Name:	Academic Integrity Signature:	
	I have abided by the UNCG Academic Integrity Policy	

1. General Proof Exercise

The Product of Two Odd Numbers is Odd

The Product of an Even Number and an Odd Number is Even

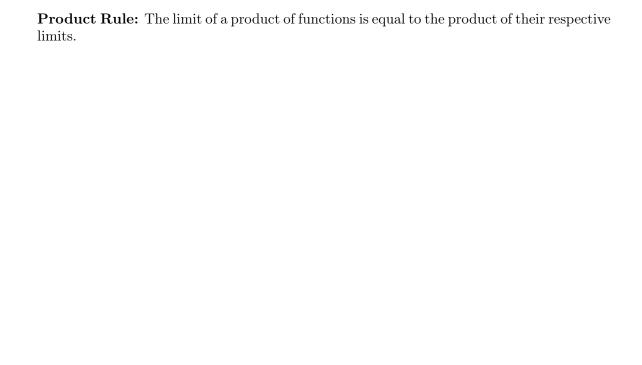
0	T +2 +++	T 43370
1.	LIMIT	LAWS

(1)	Theorem 1	Limit Laws	Constant	Function	Rule:	The limi	t of a	constant-va	alue :	func-
	tion is equal	that constant.								

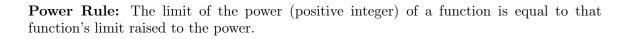
Sum and Difference Rules: The limit of the sum or difference of two functions is the sum or difference of their respective limits.

Constant Multiple Rule: The limit of a constant-multiple of a function is equal to the product of that constant multiplier and the limit of the original function. [Direct Proof]

Constant Multiple Rule: [Proof Using Product Rule]



Quotient Rule: The limit of a ratio of two functions is equal to the quotient of their respective limits (provided the limit of the denominator term is not 0).



Root Rule: The limit of the root (positive integer) of a function is equal to the root of that function's limit.

(2) Limits of Polynomials: If $f(x) = a_n x^n + \dots + a_1 x + a_0$, then $\lim_{x \to c} = a_n c^n + \dots + a_1 c + a_0 c$.

(3) Limits of Rational Functions: If P(x) and Q(x) are polynomials and $Q(c) \neq 0$, then $\lim_{x\to c} P(x)/Q(x) = P(c)/Q(c)$.

(4) Comparison of Left and Right Limits: The limit of a function f(x) exists at x = c if and only if the left and right-side Limits exist at x = c and are equal to one another.

(5) **Inequality Comparison of Limits:** If $f(x) \leq g(x)$ for all x in an open interval containing c, except possibly c itself, and the limit of both functions exist as $x \to c$, then $\lim_{x \to c} f(x) \leq \lim_{x \to c} g(x)$.

(6) The Sandwich Theorem: Suppose that $g(x) \leq f(x) \leq h(x)$ for all x in an open interval containing c, except possibly c itself and that $\lim_{x\to c} g(x) = \lim_{x\to c} h(x) = L$. Then $\lim_{x\to c} = L$.

(7) Trigonometric Limits: $\lim_{x\to 0} \sin x/x = 1$

(8) Trigonometric Limits: $\lim_{x\to 0} (1-\cos x)/x = 0$

(9)	Properties of Continuous Functions: Sums and Differences: The sum or difference of two continuous functions is itself continuous.
	Constant Multipliers: A constant multiple of a continuous function is itself continuous

Products: The product of two continuous functions is itself continuous.

(10) Theorem 10 Limits of Continuous Functions: If g is continuous at b and $\lim_{x\to c} f(x) = b$, then

$$\lim_{x\to c}g(f(x))=g(b)=g(\lim_{x\to c}f(x)).$$

(11) Composition of Continuous Functions: If f is continuous at c and g is continuous at g(c), then $g \circ f$ is continuous at c.

(12) **Intermediate Value Theorem:** If f is continuous on closed interval [a, b], and y_0 is any value between f(a) and f(b), then $y_0 = f(c)$ for some c in [a, b].

(13) **Fixed Point Theorem (2.5 - 67):** Suppose that f is continuous on [0,1] and $0 \le f(x) \le 1$. Show there must be point c on [0,1], called the fixed point, such that f(c) = c.

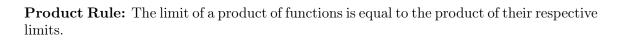
(14) Sign Preservation of Continuous Functions (2.5 -68): Let f be defined on (a, b) and continuous at some c with $f(c) \neq 0$. Show there is an interval $(c - \delta, c + \delta)$ where f has the same sign as f(c).

(15) Continuity and Infintessimal Change in x (2.5 - 69): f is continuous at c if and only if $\lim_{h\to 0} f(c+h) = f(c)$.

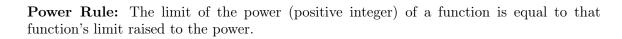
(16) Continuity of $\sin(x)$ (2.5 - 70): Using the result above and addition formulas, show that $\sin(x)$ is continuous at every x = c.

(17) Continuity of cos(x) (2.5-70): Using the result above and addition formulas, show that cos(x) is continuous at every x = c.

(18)	All limit laws apply as $x \to \pm \infty$ Constant Function Rule: The limit of a constant-value function is equal that constant.
	Sum and Difference Rules: The limit of the sum or difference of two functions is the sum or difference of their respective limits.
	Constant Multiple Rule: The limit of a constant-multiple of a function is equal to the product of that constant multiplier and the limit of the original function. [Direct Proof]
	Constant Multiple Rule: [Proof Using Product Rule]



Quotient Rule: The limit of a ratio of two functions is equal to the quotient of their respective limits (provided the limit of the denominator term is not 0).



Root Rule: The limit of the root (positive integer) of a function is equal to the root of that function's limit.

(19) Intriguing Theory (Chapter 2 - 17): Show that the function

$$f(x) = \begin{cases} x, & \text{if } x \text{ irrational} \\ 0, & \text{if } x \text{ is irrational} \end{cases}$$

is continous at x = 0.

(20) Centered Difference Quotient: Assuming the limits exist, show that

$$\lim_{h \to 0} \frac{f(c+h) - f(c-h)}{2h} = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$$

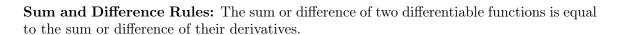
3. Derivatives

(1) **Differentiability implies Continuity:** If f has a derivative at x = c, then f is continuous at x = c.

(2) Derivative Rules:

Constant Rule: The derivative of a constant is 0.

Constant Multiplier Rule (Direct): The derivative of a constant multiple of a differentiable function is equal that constant times the derivative of that differentiable function.



Power Rule (positive integer) (Direct): For any positive integer n, the derivative of x^n is $df/dx = nx^{n-1}$.

Product Rule: For differentiable functions f and g, the derivative of their product is equal to f'(x)g(x) + f(x)g'(x).

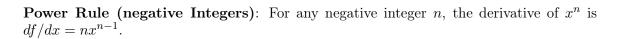
Quotient Rule (Direct): For differentiable functions f and g, with $g(c) \neq 0$, the derivative of their ratio f(x)/g(x) at x = c is

$$\frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

Reciprocal Rule: Prove that the derivative of $f^{-1}(x)$ is $-f'(x)/f^2(x)$ using the product and constant rules.

Quotient Rule: Prove the quotient rule using the Product Rule and the Reciprocal Rule.

Reciropcal Rule: Prove the reciprocal rule using the quotient rule.



Power Rule (positive integer): Prove the power rule using the product rule and inductive reasoning.

Constant Multiplier Rule: Using the product and constant rules, prove the constant multiplier rule.

General Polynomial Derivative: The derivative of the polynomial $P(x) = a_n x^n + \cdots + a_1 x + a_0$ is $P'(x) = n a_n x^{n-1} + \cdots + a_1$.

Generalized Product Rule: The derivative of $F(x) = f(x)g(x) \dots z(x)$ is given by $\frac{dF}{dx} = f'(x)g(x) \dots z(x) + f(x)g'(x) \dots z(x) + \dots + f(x)g(x) \dots z'(x)$

(3) Derivatives of Trigonometric Functions

Sine: Prove that the derivative of $\sin x$ is $\cos x$.

Cosine: Prove that the derivative of $\cos x$ is $-\sin x$.

Tangent: Prove that the derivative of $\tan x$ is $\sec^2 x$.

Cotangent: Prove that the derivative of $\cot x$ is $-\csc^2 x$.

Secant: Prove that the derivative of $\sec x$ is $\sec x \tan x$.

Cosecant: Prove that the derivative of $\csc x$ is $-\csc x \cot x$

(4) Chain Rule: If g(x) is differentiable at x, and f(u) is differentiable at u = g(x), then the composite function $(f \circ g)(x) = f(g(x))$ is differentiable at x and

$$(f \circ g)'(x) = f'(g(x)) \cdot g'(x)$$

(5) **Power Chain Rule:** The derivative of u^n with respect to x is $df/dx = nu^{n-1}du/dx$.

(6) Power Rule (rational exponents): Beginning from $y^q = x^p$, both p and q integers and $q \neq 0$, use implicit differentiation to show that

$$\frac{d}{dx}\left(x^{p/q}\right) = \frac{p}{q}x^{(p/q)-1}$$

(7) **Derivative of Cosine:** Beginning with the trigonometric identity $\cos^2 x + \sin^2 x = 1$, use implicit differentiation to show $(\cos x)' = -\sin x$.

(8) **Derivative of Inverses (Part A):** If f'(x) exists and is never zero on interval I, then f^{-1} is differentiable at every point in the domain of f^{-1} (the range of f).

(9) **Derivative of Inverses (Part b):** Under the conditions above, the value of the derivative of f^{-1} at b is the reciprocal of the value of f' evaluated at $a = f^{-1}(b)$:

$$\frac{df^{-1}}{dx}|_{x=b} = \frac{1}{\frac{df}{dx}|_{x=f^{-1}(b)}}$$

(10) **Derivative of the Natural Log:** Using the theorem for the derivative of inverse functions and the fact that $(e^x)' = e^x$, prove that $(\ln x)' = 1/x$.

(11) **Derivative of the Exponential Function:** Using the theorem for the derivative of inverse functions and the fact that $(\ln x)' = 1/x$, prove that $(e^x)' = e^x$.

(12) The Number e as a Limit: Prove that the number e satisfies the limit $e = \lim_{x \to (1+x)^{1/x}}$.

(13) Derivative of Inverse Trigonometric Functions

Derivative of Arcsine: Prove that $(\arcsin x)' = 1/\sqrt{1-x^2}$.

Derivative of Arccosine: Prove that $(\arccos x)' = -1/\sqrt{1-x^2}$.

Derivative of Arctangent: Prove that $(\arctan x)' = 1/(1+x^2)$.

Derivative of Arccotangent: Prove that $(\cot^{-1} x)' = -1/(1+x^2)$.

Derivative of Arcsecant: Prove that $(\sec^{-1} x)' = \frac{1}{|x|\sqrt{x^2-1}}$.

Derivative of Arccosecant: Prove that $(\csc^{-1} x)' = \frac{-1}{|x|\sqrt{x^2-1}}$.

(14) **Derivative of an Odd Function:** If f(x) is a differentiable odd function, then f'(x) is an even function.

(15) **Derivative of an Even Function:** If f(x) is a differentiable even function, then f'(x)' is an odd function.

4. OPTIMIZATION AND APPLICATION

(1) **Global Extrema are Local Extrema:** Prove every absolute extremum is also a local extremum.

(2) The First Derivative Theorem for Local Extremes: If f has a local maximum or minimum at an interior point x = c, and if f'(c) is defined, then f'(c) = 0.

(3) **Rolle's Theorem:** If f(x) is continuous on closed interval [a, b] and differentiable on open interval (a, b), and if f(a) = f(b), then there exists some c in (a, b) such that f'(c) = 0.

(4) **The Mean Value Theorem:** If f(x) is continuous on closed interval [a,b] and differentiable on open interval (a,b), then there exists some c in (a,b) such that f'(c) = [f(b) - f(a)]/(b-a).

(5) Corollary 1 of the Mean Value Theorem: If f'(x) = 0 for all x on open interval (a, b), then f(x) = C constant for all x in the open interval.

(6) Antiderivatives Differ by Only a Constant: If f'(x) = g'(x) for all x in (a, b), then there exists a constant C such that f(x) = g(x) + C for all xin(a, b).

(7) **Parallel Tangents (4.2 - 62):** Assume that f and g are differentiable on [a,b] and that f(a) = g(a) and f(b) = g(b). Prove there is at least one point c between a and b where the tangesnts of f and g are parallel.

(8) Indeterminate Powers: Prove that if $\lim_{x\to a} \ln f(x) = L$, then $\lim_{x\to a} f(x) = e^L$.