

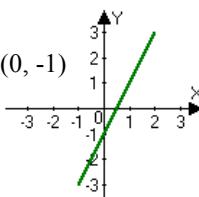
Mini-Lecture 1.2

Graphs of Equations in Two Variables; Intercepts; Symmetry

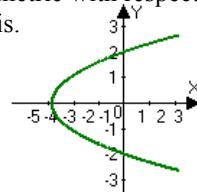
Learning Objectives:

1. Graph equations by plotting points
2. Find intercepts from a graph
3. Test an equation for symmetry with respect to the x-axis, the y-axis, and the origin
4. Know how to graph key equations

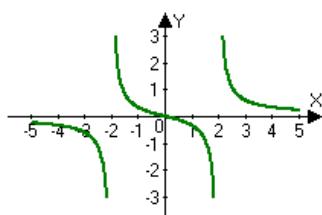
Examples:


1. Determine whether the points $(0,3)$, $(-2,0)$, and $(2,7)$ are on the graph of the equation $y = x^3 - 2x + 3$.
2. Find the intercepts of the equation $y = 2x - 1$ by plotting points.
3. List the intercepts and test for symmetry for each equation.

$$(a) y^2 - x - 4 = 0 \quad (b) y = \frac{x}{x^2 - 4}$$


Teaching Notes:

- When graphing by plotting points, be sure to emphasize that the y -coordinate is determined by the value of x . This will help establish the function concept later.
- Emphasize how to find intercepts algebraically by setting $x=0$ to find the y -intercept(s) and then $y=0$ to find the x -intercept(s).
- Symmetry can be seen and identified, but students will often have trouble testing for symmetry algebraically. They will make a lot of sign errors, so that needs to be reinforced.
- Emphasize the graphing of the key functions. It is important that they know the basic shapes of these graphs when this topic is revisited later in the course.


Answers: 1. Yes, No, Yes 2. $(1/2, 0)$, $(0, -1)$

3. (a) $(0,2)$, $(0,-2)$, $(-4,0)$
Symmetric with respect to the x -axis.

3. (b) $(0,0)$ Symmetric with respect to the origin.

