

Name: _____

MATH 150: QUIZ 10 (4.1)

1. (4 points) For each of the functions below, determine if the function is a polynomial.

If it is a polynomial, state the degree.

(a) $f(x) = 5x^3 - 3x + 4$

Polynomial

Not a polynomial

degree =

(b) $f(x) = \sqrt{3}x^2$

Polynomial

Not a polynomial

degree =

(c) $f(x) = \frac{3+x}{x-3}$

Polynomial

Not a polynomial

degree =

(d) $f(x) = \sqrt{x-3}$

Polynomial

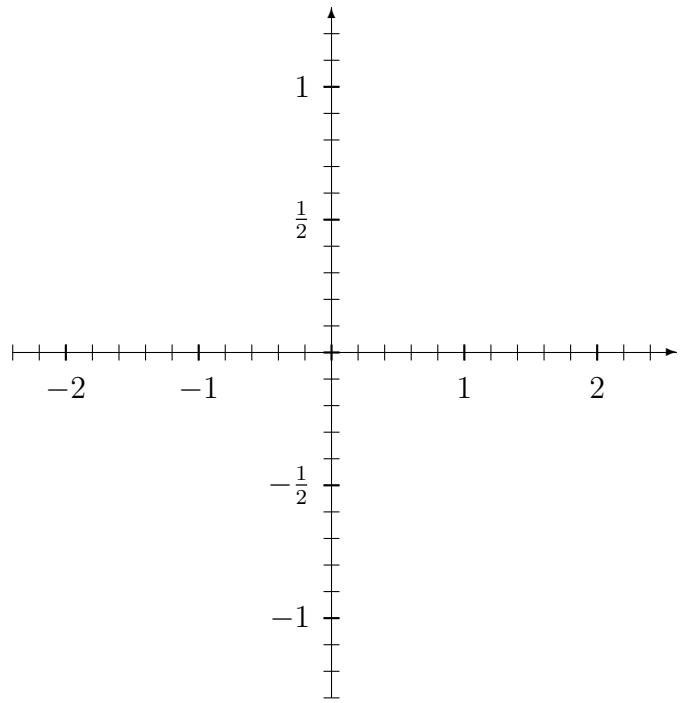
Not a polynomial

degree =

2. (4 points) Form a polynomial with the following properties. Do not expand.

- Degree 4
- -2 is a root of multiplicity 3
- 3 is a root of multiplicity 1
- y -intercept is 1

3. (4 points) Sketch a graph of the function $f(x) = x^3(x - 1)^2(x - 2)$ using end-behavior and multiplicity of zeros.



4. (4 points) Let $f(x) = x^4 - 5x^3 + 7x^2 - 4x + 1$.

(a) Verify that 1 is a root of f .

(b) Use (a) to factor f into a product of a degree 1 polynomial and a degree 3 polynomial.

SOLUTIONS

1. (a) Polynomial of degree 3.
 (b) Polynomial of degree 2.
 (c) Not a polynomial.
 (d) Not a polynomial.
2. The information about the roots and total degree tell us that the polynomial has the form

$$f(x) = a(x + 2)^3(x - 3)$$

for some value a . The y -intercept tells us that

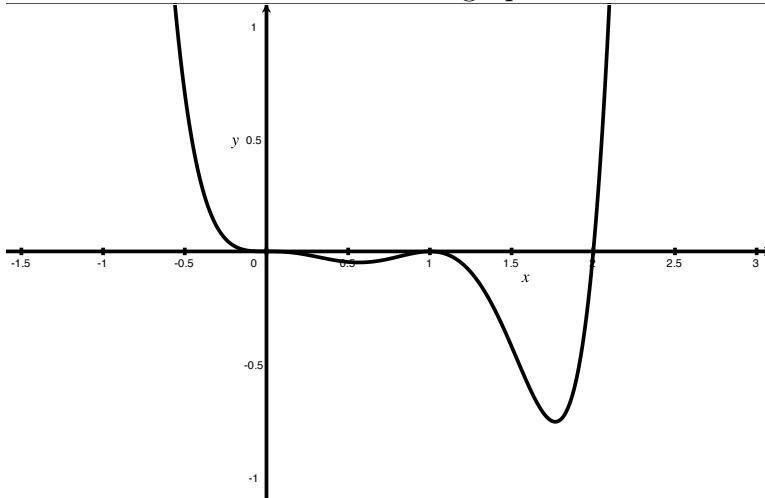
$$1 = f(0) = a(0 + 2)^3(0 - 3) = -24a.$$

It follows that $a = -1/24$ so that

$$f(x) = -\frac{1}{24}(x + 2)^3(x - 3).$$

3. The key points are listed below.

- As $x \rightarrow \infty$, $f(x) \rightarrow \infty$.
- As $x \rightarrow -\infty$, $f(x) \rightarrow \infty$.
- There is a root at 0 and the graph should cross the x -axis there.
- There is a root at 1 and the graph should not cross the x -axis there.
- There is a root at 2 and the graph should cross the x -axis there.



4. (a) This can be checked by showing $f(1) = 0$. Alternatively, you can use synthetic division to quickly check that $x - 1$ is a factor of $f(x)$.
 (b) By long division (or synthetic division), we get $(x - 1)(x^3 - 4x^2 + 3x - 1)$.