

Mini-Lecture 3.3

Properties of Quadratic Functions

Learning Objectives:

1. Graph a quadratic function using transformations
2. Identify the vertex and axis of symmetry of a quadratic function
3. Graph a quadratic function using its vertex, axis, and intercepts
4. Find a quadratic function given its vertex and one other point
5. Find the maximum or minimum value of a quadratic function

Examples:

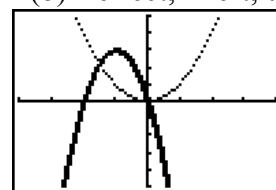
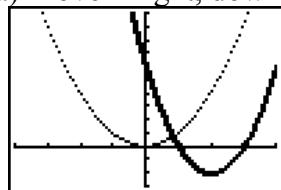
1. Graph each function by using transformations on the function $f(x) = x^2$.

$$(a) f(x) = 2(x-2)^2 - 2 \quad (b) f(x) = -3(x+1)^2 + 3$$

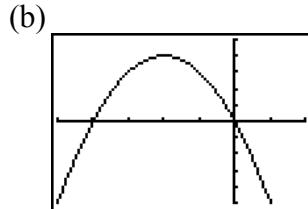
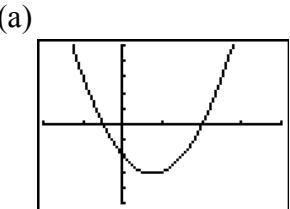
2. Find the vertex, axis of symmetry, and intercepts, then graph the function. State the domain and range, where the function is increasing, and where it is decreasing.

$$(a) f(x) = 2x^2 - 3x - 2 \quad (b) f(x) = -x^2 - 4x$$

3. Find the quadratic function whose vertex is at (2,5) and passes through (3,2).



4. Determine the value of the maximum or the minimum without graphing.

$$(a) f(x) = 3x^2 - 24x + 53 \quad (b) f(x) = -2x^2 - 12x - 24$$



Teaching Notes:

- Initially, students will get confused with horizontal transformations, but vertical transformations don't cause too much difficulty.
- It is important that they learn to put the function in the form $f(x) = a(x-h)^2 + k$ in order to identify the vertex and to graph the function. It is also a good idea to teach them to use this form to find any x -intercepts by solving $a(x-h)^2 + k = 0$, especially when the function does not factor.
- It is important that they use the form $f(x) = ax^2 + bx + c$ to find the y -intercept. Otherwise they will think that the k value is the y -intercept.
- Students will often state the vertex as the maximum or minimum instead of the y -value. Emphasize that the maximum or minimum is a value, not a coordinate.

Answers: 1.(a) Move 2 right, down 2, stretch of 2 (b) Reflect, 1 left, up 3, stretch of 3

2. (a) Vertex = $(3/4, -25/8)$; Axis of symmetry: $x=3/4$; x -intercepts $-1/2, 2$; y -intercept = -2
 Domain = $(-\infty, \infty)$, Range = $[-25/8, \infty)$, Decreasing $(-\infty, 3/4)$, Increasing $(3/4, \infty)$
 (b) Vertex = $(-2, 4)$; Axis of symmetry: $x=-2$; x -intercepts $-4, 0$; y -intercept = 0
 Domain = $(-\infty, \infty)$, Range = $(-\infty, 4]$, Increasing $(-\infty, -2)$, Decreasing $(-2, \infty)$

$$3. \ f(x) = -3(x - 2)^2 + 5$$