

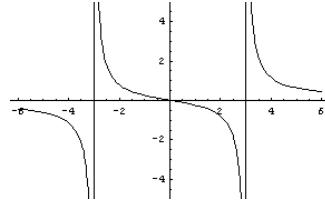
Mini-Lecture 4.3

The Graph of a Rational Function

Learning Objectives:

1. Analyze the graph of a rational function
2. Solve applied problems involving rational functions

Examples:


1. Analyze the graph of $f(x) = \frac{2x}{x^2 - 9}$ with the 7-step process used in Example 2.
2. A company that produces snowmobiles has a cost function, $C(x) = 3500x + 150,000$.
 - (a) Find the average cost function. (b) What is the average cost of producing 100 snowmobiles?

Teaching Notes:

- Students usually do not enjoy application problems, but these problems have a lot of interesting applications. Try to make it relevant for the students by using current data and functions.
- If the students have a graphing calculator, have them try to do the graphs and use the calculator to check their work. They need to grasp the concepts without too much dependency on a graphing calculator to help.
- Emphasize analyzing the functions without looking at the graph. Look at the graphs after the analysis is done, to check your work.

Answers:

1. Step 1: Domain is $\{x \mid x \neq 3, x \neq -3\}$, $f(0) = 0$.
Step 2: Reduced
Step 3: VA are $x = 3$ and $x = -3$
Step 4: HA is $y = 0$, intersects at the point $(0,0)$
Step 5: On the interval $(-\infty, -3)$, the function is below the x -axis.

On the interval $(-3, 0)$, the function is above the x -axis.

On the interval $(0, 3)$, the function is below the x -axis.

On the interval $(3, \infty)$, the function is above the x -axis.

Step 6: As $x \rightarrow -\infty$, $f(x) \rightarrow 0$; $x \rightarrow -3^-$, $f(x) \rightarrow -\infty$; $x \rightarrow -3^+$, $f(x) \rightarrow \infty$
 $x \rightarrow \infty$, $f(x) \rightarrow 0$; $x \rightarrow 3^-$, $f(x) \rightarrow -\infty$; $x \rightarrow 3^+$, $f(x) \rightarrow \infty$

2. (a) $\bar{C}(x) = 3500 + \frac{150,000}{x}$ (b) \$5000