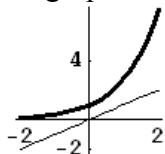


Mini-Lecture 5.2


One-to-One Functions; Inverse Functions

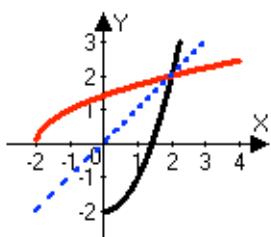
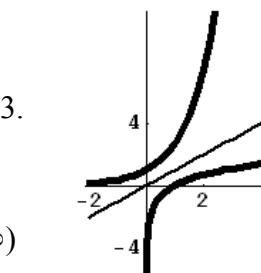
Learning Objectives:

1. Determine whether a function is one-to-one
2. Determine the inverse of a function defined by a map or a set of ordered pairs
3. Obtain the graph of the inverse function from the graph of the function
4. Find the inverse of a function defined by an equation.

Examples:

1. Determine whether the function $\{(2, -1), (3, 2), (1, -1), (5, 1)\}$ is one-to-one.
2. Find the inverse of the one-to-one function $\{(2, -1), (3, 2), (1, 3), (5, 0)\}$.
3. For the graph shown, draw the graph of the inverse. The graph $y=x$ is included to help.

4. For the function $f(x) = x^2 - 2$, $x \geq 0$, find f^{-1} , state the domain and range of both functions, and graph the functions as well as the line $y=x$.
5. Find the inverse of the function $f(x) = \frac{x}{2x+1}$.



Teaching Notes:

- One of the most common mistakes made is that students think $f^{-1}(x) = \frac{1}{f(x)}$. The fact that the -1 is a notation and not an exponent must be made clear.
- It is important that students understand $D_f = R_{f^{-1}}$ and $D_{f^{-1}} = R_f$. This can be demonstrated graphically for emphasis.

Answers:

1. No 2. $\{(-1, 2), (2, 3), (3, 1), (0, 5)\}$

4. $f^{-1}(x) = \sqrt{x+2}$; $D_f = R_{f^{-1}} = [0, \infty)$, $D_{f^{-1}} = R_f = [-2, \infty)$

5. $f^{-1}(x) = \frac{x}{1-2x}$