f'(x) =$$

 $y = \bigcap$ (Type your answer in slope-intercept form.)

22. Find f'(x) and find the equation of the line tangent to the graph of f at x = 3.

$$f(x) = \frac{5x}{2^x}$$

$$f'(x) =$$

Find the equation of the line tangent to the graph at x = 3.

Find f'(x) and find the values(s) of x where f'(x) = 0.

$$f(x) = (2x - 9)(x^2 + 6)$$

$$f'(x) =$$

$$\mathbf{x} =$$

(Type an integer or a simplified fraction. Use a comma to separate answers as needed.)

24. Find the indicated derivative and simplify.

$$\frac{dy}{dx}$$
 for y = 64x $\frac{1}{8}$ (x 8 + 8)

$$\frac{dy}{dx} = \Box$$

25. Find the indicated derivative and simplify.

$$y' \text{ for } y = \frac{\log_{5} x}{3 + x^{5}}$$

26. Find the indicated derivative and simplify.

$$f'(x)$$
 for $f(x) = \frac{9\sqrt[3]{x}}{x^2 - 7}$

$$f'(x) =$$

Student:	Instructor: Dan Yasaki	Assignment: 4.1-4.3 Homework
Date:	Course: MAT 120 (Summer 2013)	
Time:	Book: Barnett: Calculus for Business,	
	Economics, Life/Social Sciences, 12e	

27. Find the indicated derivative and simplify.

$$\frac{\mathrm{d}}{\mathrm{dx}} \left[\frac{2x^3 - 9x^2}{\sqrt[3]{x^2}} \right]$$

$$\frac{\mathrm{d}}{\mathrm{dx}} \left[\frac{2x^3 - 9x^2}{\sqrt[3]{x^2}} \right] = \boxed{}$$

Student: _ Date: Time:	Instructor: Dan Yasaki Assignment: 4.1-4.3 Homework Course: MAT 120 (Summer 2013) Book: Barnett: Calculus for Business, Economics, Life/Social Sciences, 12e
28.	The total sales of S (in thousands of DVD's) of a certain movie are given by the following formula where t is the number of months since the release of the DVD. Use the formula to answer the questions.
	$S(t) = \frac{90t^2}{t^2 + 150}$
	a) Find S'(t).
	S'(t) =
	b) Find S(15) and S'(15).
	The value of $S(15)$ rounded to the nearest hundredth is \square .
	The value of $S'(15)$ rounded to the nearest hundredth is \square .
	What do the values $S(15) = 54$ and $S'(15) = 2.88$ indicate?
	OA. After 15 months, the total sales are 54,000 DVD's and the sales are increasing at the rate of 2880 DVD's per month.
	OB. After 15 months, the total sales are 2880 DVD's and the sales are increasing at the rate of 54 DVD's per month.
	OC. After 15 months, the total sales are 54,000 DVD's and the sales are increasing at the rate of 2.88 DVD's per month.
	OD. After 15 months, the total sales are 28,800 DVD's and the sales are increasing at the rate of 5400 DVD's per month.
	c) Use the results from part (b) to estimate the total sales after 16 months.
	After 16 months, the total sales will be approximately how many DVD's?
	(Round to the nearest whole number.)

Student:		Instructor: Dan Yasaki	Assignment: 4.1-4.3 Homework
Date:		Course: MAT 120 (Summer 2013) Book: Barnett: Calculus for Business, Economics, Life/Social Sciences, 12e	
	25,146.84 54.71		
	31,308		
	34.7		
	13.7		
	$4e^{x} + 3 - \frac{1}{x}$		
	5x + 3		
•	$\frac{8}{e^3}x + 16$		
•	No No		
	$24x + \ln 24 + \ln x \\ 24 + \frac{1}{x}$		
0.	$-\frac{4}{x}$		
1.	$\frac{5}{x} + \frac{6}{x \ln 5}$		
2.	7 ^x ln 7		
3.	- 89,257.42 - 36,559.84 - 11,979.93		

Student:	Instructor: Dan Yasaki	Assignment: 4.1-4.3 Homework
Date:	Course: MAT 120 (Summer 2013)	
Time:	Book: Barnett: Calculus for Business,	
	Economics, Life/Social Sciences, 12e	

14.
$$54x^8 - 150x^4$$

15.
$$\frac{33}{(3x+1)^2}$$

16.
$$3x^2 + 9x^2 \ln x$$

17.
$$18x^2 - 18x + 4$$

18.
$$\frac{7x^2 - 2x - 56}{(7x - 1)^2}$$

20.
$$e^{x}(11-16x-9x^2)$$

21.
$$13 - 20x - 7x + 13$$

22.
$$\frac{5 - 5x \ln 2}{2^{x}}$$

$$\frac{5 - 15 \ln 2}{8}x + \frac{45 \ln 2}{8}$$

23.
$$6x^2 - 18x + 12$$

2,1

24.
$$\frac{520x^8 + 64}{x^{\frac{7}{8}}}$$

25.
$$\frac{3 + x^5 - 5x^5 \ln x}{(3 + x^5)^2 x \ln 5}$$

Student:	Instructor: Dan Yasaki	Assignment: 4.1-4.3 Homework
Date:	Course: MAT 120 (Summer 2013)	
Time:	Book: Barnett: Calculus for Business,	
	Economics, Life/Social Sciences, 12e	

26.
$$\frac{-15x^2 - 21}{x^{\frac{2}{3}}(x^2 - 7)^2}$$
27.
$$\frac{14}{3}x^{\frac{4}{3}} - 12x^{\frac{1}{3}}$$

$$\frac{14}{3}x^{\frac{4}{3}} - 12x^{\frac{1}{3}}$$

28.
$$\frac{27000t}{(t^2 + 150)^2}$$
54
2.88
A
56,880