HOMEWORK 6

DAN YASAKI

From Homework 5, we see that we have a map

7: {unimodular symbols} — My (I'o(N)).

We can extend this by linearity to get a surjective linear map from

cycles(N) — My(Ih(N)).

The purpose of this exercise will be to code 7 and a pullback 7*. Specifically, 7(7*(u)) = u
for all u € My(Iy(N)).

Along the way you can use Sage commands to check your work. For example, if you try
sage: M = ModularSymbols(11)
sage: P1 = M.manin_generators()
sage: images = M.manin_gens_to_basis()

then M is 3 dimensional. We have P1 is P!, and images is a list of the images of 7.

1.

Define a function voronoi_symbols(N) which takes as input a positive integer N and
returns [V, m, %], where V is the rational vector space cycles(N) /boundaries(N) and
7 is a map that takes [u,v] with u,v € Z? to the corresponding point in V. You can
think of the map, theoretically, as follows using the notation of the notes:

The symbol [u,v] = g - up for some g € SLy(Z). This goes to the coset I'g(NN)g, which
corresponds to the point (0: 1)-g € P1(Z/NZ). Use the ideas developed in Homework
5, problem 6 to map to V. You should return 7 and 7* as matrices, acting on the
right, so that the rows of m and 7* express the basis elements of the domain in terms
of the basis elements of the range.

. Run several checks on your code. First, you map from P!(Z/NZ) to V should match

identifications P1 to images, up to overall sign. In other words, the maps should either
be the same, or —1 times each other.

One thing you should notice from these computation is that it may be easier if we
start attaching a coefficient on our symbols. For example, we should think of [u, v] as
(1, [u,v]) and [u,v] + [u,v] as (2, [u,v]).

. Write a function hecke_operator(N,p), which takes as input a level N and prime p

and outputs the matrix representing the Hecke operator T}, on My (I'o(V)). It may be
helpful to use your hecke_action map from Homework 4.

. Create a file voronoi_ symbols.py that defines a class VoronoiSymbols(N), which takes

as input a level N. Mimic the ModularSymbols class in Sage. Our class will be much
simpler. Specifically, it will only deal with I'j(N) and weight 2. The functions you
defined in earlier should help flesh out this class. We should be able to compute the
dimension of the space, as well as compute Hecke operators on this space. No other
features need to be available to the user at this time.

. Check your class against the existing ModularSymbols code. Your Hecke operators

should be the same map, up to change of basis. Specifically, your matrix should be
1



similar to the output of the Sage code. In particular, the characteristic polynomials
should be the same. Try level 11 and compute the characteristic polynomials for 7,
for a range of primes p and compare with the characteristic polynomials from your

code. (Note: The matrices used to compute 7}, for p = 11 are different than the usual
for pt11.)

DAN YASAKI, DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF NORTH CAROLINA AT
GREENSBORO, GREENSBORO, NC 27412, USA
E-mail address: d_yasaki@uncg.edu



