

Read all of the following information before starting the exam:

- It is to your advantage to answer ALL of the questions.
- There are 15 multiple choice and 5 short answer problems on this test. It is your responsibility to make sure that you have all of the problems.
- Each problem is worth 5 points. There is no partial credit given on the multiple choice problems.
- There is no need to complete the test in order. The problems are independent.
- *Budget your time!*
- If you have read all of these instructions, draw a happy face here.

1. Let

$$U = \{\text{red, orange, yellow, green, blue, indigo, violet}\}$$

$$A = \{\text{red, orange, yellow, green}\}$$

$$B = \{\text{red, orange, indigo, violet}\}.$$

Compute $A \cup B$.

- (a) $\{\text{red, orange}\}$
- (b) $\{\text{red, orange, yellow, green, indigo, violet}\}$
- (c) $\{\text{blue}\}$
- (d) \emptyset
- (e) None of the above.

2. Simplify the expression $\frac{x^5y^{-6}}{(xy)^2}$. Express the answer so that all the exponents are positive.

- (a) $\frac{x^3}{y^8}$
- (b) $\frac{x^7}{y^4}$
- (c) x^3y^4
- (d) $\frac{x^4}{y^8}$
- (e) None of the above.

3. Which of the following is equal to $a^3 \cdot a^5$.

- (a) a^8
- (b) a^{15}
- (c) $(a^3)^5$
- (d) $\frac{1}{a^2}$
- (e) None of the above.

4. Find the distance between the points $(-3, 7)$ and $(4, 10)$.

- (a) 58
- (b) $\frac{3}{7}$
- (c) $\left(\frac{7}{2}, \frac{3}{2}\right)$
- (d) $\sqrt{58}$
- (e) None of the above.

5. Find the midpoint of the line segment joining the points $(6, 3)$ and $(4, 2)$.

- (a) $\frac{1}{2}$
- (b) $(5, 2)$
- (c) $(10, 5)$
- (d) $\left(5, \frac{5}{2}\right)$
- (e) None of the above.

6. In which quadrant does the point $(-3, -2)$ lie?

- (a) I
- (b) II
- (c) III
- (d) IV
- (e) None of the above.

7. Which of the following points are on the graph of the equation

$$y = x^3 - 2x + 3?$$

- (a) $(2, 7)$
- (b) $(7, 2)$
- (c) $(3, 0)$
- (d) $(1, 3)$
- (e) None of the above.

8. Find all the intercepts of

$$y^2 - x - 4 = 0.$$

- (a) (0, 4)
- (b) (0, 2), (0, -2)
- (c) (1, 3), (-1, 3)
- (d) (0, 2), (0, -2), (-4, 0)
- (e) None of the above.

9. Which of the following best describes the graph of the equation

$$xy = 1.$$

- (a) The graph is symmetric about the x -axis.
- (b) The graph is symmetric about the y -axis.
- (c) The graph is symmetric about the origin.
- (d) The graph is symmetric about the x -axis AND symmetric about the y -axis.
- (e) None of the above.

10. Find the intercepts of the line

$$-2x + y = 4.$$

- (a) (0, 4), (-2, 0)
- (b) (4, 0), (0, -2)
- (c) (2, 4), (4, 2)
- (d) 2
- (e) None of the above.

11. Determine the slope of the line containing the points $(-5, 4)$ and $(0, 7)$.

- (a) $\frac{5}{3}$
- (b) $\frac{3}{5}$
- (c) $\sqrt{34}$
- (d) $-\frac{3}{5}$
- (e) None of the above.

12. Find the slope and y -intercept of the line

$$y = 3x - 2.$$

- (a) slope = -2 , y -intercept = 3 .
- (b) slope = 1 , y -intercept = 1 .
- (c) slope = 3 , y -intercept = 2 .
- (d) slope = 3 , y -intercept = -2 .
- (e) None of the above.

13. Determine the standard form for the circle with center $(1, 1)$ and radius 2 .

- (a) $(x + 1)^2 + (y + 1)^2 = 2$
- (b) $(x + 1)^2 + (y + 1)^2 = 4$
- (c) $(x - 1)^2 + (y - 1)^2 = 2$
- (d) $(x - 1)^2 + (y - 1)^2 = 4$
- (e) None of the above.

14. Find the center and radius of the circle

$$x^2 + y^2 - 6x + 2y + 4 = 0.$$

- (a) Center = $(3, -1)$, radius = $\sqrt{6}$
- (b) Center = $(3, -1)$, radius = 6
- (c) Center = $(-3, 1)$, radius = $\sqrt{6}$
- (d) Center = $(-3, 1)$, radius = 6
- (e) None of the above.

15. Find the equation of the circle of center $(2, -3)$ that contains the point $(0, 4)$. (Hint: Can you compute the radius from the information given?)

- (a) $(x + 2)^2 + (y - 3)^2 = 4$
- (b) $(x - 2)^2 + (y + 3)^2 = 1$
- (c) $(x - 2)^2 + (y + 3)^2 = 53^2$
- (d) $(x - 2)^2 + (y + 3)^2 = 53$
- (e) None of the above.

16. Evaluate the expression $\frac{2x}{x - y}$ at $x = -2$ and $y = 3$.

17. Given that the point $(6, -3)$ is on the graph of an equation that is symmetric with respect to the origin, what other point is on the graph?

18. The lengths of the legs of a right triangle are 32 cm and 60 cm. Find the length of the hypotenuse. Round to the nearest cm.

19. Let ΔABC be the right triangle with $A = (1, 12)$, $B = (6, 7)$, and $C = (1, 0)$. Find the area of ΔABC .

20. Tell me a joke.

Answer Key for Exam **A**

1. (b)

2. (a)

3. (a)

4. (d)

5. (d)

6. (c)

7. (a)

8. (d)

9. (c)

10. (a)

11. (b)

12. (d)

13. (d)

14. (a)

15. (d)

16. We plug in $x = -2$ and $y = 3$ into the expression.

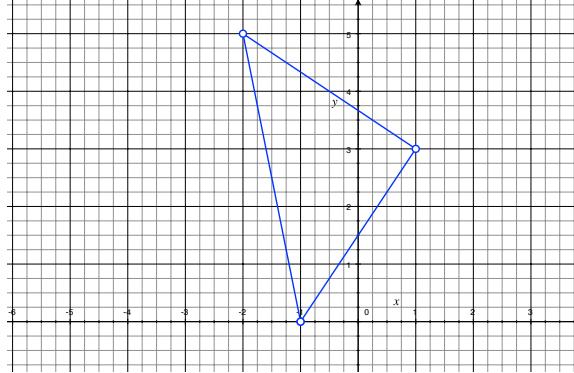
$$\frac{2(-2)}{-2-3} = \frac{-4}{-5} = \frac{4}{5}.$$

17. Recall that for a graph to be symmetric about the origin, whenever (a, b) is on the graph, we must have that $(-a, -b)$ is on the graph. It follows that since $(6, -3)$ is on the graph, $(-6, 3)$ is on the graph.

18. By the Pythagorean Theorem, for a right triangle with leg lengths a and b , the hypotenuse length c satisfies

$$a^2 + b^2 = c^2.$$

It follows that


$$\begin{aligned} c^2 &= 32^2 + 60^2 \\ &= 4624 \\ c &= \sqrt{4264} = 68. \end{aligned}$$

The hypotenuse has length 68 cm.

19. There is an error in the problem as stated. Specifically, the problem given is not a right triangle. As a result, I gave everyone credit for this problem. Let me answer a similar problem below.

Let ΔABC be the right triangle with $A = (-2, 5)$, $B = (1, 3)$, and $C = (-1, 0)$. Find the area of ΔABC .

First we sketch the triangle.

Now we compute the lengths of the sides.

$$\begin{aligned} d(B, A) &= \sqrt{|-2 - 1|^2 + |5 - 3|^2} \\ &= \sqrt{|-3|^2 + |2|^2} \\ &= \sqrt{9 + 4} \\ &= \sqrt{13}. \end{aligned}$$

$$\begin{aligned} d(C, A) &= \sqrt{|-2 - (-1)|^2 + |5 - 0|^2} \\ &= \sqrt{|-1|^2 + |5|^2} \\ &= \sqrt{1 + 25} \\ &= \sqrt{26}. \end{aligned}$$

$$\begin{aligned} d(B, C) &= \sqrt{|-1 - 1|^2 + |0 - 3|^2} \\ &= \sqrt{|-2|^2 + |-3|^2} \\ &= \sqrt{4 + 9} \\ &= \sqrt{13}. \end{aligned}$$

Notice that

$$d(B, A)^2 + d(B, C)^2 = d(C, A)^2,$$

this is a right triangle. Then the area is

$$A = \frac{1}{2} \sqrt{13} \cdot \sqrt{13} = \frac{13}{2}.$$

20. Q: What is brown and sticky?

A: A stick.