

Mini-Lecture 4.2

Properties of Rational Functions

Learning Objectives:

1. Find the domain of a rational function
2. Find the vertical asymptotes of a rational function
3. Find the horizontal or oblique asymptotes of a rational function

Examples:

1. Find the domain of each rational function.

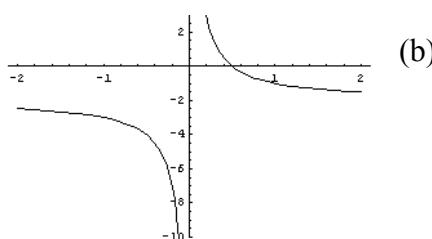
$$(a) f(x) = \frac{2-x}{x+2} \quad (b) f(x) = \frac{3x^2}{x^2-9} \quad (c) f(x) = \frac{x-1}{x^2+1} \quad (d) f(x) = \frac{x}{x^2-4x-5}$$

2. Identify vertical asymptotes, horizontal asymptotes, and oblique asymptotes.

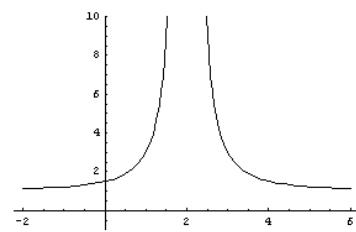
$$(a) f(x) = \frac{4x+1}{3-x} \quad (b) f(x) = \frac{2x^3+3x}{x^2-1} \quad (c) f(x) = \frac{x^4+1}{x^2-9} \quad (d) f(x) = \frac{2x}{x^2+1}$$

3. Graph each function.

$$(a) f(x) = \frac{1}{x} - 2 \quad (b) f(x) = \frac{2}{(x-2)^2} + 1$$


Teaching Notes:

- Students will often remove from the domain values of x that make the numerator 0. For example, for $f(x) = \frac{x-3}{x^2-4}$, they will erroneously state the domain as $\{x | x \neq -2, x \neq 2, x \neq 3\}$.
- Emphasize analyzing the function to determine asymptotes so that the students can learn to determine asymptotes quickly.


Answers:

1. (a) $\{x | x \neq -2\}$ (b) $\{x | x \neq -3, x \neq 3\}$ (c) All Real Numbers (d) $\{x | x \neq -1, x \neq 5\}$
2. (a) V.A. $x=3$, H.A. $y=-4$ (b) Oblique $y=2x$, V.A. $x=1$, $x=-1$ (c) V.A. $x=3$, $x=-3$ (d) H.A. $y=0$

3. (a)

(b)

