

Mini-Lecture 1.4

Circles

Learning Objectives:

1. Write the standard form of the equation of a circle
2. Graph a circle
3. Work with the general form of the equation of a circle

Examples:

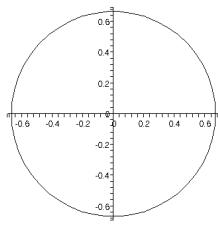
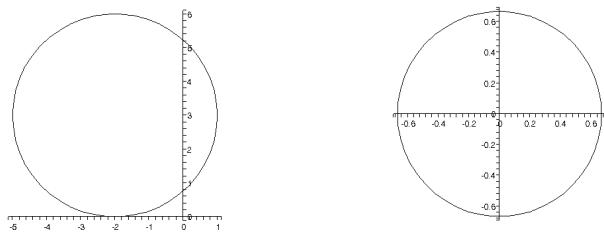
1. Write the standard form and general form of the equation of each circle with radius r and center (h, k) . Graph each circle.

$$(a) r = 3; (h, k) = (-2, 3). \quad (b) r = \frac{2}{3}; (h, k) = (0, 0).$$

2. Find the center (h, k) and radius r of each circle.

$$(a) 2(x-2)^2 + 2(y+3)^2 = 8 \quad (b) x^2 + y^2 - 6x + 2y + 4 = 0$$

3. Find the general form of the equation of each circle.



- (a) Center $(2, -3)$ and containing the point $(0, 4)$.
- (b) Endpoints of a diameter at $(6, 10)$ and $(-4, -4)$.

Teaching Notes:

- Show the difference in the equations of circles with centers at the origin and those with centers elsewhere.
- It is not necessary to memorize the general form of the equation.
- Students will need review on completing the square (in order to put the general form into standard form).

Answers:

1. (a) $(x+2)^2 + (y-3)^2 = 9$; $x^2 + y^2 + 4x - 6y + 4 = 0$. (b) $x^2 + y^2 = \frac{4}{9}$; $x^2 + y^2 - \frac{4}{9} = 0$.

2. (a) $c = (2, -3)$; $r = 2$. (b) $c = (3, -1)$; $r = \sqrt{6}$.

3. (a) $(x-2)^2 + (y+3)^2 = 53$. (b) $(x-1)^2 + (y-3)^2 = 74$.