

Mini-Lecture 4.4

Polynomial and Rational Inequalities

Learning Objectives:

1. Solve polynomial inequalities
2. Solve rational inequalities

Examples:

1. Solve each polynomial inequality.

$$\begin{array}{ll} (a) (x+3)^2(x-4) > 0 & (b) (x+1)(x-5)(x+3) \leq 0 \\ (c) x^6 > 16x^4 & (d) x^3 + 2x^2 - 8x \leq 0 \end{array}$$

2. Solve each rational inequality.

$$\begin{array}{ll} (a) \frac{(x+3)^2}{x^2 - 4} \geq 0 & (b) \frac{2x-1}{x+4} \leq 2 \\ (c) \frac{x^2(x+3)(x-5)}{(x+2)(x-4)} \geq 0 & (d) \frac{2}{x-1} > \frac{3}{x+2} \end{array}$$

Teaching Notes:

- A sign chart can also be helpful in solving these inequalities.
- Using test numbers can be difficult if the roots are close together. The students will not always calculate correctly.
- If you are using a graphing calculator in class, then this is a good section to use that technology in the presentation. Graphic representation gives the students a clearer idea. The Table feature is a great way to calculate test values.

Answers:

1. (a) $(4, \infty)$ (b) $(-\infty, -3] \cup [-1, 5]$ (c) $(-\infty, -4) \cup (4, \infty)$ (d) $(-\infty, -4] \cup [0, 2]$
2. (a) $(-\infty, -2) \cup (2, \infty)$ (b) $(-4, \infty)$
(c) $(-\infty, -3] \cup (-2, 4) \cup [5, \infty)$ (d) $(-\infty, -2) \cup (1, 7)$