
SCHECKELHOFF, KRISTEN, M.A. A Geometric Generalization of Continued Frac-
tions for Imaginary Quadratic Fields. (2021)
Directed by Dr. Dan Yasaki. 37 pp.

The Euclidean Algorithm for the integers is well known and yields a finite continued
fraction expansion for each rational number. Geometrically, successive convergents
in this expansion correspond to endpoints of edges in the Farey tessellation of the
complex upper half plane. The sequence of convergents thus describes a path from
the point at infinity to a given rational number, following edges of the tessellation;
by identifying points in the upper half plane with positive definite binary quadratic
forms (up to scaling), we express this path as a product of matrices in SL2(Z). In
general, when the ring of integers of a quadratic number field is Euclidean, there
exists a suitable Euclidean function and algorithm with which we may construct a
continued fraction expansion for each field element. In these cases, we prove the
analogous result that pairs of adjacent convergents determine edges in the Voronoi
tessellation of hyperbolic 3-space. We identify points in the upper half space with
positive definite binary Hermitian forms (up to scaling), and express the resulting
path as a product of matrices in GL2(OF ). Finally, since the Voronoi tessellation
exists for all imaginary quadratic fields, including those with non-Euclidean rings of
integers, we explore the extent to which this geometric interpretation of continued
fractions holds in the general case.
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Chapter 1

Introduction

1.1 History and Motivation
The mathematics behind continued fractions has been studied, in one form or another,
for millennia. Euclid’s algorithm for the greatest common divisor of two integers,
developed around the third century B.C.E. [Bre91], constructs a finite continued
fraction, though it was not presented in those terms. While the modern version of this
well-known algorithm bears Euclid’s name, the construction of sequences of partial
quotients from ratios of line segments was studied by the Greeks in the centuries before
Euclid, and similar work from much earlier periods has been found. The first known
written reference to a rule with a continued fractions flavor appears on a Babylonian
tablet from around 2000 B.C.E. [Bre91]. Early attempts to measure circles and find
approximations to the value of π use similar methods, and ratios now known to be
the first few continued fraction convergents to π appear in the work of early Indian
and Chinese mathematicians.

Some of the familiar modern notation for continued fractions appears in attempts to
solve Diophantine equations, notably by the Indian mathematician Aryabhata (c. 500
A.D.) and subsequent interpretations of his work [Bre91]. In particular, Aryabhata
knew of the recursive formula for computing continued fraction convergents as well as
the relation between successive convergents pn−1

qn−1
and pn

qn
, namely

pnqn−1 − qnpn−1 = (−1)n.

Brahmagupta improved on Aryabhata’s work and used it to solve first- and second-
degree Diophantine equations arising from astronomy [Bre91]. The Persian mathe-
matician Omar Khayyam’s book on algebra from around 1100 A.D. includes a method
for determining whether two ratios are equal, involving a recursive sequence of integers

1



CHAPTER 1. INTRODUCTION 2

that amounts to comparing the continued fraction expansions of the given ratios
[Bre91]. It was not until 1655 that the first use of modern notation for continued
fractions appeared in Europe. In the modern era, continued fractions are involved in
the study of many aspects of number theory, Pell’s equation, transcendental numbers,
probability theory, physics, and many other areas.

The known relationship between adjacent continued fraction convergents allows for
their representation as products of 2× 2 matrices with integer entries and determinant
±1. The matrix group SL2(Z) acts on the complex upper half plane H, and continued
fractions may be represented by paths of connected edges in the Farey tessellation
of H. The sequences of matrices resulting from this construction are used in explicit
computations with classical modular forms.

Analogues of both the algebraic and geometric constructions of rational continued
fractions exist for the Gaussian integers [Hoc19], and can be more or less immediately
generalized to imaginary quadratic fields with Euclidean rings of integers. For general
imaginary quadratic fields, we still have a tessellation of hyperbolic 3-space H3,
but in general do not have a Euclidean ring of integers to allow for the algebraic
construction and extraction of the matrix convergents. Cremona [Cre84] and several his
students ([Ara10,Whi90,Lin05,Byg98], and others) explicitly computed tessellations
of hyperbolic 3-space for selected imaginary quadratic number fields F , constructing a
fundamental region for the action of GL2(F ), identifying cusps in P1(F ) with vertices
of hyperbolic polyhedra, and relating edges of the polyhedra to modular symbols. The
extracted information is used for homology computations. This ground-up approach
must be adjusted to account for the differences in the geometry of each field, which
becomes more challenging as the class number h(F ) increases.

An alternative approach – one which is employed in this work – is to start with
the Voronoi tessellation of hyperbolic 3-space. The connection between the Voronoi
tessellation of the complex upper half plane and classical continued fractions is well
studied, and an analogous tessellation of H3 exists and is readily computed for every
imaginary quadratic field. Equivalence classes of edges in the Voronoi tessellation
provide the necessary information to modify the continued fraction algorithm for all
imaginary quadratic fields of class number 1, and using this new approach we obtain
the updated algorithm presented in Section 3.1. Future work in this area could focus
on using the full Voronoi polytope data to overcome the obstacle posed by singular
points in fields of class number greater than 1.
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1.2 Classical Continued Fractions
Definition 1.1. A finite continued fraction is an expression of the form

a0 +
1

a1 +
1

a2 +
1

· · ·+
1

an

,

with elements ai, i = 0, 1, . . . , n, ai ∈ Z, ai ≥ 1 for i ≥ 1.

Note that there exist other possible definitions of continued fractions, for example
where the numerators are not necessarily all equal to 1, or where the conditions on
the ai are modified.

Since all of the elements are rational numbers, and the finite continued fraction is the
result of finitely many rational operations on its elements, the expression is equal to a
rational number. Every rational number has a (not necessarily unique) representation
as a finite continued fraction [Khi64]. We will choose to represent a rational number
α by a finite continued fraction in which all of the elements are nonzero and an 6= 1.
This allows the convenient and more compact notation

α = [a0; a1, a2, . . . , an].

By truncating this representation at the element ak, we obtain the kth-order convergent
to α, the rational number

pk
qk

. Note that α itself is the nth-order convergent, α =
pn
qn

.

The value of any convergent may be computed by simplifying the continued fraction,
since finitely many operations are needed; however, there is a recursive formula for
computing the kth-order convergent directly:

Theorem 1.2 ([Khi64, Theorem 1]). Set p−1 = 1, q−1 = 0 p0 = a0, and q0 = 1. For
k ≥ 1, {

pk = akpk−1 + pk−2

qk = akqk−1 + qk−2.

For all pairs of successive convergents, the following property holds:

Theorem 1.3 ([Khi64, Theorem 2]). For all k ≥ 0,

qkpk−1 − pkqk−1 = (−1)k.
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This naturally suggests a redefinition of the recurrence relation in terms of square

integer matrices having determinant ±1. By setting
[
p−1 p0
q−1 q0

]
=

[
1 a0
0 1

]
, we have

[
pk pk+1

qk qk+1

]
=

[
pk−1 pk
qk−1 qk

] [
0 1
1 ak+1

]
for all k ∈ Z≥0 [Sch09a].

When we truncate the continued fraction representation to obtain a convergent to α,
we may also consider the remainder of the continued fraction,

rk = [ak; ak+1, ak+2, . . . , an].

Then we may write

[a0; a1, a2, . . . , an] = [a0; a1, a2, . . . , ak−1, rk],

and by means of the recursive formula above, we have the following result:

Theorem 1.4 ([Khi64, Theorem 5]). For arbitrary k (1 ≤ k ≤ n),

[a0; a1, a2, . . . , an] =
pk−1rk + pk−2
qk−1rk + qk−2

.

The convergents
pk
qk

are best (Diophantine) approximations of the first kind, i.e., they

minimize
∣∣∣pq − α∣∣∣ for all p, q ∈ Z with 1 ≤ q ≤ qk [Sch09a].

In this work, we are primarily interested in the sequence of convergents rather than
the finite continued fraction expression itself, and will compute these convergents
directly.

1.3 Euclidean and Pseudo-Euclidean Functions
The construction of continued fractions for elements in the field of rational numbers
Q relies on the fact that its ring of integers Z is a Euclidean ring.

Definition 1.5. A Euclidean function on a ring R is any function N : R → Z≥0
satisfying the condition that for all α, β ∈ R with β 6= 0, there exist q, r ∈ R such that
α = qβ + r and N(r) < N(β). A ring on which a Euclidean function can be defined is
said to be a Euclidean ring.
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For example, the absolute value function is a Euclidean function on the ordinary
integers Z. To investigate continued fractions over imaginary quadratic number fields,
it is useful to know when the ring of algebraic integers is Euclidean. First we recall
some definitions and key facts about number fields from [Neu92].

Definition 1.6. An algebraic number field is a finite-degree field extension K of Q.
The degree of an extension field K over Q is denoted by [K : Q]. If [K : Q] = 2, then
K is called a quadratic number field.

Definition 1.7. The elements of an algebraic number field K are called algebraic
numbers, or quadratic numbers in the case [K : Q] = 2. If an algebraic number occurs
as the zero of a monic polynomial in Z[x], it is called an algebraic integer. The set of
algebraic integers of K forms an integral domain, denoted by OK .

Note that every nonzero, non-unit element in OK can be factored into a product of
irreducible elements, but this factorization is not necessarily unique. We do, however,
have unique factorization of the nonzero ideals of OK into products of powers of prime
ideals (up to ordering). This allows us to discuss the notion of a class group, which
can be thought of as a measure of how far the ring of integers is from being a principal
ideal domain; see Section 2.5 for details.

Letting R be the ring of algebraic integers OF of an imaginary quadratic number field
F , and defining N to be the square of the complex norm, N(α) = |α|2, the conditions
in Definition 1.5 may be rewritten as

α

β
= q +

r

β
and

∣∣∣∣ rβ
∣∣∣∣ < 1.

Thus to characterize the ring of integers OF as Euclidean, it suffices to find, for each
pair α, β ∈ OF with β 6= 0, an element q ∈ OF such that

∣∣∣αβ − q∣∣∣ < 1. It is known
that there are exactly five imaginary quadratic fields with Euclidean rings of integers,
namely Q(

√
−d) for d = 1, 2, 3, 7, 11 [Neu92].

The existence of a Euclidean function on a ring gives rise to a function on the field of
fractions, satisfying a similar property. To accommodate the situation when r = 0, we
define a function on F ∪ {∞}:

Proposition 1.8. Let R be a Euclidean ring, and let F be the field of fractions of
R. Then there exists a function η : F ∪ {∞} → Z≥0 with the property that for every
α
β
∈ F , there exists q ∈ R such that η

(
1

α
β
−q

)
< η

(
α
β

)
.

Proof. Let R be a Euclidean ring with Euclidean function N , and let F be the field
of fractions of R. Let α′, β′ ∈ R with β′ 6= 0, and let α

β
be the reduced representative
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of the class of α′

β′
in F , i.e., α, β ∈ R with β 6= 0, α and β share no common factors,

and α′

β′
= α

β
.

By the definition of Euclidean function, there exist q, r ∈ R such that α = qβ + r
and N(r) < N(β). Then α − qβ = r, and since β 6= 0, by arithmetic in F we have
α
β
− q = r

β
.

Define η
(
α
β

)
= N(β) for any reduced representative α

β
∈ F , and set η(∞) = 0. If

r = 0, then α
β
∈ R, and η

(
1

α/β−q

)
= η

(
1
0

)
= 0 < η

(
α
β

)
. Otherwise,

η

(
1

α/β − q

)
= η

(
1
r/β

)
= η

(
β

r

)
= N(r)

< N(β)

= η

(
α

β

)
.

In the theory of hemispheres presented by [Swa71], reduced ratios of algebraic integers
are identified with cusps in P1(F ). The radius of the hemisphere determined by a
principal cusp λ

µ
is controlled by the norm of the denominator. In particular, with F

embedded in C, the radius of the hemisphere over each integral cusp has complex norm
1. Thus for imaginary quadratic fields where the ring of integers is Euclidean, we have
that every point in F lies under an integral hemisphere. When the ring of integers is
not Euclidean, there exist points in F lying outside every integral hemisphere.

For those cases where it is not possible to characterize the ring of integers as Euclidean
by the above inequality, the following, more general condition holds:

Proposition 1.9 ([Swa71, Proposition 3.11]). Let F = Q(
√
−d) be a quadratic

imaginary field with ring of integers OF . If α
β
∈ F , we can find µ, λ ∈ OF such that

〈µ, λ〉 = OF and
∣∣∣µαβ − λ∣∣∣ ≤ 1. The points for which we cannot find µ, λ such that the

above inequality is strict are called singular points; these points all lie in F , and there
are finitely many up to translation by elements of OF .

To extend Proposition 1.8 and the function η to fields whose rings of integers are not
Euclidean, we generalize the notion of inversion, then define an analogous “pseudo-
Euclidean” function on the field.
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Definition 1.10. Let F be a field. The projective line over F , denoted by P1(F ), is
the set of equivalence classes

P1(F ) =
{

(α, β) ∈ F 2 \ {(0, 0)}
}
/ ∼ ,

where (α, β) ∼ (xα, xβ) for x ∈ F \ {0}.

We identify P1(F ) with F ∪ {∞} by (α, β) 7→ α
β
if β 6= 0, and (α, β) 7→ ∞ if β = 0.

Definition 1.11. Let F be a field. An inversion is a bijection on the set of nonzero
points of F . If F is an imaginary quadratic field, we extend this definition to include
0 and ∞; an inversion is a bijection on the set of cusps P1(F ).

Definition 1.12. Let R be an integral domain, and F the fraction field of R. A
function ψ : F ∪ {∞} → Z≥0 is called a pseudo-Euclidean function if there exists a
finite set S of representatives in the quotient of F by R, together with a finite set of
inversions U , such that for every z ∈ F \ S there exists q ∈ R and u ∈ U such that
ψ(u(z − q)) < ψ(z).

The finite set S for the above definition contains the singular points referenced in
Proposition 1.9. This becomes important when we look at cases with class number
greater than 1; when the class group is trivial, the set S is empty.

The function η defined in Theorem 1.8 on the field of fractions of a Euclidean ring is
a special case of a pseudo-Euclidean function, where we take η to be the norm of the
denominator, the set of singular points is empty, and the set of inversions consists of
a single element: the usual z 7→ 1

z
.

1.4 Euclidean and Pseudo-Euclidean Algorithms
With our pseudo-Euclidean function, we will construct a pseudo-Euclidean algorithm.
First we recall the usual Euclidean Algorithm:

Theorem 1.13 (Euclidean Algorithm). Let R be a Euclidean ring with Euclidean
function N , and let a, b ∈ R with b 6= 0. By repeated application of the Euclidean
function, we find elements qi, ri ∈ R such that

a = q1b+ r1, N(r1) < N(b),
b = q2r1 + r2, N(r2) < N(r1),
r1 = q3r2 + r3, N(r3) < N(r2),
...

...
rn−2 = qnrn−1 + rn, N(rn) < N(rn−1),
rn−1 = qn+1rn + 0, 0 < N(rn).
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The element rn (the last nonzero remainder in the division process) is the greatest
common divisor of a and b.

Each inequality holds by the definition of Euclidean function, and since the output of
the Euclidean function N is a non-negative integer, the process terminates in finitely
many steps.

The Euclidean algorithm is used to construct a rational continued fraction of the form
given in Definition 1.1, where α = a

b
with a, b ∈ Z, b 6= 0, the Euclidean function on

Z is the absolute value function, the elements ai are the computed quotients qi, and
inversion z 7→ 1

z
is applied to the successive remainders ri.

Working instead in the field of fractions F of R, and using the related function η
from Theorem 1.8, we can reinterpret the Euclidean algorithm to emphasize that the
mechanics of computing a continued fraction are an alternating sequence of translations
and inversions.

Theorem 1.14 (Euclidean Algorithm in Fractions). Let F be the field of fractions of
a Euclidean ring R, and let α

β
in F . By repeated application of the function η defined

in the proof of Theorem 1.8, we can find elements qi, ri ∈ R such that

α

β
= q1 +

r1
β

⇒ α

β
− q1 =

r1
β
, η

(
1

r1/β

)
< η

(
α

β

)
,

β

r1
= q2 +

r2
r1

⇒ β

r1
− q2 =

r2
r1
, η

(
1

r2/r1

)
< η

(
β

r1

)
,

...
...

...

rn−2
rn−1

= qn +
rn
rn−1

⇒ rn−2
rn−1

− qn =
rn
rn−1

, η

(
1

rn/rn−1

)
< η

(
rn−2
rn−1

)
,

rn−1
rn

= qn+1 + 0 ⇒ rn−1
rn
− qn+1 = 0, 0 < η

(
rn−1
rn

)
.

Each inequality on the right-hand side holds by Theorem 1.8, and termination in
finitely many steps is guaranteed since η takes non-negative integer values.

In general, the ring of integers of an imaginary quadratic field is not Euclidean, so
given an arbitrary α

β
∈ F , we are not guaranteed to be able to find q ∈ R such that∣∣∣αβ − q∣∣∣ < 1. In this case, the inversion z 7→ 1

z
is not enough to force the remainders

to decrease as required for the algorithm to terminate. If, however, we can find
a pseudo-Euclidean function on P1(F ) satisfying Definition 1.12, we can generalize
Theorem 1.14 to this case.
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Theorem 1.15 (Pseudo-Euclidean Algorithm). Let ψ be a pseudo-Euclidean function
on the field of fractions F of an integral domain R, and let S and U be the finite sets
given by Definition 1.12. Let z ∈ P1(F ).

If z ∈ F \ S, by repeated application of ψ we can find qi ∈ R and ri ∈ P1(F ) such that

z − q1 = r1, ψ(u1(r1)) < ψ(z)

u1(r1)− q2 = r2, ψ(u2(r2)) < ψ(u1(r1))
...

...
un−1(rn−1)− qn = rn, ψ(un(rn)) < ψ(un−1(rn−1))

un(rn)− qn+1 = rn+1, 0 < ψ(un(rn)),

where u1, u2, . . . , un ∈ U are inversions (not necessarily distinct), and un(rn) ∈
S ∪ {∞}.

To apply this theorem to imaginary quadratic fields in which the ring of algebraic
integers OF is a principal ideal domain, i.e. F has class number h(F ) = 1, we will
compute a finite set of inversions in GL2(OF ) using Voronoi tessellations of hyperbolic
3-space.



Chapter 2

Voronoi Tessellations

2.1 Binary Quadratic Forms and the Upper Half Plane
Here we summarize some definitions and key facts about quadratic forms from [BV07,
Leh19,Sch09a].

Definition 2.1. A binary quadratic form over the set of real numbers R is a homoge-
neous polynomial of degree two in two variables:

f(x, y) = ax2 + bxy + cy2; a, b, c ∈ R,

with discriminant ∆(f) = b2 − 4ac. If the discriminant of f is positive, we say that f
is indefinite; if ∆(f) is negative and a is positive, we say that f is positive definite; if
∆(f) is negative and a is negative, we say that f is negative definite.

To each quadratic form f we can associate a 2× 2 symmetric matrix M , which allows
us to evaluate the form on integers x and y via matrix multiplication.

Definition 2.2. For a binary quadratic form f(x, y) = ax2 + bxy + cy2, the matrix
of f is the 2× 2 symmetric matrix Mf with entries in R given by

Mf =

[
a 1

2
b

1
2
b c

]
,

so that f(x, y) =
[
x y

]
Mf

[
x
y

]
.

The value a quadratic form f takes on an ordered pair of integers (x0, y0) is equal

to the result of vtMfv, where v =

[
x0
y0

]
. Note that if f is positive definite, then

f(x, y) > 0 for all ordered pairs of integers (x, y) other than (0, 0).

10
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Definition 2.3. The arithmetic minimum of a quadratic form f is the minimum
value of f(x, y) for all (x, y) ∈ Z2 \ {(0, 0)}.

Definition 2.4. A minimal vector of a quadratic form f is a vector (x0, y0) ∈
Z2 \ {(0, 0)} such that f(x0, y0) is the arithmetic minimum of f .

Let Γ = SL2(R) be the group of matrices with determinant 1,

Γ =

{
g =

[
q r
s t

]
: q, r, s, t ∈ R; qt− rs = 1

}
.

The group Γ acts on the 3-dimensional real vector space V of binary quadratic forms
by g · A = gAgt, where g ∈ Γ and A ∈ V . Define an equivalence relation ∼ on the
set of quadratic forms of discriminant ∆ by f ∼ f ′ if and only if M ′

f = gMfg
t for

some g ∈ Γ. In other words, two forms are equivalent if and only if their orbits under
the action of Γ are the same. When evaluated on the same vectors, equivalent forms
produce the same values. In particular, two equivalent forms have the same minimum.

Note that scaling a quadratic form changes the value of its arithmetic minimum but
does not change the set of minimal vectors; for computational convenience, we will
often scale forms to a minimal value of 1.

A quadratic form is called perfect if it is completely determined by its arithmetic
minimum and set of minimal vectors. Up to arithmetical equivalence and scaling by
positive real numbers, there are finitely many perfect forms [Sch09b].

Identifying the minimal vectors of a perfect form with points in Q ∪∞, we have an
ideal triangle in the complex upper half plane H corresponding to each perfect form.
We have an action of SL2(R) on H; in fact, we may use the action of SL2(Z), which
stabilizes Q∪∞, to obtain a tessellation of H by triangles associated to perfect forms.

Definition 2.5. The upper half plane, denoted by H, is a model of two-dimensional
hyperbolic geometry consisting of the set of complex numbers with positive imaginary
part,

H = {s+ it : s, t ∈ R, t > 0}.

There is a correspondence between points in the upper half plane and positive definite
binary quadratic forms. The group Γ = SL2(R) acts transitively on H by fractional

linear transformations,
[
a b
c d

]
· z =

az + b

cz + d
, thus we may generate H by the point
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Figure 2.1. The Farey Tessellation of H. Each ideal triangle in the tessellation
corresponds to a perfect quadratic form.

0 + 1i under this action. The stabilizer of the point i is the set

stabSL2(R)(i) =

{[
a b
c d

]
∈ SL2(R) :

[
a b
c d

]
· i = i

}
=

{
A ∈ SL2(R) : AAt =

[
1 0
0 1

]}
,

thus stabSL2(R)(i) ' SO(2). Then we identify H with SL2(R)/SO(2).

Letting the identity quadratic form x2 + y2 be the representative whose stabilizer is
SO(2), we identify points in the upper half plane with the cone of positive definite
quadratic forms (mod positive scaling) via the map

s+ it 7→
[

1 −s
−s s2 + t2

]
.

Then the point i = 0 + 1i ∈ C is identified with the form x2 + y2, with matrix

representation
[
1 0
0 1

]
.

The Farey tessellation of H, the orbit of the positive imaginary axis under SL2(Z),
is shown in Figure 2.1. This tessellation is equivalent to the Voronoi tessellation by
ideal triangles corresponding to perfect forms.

In the theory of perfect quadratic forms over Q due to Voronoi [Vor08], it is shown
that there exists an infinite polyhedron in the space of quadratic forms on which
the arithmetic group Γ = GLn(Z) acts. The faces of this polyhedron determine the
possible configurations of minimal vectors of quadratic forms, and in the case of
Γ = SL2(Z), there is exactly one perfect form up to arithmetical equivalence and
scaling. In this case, the Voronoi polyhedron descends modulo scaling to the Farey
tessellation of H by the ideal triangle with vertices {0, 1,∞}.
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2.2 Hemispheres and Quadratic Forms
With the identification between points in the upper half plane and positive definite
binary quadratic forms, the theory of hemispheres over rational points can now be
described in terms quadratic forms. For a form Q with matrix MQ, denote evaluation
of Q on a vector v by MQ[v]. The set of forms evaluating the same on 0 and ∞, i.e.,
the set of all Q for which

MQ

[
1
0

]
= MQ

[
0
1

]
,

is a one-parameter family of forms defining a semicircle in the upper half plane. This
semicircle, centered at 0 with radius 1, is the hemisphere determined by the rational
point 0/1.

Let v′ = [p′ q′]t be a vector in Z2 such that p′/q′ is not an integer. Up to translation
by integers, v′ is equivalent to a vector v = [p q]t with |p| < |q|, gcd(p, q) = 1, and
0 < q 6= 1. Then −1 < p/q < 1, so p/q lies under the hemisphere determined by 0/1.
It can be shown that the entire hemisphere determined by p/q lies under this integer
hemisphere.

In general, the hemisphere determined by p/q consists of quadratic forms which give
the same result upon evaluation at [1 0]t and [p q]t. Evaluating a generic form Q at
v = [1 0]t, we find that

Q(v) = vt
[
a 1

2
b

1
2
b c

]
v = a.

Since the identification between points in the upper half plane and positive definite
binary quadratic forms holds up to scaling by positive real numbers, for convenience
we scale the output to 1. For a fixed p/q, the set of forms Q such that Q(1, 0) = Q(p, q)
defines a hemisphere centered at p/q of radius 1/|q|. Note that in H, a “hemisphere”
is a semicircle whose center lies on the boundary.

It can be shown that if the point in H corresponding to a given quadratic form Q
lies on a hemisphere over a rational point p/q, but lies outside all other rational
hemispheres, then the set of minimal vectors of Q is exactly {p/q,∞}.

Lemma 2.6. If a point z ∈ H lies on the hemisphere determined by the rational point
p
q
, but does not lie on or under the hemisphere determined by any p′

q′
with p′

q′
6= p

q
, then

the set
{
∞, p

q

}
represents an edge in the Voronoi tessellation of H.

Proof. Let z = s + it ∈ H, and assume z lies on the hemisphere determined by the
cusp p

q
, but z does not lie on or under any hemisphere determined by p′

q′
with p′

q′
6= p

q
.

Then the quadratic form Q associated to z evaluates the same on ∞ and p
q
. Since z
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does not lie on or under the hemisphere determined by p′

q′
, Q evaluates lower on ∞

than p′

q′
. Thus

Q

(
p

q

)
= Q(∞) < Q

(
p′

q′

)
for all p

′

q′
6= p

q
, so the set of minimal vectors for the quadratic form Q is exactly

Min(Q) =

{
∞, p

q

}
.

2.3 Binary Hermitian Forms and Hyperbolic 3-Space
We now move to the imaginary quadratic case.

Definition 2.7. Let F be an imaginary quadratic field. A binary Hermitian form
over F is a map f : F 2 → R given by

f(x, y) = axx+ bxy + bxy + cyy,

where a, c ∈ R and b ∈ F . If f maps F 2 to R>0, we say that f is positive definite.

To each binary Hermitian form f we can associate a 2× 2 complex Hermitian matrix:

Definition 2.8. For a binary Hermitian form f(x, y) = axx+ bxy + bxy + cyy, the
matrix of f is the 2× 2 Hermitian matrix Mf with entries in C given by

Mf =

[
a b

b c

]
,

so that f(x, y) =
[
x y

]
Mf

[
x
y

]
.

The value a Hermitian form f takes on the ordered pair (x0, y0) is equal to the result

of v∗Mfv, where v =

[
x0
y0

]
and (∗) denotes conjugate transpose. Note that if f is

positive definite, then f(x, y) > 0 for all pairs (x, y) other than (0, 0).

Definition 2.9. The upper half space, denoted by H3, is a model of three-dimensional
hyperbolic geometry consisting of C× R>0,

H3 = {(z, t) : z ∈ C, t ∈ R>0}.
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There is a correspondence between points in hyperbolic 3-space and positive definite
binary Hermitian forms. The group GL2(C) acts transitively on H3 by

σ · (z, t) =

(
(d− cz)(az − b)− t2ca
|cz − d|2 + t2|c|2

,
|∆|t

|cz − d|2 + t2|c|2

)
,

where σ =

[
a b
c d

]
∈ GL2(C) and ∆ = detσ = ad− bc [Swa71]. The stabilizer of the

point (0, 1) is isomorphic to the special unitary group SU(2).

We identify points in the upper half space with the cone of positive definite binary
Hermitian forms (mod scaling by positive real numbers) by the map

(z, t) 7→
[

1 −z
−z |z|2 + t2

]
.

The action on H3 is compatible with the left action by GL2(C) on positive definite
binary Hermitian forms; for a Hermitian form f and v ∈ C2,

Definition 2.10 ([Swa71]). If λ, µ ∈ OF generate the unit ideal and µ 6= 0, let Sλ,µ
denote the hemisphere in H3 given by |µz − λ|2 + t2|µ|2 = 1. This is a Euclidean
hemisphere with center

(
λ
µ
, 0
)
and radius 1

|µ| . Let B be the set of points in H3 which
lie above or on Sλ,µ; i.e., B is the set of all (z, t) ∈ H3 satisfying the inequality
|µz − λ|2 + t2|µ|2 ≥ 1 for all λ, µ ∈ OF which generate the unit ideal.

Let F be an imaginary quadratic field with ring of integers OF . Let Ω be a fundamental
domain for the group of translations by elements of OF , and Ω′ be the set of all points
(z, t) ∈ H3 with z ∈ Ω ∩ F such that (z, t) ∈ B as defined above. Note that by our
correspondence between Hermitian forms and points in H3, the points in B represent
all positive definite binary Hermitian forms f for which f(1, 0) is the minimum of f .

Theorem 2.11 ([Swa71] 3.13). There are only a finite number of λ, µ ∈ OF with
(λ, µ) = OF such that Ω′ ∩ Sλ,µ 6= ∅.

We can visualize the layout of the hemispheres at the boundary of H3 by setting
t = 0 and drawing the resulting circles in the complex plane. There are five imaginary
quadratic fields whose rings of algebraic integers are Euclidean, namely Q(

√
−1),

Q(
√
−2), Q(

√
−3), Q(

√
−7), and Q(

√
−11). For these five fields, every point in F

lies within 1 of an integer, thus F is covered by hemispheres over integer points. The
hemispheres covering Ω for each of the Euclidean cases are shown in Figures 2.2-2.6.

When the ring of integers Z[ω] is a principal ideal domain, even if it is not Euclidean,
the fundamental region Ω can be covered by hemispheres over principal cusps [Swa71].
The imaginary quadratic fields for which the ring of integers is a P.I.D. are exactly
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Figure 2.2. Q(
√
−1). The Gaussian integers Z[

√
−1] are a Euclidean ring.
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Figure 2.3. Q(
√
−2). The ring of integers Z[ω], where ω =

√
−2, is Euclidean.
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Figure 2.4. Q(
√
−3). The ring of integers Z[ω], where ω = 1+

√
−3

2
, is Euclidean.
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Figure 2.5. Q(
√
−7). The ring of integers Z[ω], where ω = 1+

√
−7

2
, is Euclidean.
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Figure 2.6. Q(
√
−11). The ring of integers Z[ω], where ω = 1+

√
−11
2

, is Euclidean.

<
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−1i

1
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the fields with class number h(F ) = 1; there exist four such fields in addition to the
five Euclidean cases, namely Q(

√
−19), Q(

√
−43), Q(

√
−67), Q(

√
−163) [Sta69]. A

covering of the fundamental region Ω by principal hemispheres for Q(
√
−19) is shown

in Figure 2.7. Note that the integer hemispheres are no longer enough to cover Ω.

Figure 2.7. Q(
√
−19). The ring of integers Z[ω], where ω = 1+

√
−19
2

, is a non-Euclidean
principal ideal domain.
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2.4 Voronoi Tessellations of H3

In the classical case, the Farey tessellation of the upper half plane coincides with
the Voronoi tessellation arising from the theory of quadratic forms. Here we discuss
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a generalization of Voronoi that applies to Hermitian forms, following closely the
exposition of [STY21].

Let F be a number field with ring of integers OF . The space of positive definite
Hermitian forms over F form an open cone in a real vector space. There is a natural
decomposition of this cone into polyhedral cones corresponding to the facets of the
Voronoi-Koecher polyhedron Π [Koe60,Ash77].

The Voronoi complex is the result of a polyhedral reduction theory for Γ developed by
Ash [AMRT10, Ch. II] and Koecher [Koe60], generalizing Voronoi’s work [Vor08] on
perfect quadratic forms over Q. The top-dimensional cells in the Voronoi complex are
in bijection with Γ-equivalence classes of perfect n-ary forms.

Fix a square-free positive integer d. Let F be the imaginary quadratic field F =
Q(
√
−d), with ring of algebraic integers OF . Then F has discriminant ∆ = −4d if

d ≡ 1, 2 mod 4, and ∆ = −d otherwise. The ring of integers OF is equal to Z[ω],
where

ω =

{√
−d if d ≡ 1, 2 mod 4

1+
√
−d

2
if d ≡ 3 mod 4.

We fix a complex embedding F ↪→ C, identify F with the image, and extend this
identification to vectors and matrices. The notation ·̄ denotes complex conjugation on
C, the non-trivial Galois automorphism on F .

Let V be the 4-dimensional real vector space of 2×2 Hermitian matrices with complex
coefficients,

V =

{[
a b
b̄ c

]
: a, c ∈ R, b ∈ C

}
.

Let C ⊂ V denote the subset of positive definite matrices. Then C is an open cone
with a boundary consisting of semi-definite Hermitian forms. The minimal vectors of
a Hermitian form can be represented by elements on the boundary of C via the map
q defined below.

Using the chosen complex embedding of F , we view VF , the 2× 2 Hermitian matrices
with entries in F , as a subset of V . Define a map q : O2

F \ {0} → V by q(x) = xx̄t. For
each x ∈ O2

F , we have that q(x) is on the boundary of C. Let C∗ denote the union of
C and the image of q.

The group GL2(C) acts on V by g · A = gAḡt. The image of C in the quotient of V
by positive homotheties can be identified with hyperbolic 3-space H3. The image of q
in this quotient is identified with P1(F ) = F ∪ {∞}, the set of cusps.

Each A ∈ V defines a Hermitian form A[x] = x̄tAx, for x ∈ C2. Using the chosen
complex embedding of F , we can view O2

F as a subset of C2.
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Definition 2.12. For A ∈ C, we define the minimum of A to be the minimum value
obtained by evaluation on integer vectors,

min(A) := min
v∈O2

F \{0}
{A[v]} .

Note that min(A) > 0 since A is positive definite. A vector v ∈ O2
F is called a minimal

vector of A if A[v] = min(A). We let Min(A) denote the set of minimal vectors of A.

Since O2
F is discrete in the topology of C2, the set Min(A) is finite. A minimal vector[

α
β

]
∈ O2

F generates an ideal (α, β) ⊆ OF that has minimal norm among ideals in its

class in the class group of F .

Definition 2.13. We say a Hermitian form A ∈ C is a perfect Hermitian form over
F if

spanR {q(v) : v ∈ Min(A)} = V.

The above definition is equivalent to the statement that a Hermitian form A is perfect
if Min(A) determines A up to scaling by R+.

Definition 2.14. A polyhedral cone in V is a subset σ of the form

σ =

{
n∑
i=1

λiq(vi) : λi ≥ 0

}
,

where v1, v2, . . . , vn are non-zero vectors in O2
F .

Definition 2.15. A set of polyhedral cones S forms a fan if the following two
conditions hold:

1. If σ is in S and τ is a face of σ, then τ is in S.

2. If σ and σ′ are in S, then σ ∩ σ′ is a common face of σ and σ′.

Note that a face here can be of codimension higher than 1.

Theorem 2.16. There is a fan S in V with GL2(OF )-action such that the following
hold.

1. There are only finitely many GL2(OF )-orbits in S.

2. Every y ∈ C is contained in the interior of a unique cone in S.

3. Any cone σ ∈ S with non-trivial intersection with C has finite stabilizer in
GL2(OF ).

The 4-dimensional cones in S are in bijection with perfect forms over F .
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The bijection is explicit and allows one to compute the structure of S using a modifi-
cation of Voronoi’s algorithm [DSGG+16, §2, §6]. Specifically, σ is a 4-dimensional
cone in S if and only if there exists a perfect Hermitian form A such that

σ =

 ∑
v∈Min(A)

λvq(v) : λv ≥ 0

 .

Modulo positive homotheties, the fan S descends to a GL2(OF )-tessellation of H3 by
ideal polytopes.

In joint work with Thalagoda and Yasaki ([STY21]) we classified the perfect forms
for all imaginary quadratic fields F of absolute discriminant up to 5000, extending
previous explicit computations [Cre84] and [Yas10]. See Figure 2.8 for a plot of
Nperf (F ) as a function of the discriminant of F .

Figure 2.8. Number of Perfect Forms for Imaginary Quadratic Fields. The number of
perfect forms Nperf (F ), indexed by absolute discriminant of F up to 5000.
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The following theorem gives a sharp bound ensuring that the configurations of minimal
vectors of perfect binary Hermitian forms over imaginary quadratic fields do not get
arbitrarily complicated. In particular, the number of minimal vectors is bounded,
independent of the field, so there are only a finite number of combinatorial types of
ideal polytopes arising in the Voronoi tessellation of H3.
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Figure 2.9. Observed Polytope Types as a Percentage of Total. Observed polytope
types as a percentage of the total number of polytopes, indexed by absolute discriminant
of F .
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Theorem 2.17. Let A be a positive definite binary Hermitian form over an imaginary
quadratic field. Then

#Min(A) ≤ 12.

Proof. See [STY21].

Since the minimal vectors of each perfect form map to vertices of their corresponding
polytopes in the cone, and there are finitely many combinatorial types of polytopes
with 12 or fewer vertices, only finitely many types of polytopes can arise in a tessellation
of H3 as we vary the discriminant of the imaginary quadratic field. Data from [Dil96]
indicates that there are more than six million combinatorial types of 3-dimensional
polytopes. However, in our range of computations, only 8 distinct combinatorial types
of polytopes were observed, as shown in Table 2.1.

As the discriminant increases, the total number of polytopes increases and appears to
be dominated by tetrahedra. The types of observed polytopes as a percentage of the
total number of polytopes computed (up to absolute discriminant 5000) are plotted in
Figure 2.9.
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Table 2.1. Combinatorial Types of Polytopes Observed. The total number of fields
witnessing each type of polytope is listed, as well as the total percentage of each
polytope type observed in the current range of computation.

Polytope Type Number of Fields Percentage of Polytopes

Tetrahedron 1504 91.524

Octahedron 912 0.066

Cuboctahedron 16 0.005

Triangular prism 1511 2.416

Hexagonal cap 1358 0.199

Square pyramid 1506 5.764

Truncated tetrahedron 60 0.007

Triangular dipyramid 416 0.019
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2.5 Complications in Higher Class Numbers
Generalized Voronoi tessellations for imaginary quadratic fields connect nicely with
hemisphere theory when the ring of integers OF is a principal ideal domain, i.e., when
the class number h(F ) is 1.

Definition 2.18. A fractional ideal I of OF is a nonzero submodule of F such that
there exists a nonzero integer d ∈ Z with dI an ideal of OF . If a fractional ideal I is
an ideal of OF , then I is an integral ideal. An ideal (fractional or not) is said to be
a principal ideal if there exists x ∈ F such that I = xOF . Finally, OF is a principal
ideal domain (PID) if every ideal of OF is a principal ideal.

Definition 2.19. Let I be a fractional ideal of OF . We say that I is invertible if
there exists a fractional ideal J of OF such that IJ = OF .

Note that every fractional ideal in the ring of integers of a number field is invertible.
The set of fractional ideals of OF form a group, and the set of principal ideals form a
subgroup.

Definition 2.20. Let F be a number field. The ideal class group C`F or class group
of F is the quotient of the group of fractional ideals JF by the subgroup of principal
ideals PF .

Theorem 2.21 ([Neu92]). The class group C`F is finite. Its order

h(F ) = [JF : PF ]

is called the class number of F .

When the class number h(F ) is greater than 1, F has singular points; that is, the cusps
are no longer all equivalent up to GL2(OF ). Equivalence classes of cusps up to the
action are parameterized by elements in the class group, so each element beyond the
trivial one corresponds to an equivalence class of singular points. The singular points
in F give rise to hemispheres but cannot be used for inversions, as there is no matrix
in GL2(OF ) that maps a singular point to ∞. The connection between hemispheres
and Voronoi edges – the argument that a point in H3 lying on a given principal
hemisphere but outside of all other principal hemispheres gives rise to an edge in the
Voronoi tessellation – no longer holds, since the point in question may lie on or under
a hemisphere corresponding to a singular point. For example, if F = Q(

√
−5), with

class number h(F ) = 2, using equivalence classes of edges in the Voronoi tessellation
to generate hemispheres yields the partial covering of Ω shown in Figure 2.10. There
are points in F near the singular point 1+w

2
which are not covered by any of these

principal hemispheres. This example is discussed in greater detail in Section 3.2.3.
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Figure 2.10. Q(
√
−5) with a Singular Point. The ring of integers Z[ω], where ω =

√
−5,

is not a principal ideal domain. The point 1+w
2

is a singular point.
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Chapter 3

Generalized Continued Fractions

3.1 The Generalized Continued Fraction Algorithm
Definition 3.1. Let F be the field of fractions of an integral domain R, and let z ∈ F .
An inversion relative to z is a map u : F → P1(F ) for which u(z) =∞.

When R = Z and F = Q, for example, we may take inversion relative to 0 to be
the map z 7→ −1

z
. We compute the image under inversion by means of matrix-

vector multiplication, where an element α
β
∈ F is represented by the column vector[

α
β

]
∈ O2

F , the point at infinity is a column vector with second entry 0, and the

matrix representation of an inversion is an element in GL2(OF ). In general, an

inversion relative to a particular cusp is not unique; for example, both u1 =

[
0 1
1 0

]
and u2 =

[
0 1
−1 0

]
are inversions relative to 0.

Since
[
1 x
0 1

]
∈ GL2(OF ) for all x ∈ OF , we can find a fundamental domain for the

action of GL2(OF ) that is contained within the region Ω with vertices {0, 1, ω, ω + 1}.

Let {v1, v2, . . . , vn} be the finite list of rational points determining the hemispheres
needed to cover Ω, and let U = {u1, u2, . . . , un} be a finite set of inversions such that
uj is an inversion relative to vj for each j = 1, 2, . . . , n.

Let α ∈ F , and let S be the finite set of singular points of F contained in Ω.

Following [Ara10] we define a pseudo-Euclidean function on the set of cusps P1(F ) as

26
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follows:

ψ

(
λ

µ

)
=


|µ|2 if λ

µ
is principal

0 if λ
µ

=∞
N〈µ〉
N〈λ,µ〉 if λ

µ
∈ S is singular.

Note that ψ(α) = 1 for all α ∈ OF .

In the cases where the set of singular points S is empty, the algorithm described
in Theorem 1.15 may be implemented in Magma and used to compute generalized
continued fraction convergents:

Algorithm 3.2 (Generalized Continued Fractions). The list of convergents from ∞
to α is computed from the matrix form of the edges between them.

Input: α ∈ F , where h(F ) = 1

Output: list of convergents following edges of the tessellation

1. Set up inversions: compute list of principal cusps corresponding to inversion
hemispheres necessary to cover Ω; sort by increasing norm of denominator;
compute matrix sending each cusp to infinity.

2. While α is not infinity, translate so α0 ∈ Ω; record the translation matrix and
its inverse in separate lists.

3. For principal cusps in the inversion list, check whether α0 lies under the inversion
hemisphere; break when true, record the inversion matrix and its inverse.

4. Invert α0 with selected matrix, update α; if α is not infinity, return to step 2.

5. Compute products of translations and inversions: for each round of translation
and inversion, compute T−1i U−1i .

6. Compute continued fraction convergents: begin with identity matrix, append
products one at a time from the previous step on the right, multiply by the
vector representing infinity. The first convergent is T−11 U−11 ∞, the second is
T−11 U−11 T−12 U−12 ∞, and so on. The last convergent is α itself.

The computation of the list of convergents to α is done in an analogous way to the
computation of continued fraction convergents in the classical case, using the output
of the (psuedo-)Euclidean algorithm.

Recall for the classical case, the pair
{
p

q
,
p′

q′

}
determines an edge in the Farey

tessellation of H if and only if det

([
p p′

q q′

])
= ±1. In the continued fraction
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expansion of α ∈ Q, for each adjacent pair of convergents
p

q
,
p′

q′
we have pq′−p′q = ±1,

thus each adjacent pair of convergents represents an edge in the tessellation.

Theorem 3.3. Let F be an imaginary quadratic field whose ring of integers is Eu-
clidean. Then each adjacent pair of convergents in the finite list returned by the
generalized continued fraction algorithm determines an edge in the Voronoi tessellation
of H3 for F .

Proof. Let F be an imaginary quadratic field whose ring of integers is Euclidean.
Then the class number of F is 1, and every element of F is equivalent to ∞. Let
α ∈ F . Then there exists γ ∈ GL2(OF ) such that γ · α =∞, so the pseudo-Euclidean
algorithm in Theorem 1.15 generates a list of elements of GL2(OF ) such that

∞ = UmTmUm−1Tm−1 · · ·U2T2U1T1α,

where the Uj are inversions (not necessarily unique) in the set U defined above, and
the Tj are translations by elements in OF . Reversing the process, we have

α = T−11 U−11 T−12 U−12 · · ·T−1m−1U
−1
m−1T

−1
m U−1m ∞.

For j = 1, 2 . . . ,m − 1, we obtain the jth convergent to α by deleting the sequence
T−1j+1 · · ·U−1m from the above product; the mth convergent is α itself. For example, the
first convergent is T−11 U−11 ∞, and the fourth is

T−11 U−11 T−12 U−12 T−13 U−13 T−14 U−14 ∞.

Note that each pair of adjacent convergents in the list is of the form {g ·∞, g ·β}, with
g ∈ GL2(OF ) and β = T−1k U−1k ∞ for some k. Then β is equivalent up to translation
by R to one of the points v from which the finite set of inversions was obtained. Since
this is a Euclidean case, these points are in R, thus β ∈ R.

Since {∞, 0} is an edge in the Voronoi tessellation, and β ∈ R implies β is equivalent
to 0 up to translation, we have that {∞, β} is an edge in the Voronoi tessellation.
Then since the action of GL2(OF ) takes edges to edges, {g ·∞, g · β} is an edge in the
tessellation.

Lemma 3.4. The finite set of inversions for the generalized continued fraction algo-
rithm can be generated using only principal cusps.

In the case where the input α ∈ F is equivalent to infinity, the orbit of α is covered by
principal hemispheres ([Swa71,Ara10], and the algorithm terminates upon reaching
infinity. In the case where α is equivalent to a singular point, the orbit of α includes
only non-principal cusps, and the algorithm terminates upon reaching a singular point
(which is not covered by a principal hemisphere).
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Lemma 3.5. Let F be an imaginary quadratic field of class number 1, and let
λ
µ
∈ P1(F ) be a principal cusp. If a point (z, t) ∈ H3 lies on the hemisphere determined

by λ
µ
and does not lie under any other principal hemisphere, then there exists a

Hermitian form whose set of minimal vectors is
{[

λ
µ

]
,

[
1
0

]}
.

In the class number 1 cases, since F has no singular points, this result follows from
the previous result for principal hemispheres.

Theorem 3.6. Let F be an imaginary quadratic field with class number 1. Then each
adjacent pair of convergents in the finite list returned by the generalized continued
fraction algorithm determines an edge in the Voronoi tessellation of H3 for F .

Proof. Let F be an imaginary quadratic field with h(F ) = 1 and with ring of integers
R. Let α ∈ F . Since the class number is 1, α is equivalent to ∞. Then there exists
γ ∈ GL2(OF ) such that γ · α = ∞, so the pseudo-Euclidean algorithm in Theorem
1.15 generates a list of elements of GL2(OF ) such that

∞ = UmTmUm−1Tm−1 · · ·U2T2U1T1α,

where the Uj are inversions (not necessarily unique) in the set U defined above, and
the Tj are translations by elements in OF . Reversing the process, we have

α = T−11 U−11 T−12 U−12 · · ·T−1m−1U
−1
m−1T

−1
m U−1m ∞.

For j = 1, 2 . . . ,m − 1, we obtain the jth convergent to α by deleting the sequence
T−1j+1 · · ·U−1m from the above product; the mth convergent is α itself. For example, the
first convergent is T−11 U−11 ∞, and the fourth is

T−11 U−11 T−12 U−12 T−13 U−13 T−14 U−14 ∞.

Note that each pair of adjacent convergents in the list is of the form {g ·∞, g ·β}, with
g ∈ GL2(OF ) and β = T−1k U−1k ∞ for some k. Then β is equivalent up to translation
by R to one of the points v from which the finite set of inversions was obtained.
These inversions were computed form the Voronoi data and correspond to edges in
the tessellation, thus {∞, β} is an edge in the Voronoi tessellation. Then since the
action of GL2(OF ) takes edges to edges, {g · ∞, g · β} is an edge in the tessellation.



CHAPTER 3. GENERALIZED CONTINUED FRACTIONS 30

3.2 Examples

3.2.1 Class Number 1, Euclidean

Let F = Q(
√
−7), and let α ∈ F be the element −77ω−97−13 . Using Algorithm 3.2, the

continued fraction convergents to α are given by

1

0
,

6ω + 7

1
,
−18ω − 22

−3
,

52ω − 21

3ω + 2
,

3ω + 61

−2ω + 5
,
−9ω + 46

−2ω + 3
,
−77ω − 97

−13
.

3.2.2 Class Number 1, Non-Euclidean

Let F = Q(
√
−43), and let α ∈ F be the element 71ω+33

63
. Using Algorithm 3.2, the

continued fraction convergents to α are given by

1

0
,
ω + 1

1
,

4ω − 11

ω + 2
,

26

−2ω + 3
,
−4ω − 15

ω − 5
,

6ω − 63

5ω − 2
,

71ω + 33

63
.

3.2.3 Class Number 2

When the class number of F is greater than 1, there exist points in F (the so-called
singular points) that are not equivalent to infinity modulo the action of GL2(OF ). In
the upper half space picture, these points still give rise to hemispheres as equality
sets for the evaluation of Hermitian forms, but since the points themselves cannot be
sent to infinity, these hemispheres do not contribute to the set of inversions used in
the generalized continued fraction algorithm. They may, however, contribute minimal
vectors to Hermitian forms on the hemispheres over principal cusps, including those
necessary to form a covering of the fundamental domain. Since edges in the Voronoi
tessellation indicate the existence of Hermitian forms whose minimal vectors arise
from exactly two distinct points in P1(F ), the edges in the tessellation for a field of
class number 2 or higher may not provide a sufficient number of hemispheres to cover
the fundamental domain.

For example, let F = Q(
√
−5). From the tables of examples computed by [Ara10], a

fundamental region for the action of GL2(OF ) can be covered by hemispheres over
principal cusps λ

µ
, where |µ|2 ≤ 20. The singular points in this case (up to the action)

are given by
{
±1

2
+
√
−5
2

}
.

Let Ω be the 1-by-ω box with lower left vertex 0, a fundamental region for the group
of translation by elements of OF .

Using Magma to compute the singular points and inversion hemispheres in Ω for
Q(
√
−5) from our Voronoi data, we find the set of singular points SF up to translation
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Figure 3.1. Q(
√
−5) with an Uncovered Principal Cusp. The point 9+10ω

17
is a principal

cusp, but is not covered by the principal hemispheres corresponding to Voronoi edges.

<

=

−1

−1i

1

1i

2

2i

3

3i

contains only one cusp,

SF =

{[
1 + ω

2

]}
,

which is consistent with the cited result above, and the set of principal cusps α for
which {gα,∞} is an edge in the Voronoi tessellation for some g ∈ GL2(OF ) is{[

0
1

]
,

[
ω
1

]
,

[
1
1

]
,

[
1 + ω

1

]
,

[
ω
2

]
,

[
2 + ω

2

]}
⊂ Ω.

Note that this includes principal cusps with denominators of norm no more than 4,
which does not meet the bound established by Aranes. These hemispheres nearly cover
Ω, but there exist points close to the singular point in the center which lie under the
hemisphere generated by that singular point. Since every point in F \SF is covered by
a principal hemisphere ([Swa71]), there exist points in H3 above these small regions
whose associated Hermitian forms have more than two minimal vectors. Then the set
of principal hemispheres generated by our Voronoi edge data is not enough to cover Ω,
and our generalized continued fraction algorithm will break if it reaches a point in the
uncovered region.

Figure 3.1 shows that not every principal cusp in this class number 2 case is covered
by principal hemispheres arising from the Voronoi tessellation. The point α = 9+10ω

17

is principal, yet does not lie under any of the six computed hemispheres; α does,
however, lie under the hemisphere over the singular point 1+ω

2
.



Chapter 4

Future Directions

Modular forms are holomorphic functions on the complex upper half plane H which,
under the action of the modular group SL2(Z), transform in a predictable, nearly
invariant way [Con16]. Finite-index subgroups of SL2(Z), called congruence subgroups,
also give rise to modular forms for their respective actions.

Definition 4.1 ([Con16]). Let k be an integer. A modular form of weight k for SL2(Z)
is a function f : H → C such that

(i) f is holomorphic on H;

(ii) f
(
az + b

cz + d

)
= (cz + d)kf(z) for all

[
a b
c d

]
∈ SL2(Z) and all z ∈ H;

(iii) f is “holomorphic at infinity,” that is, the values f(z) are bounded as Im(z)→∞.

Property (ii) is often called the modularity condition. Although SL2(Z) is an infinite
group, it is finitely generated, so we may verify the modularity condition for a particular
modular form of a given weight simply by verifying it on the generators of SL2(Z).

Proposition 4.2. The matrix group SL2(Z) is generated by the matrices S and T ,

S =

[
0 −1
1 0

]
and T =

[
1 1
0 1

]
.

See [DS05] or [Con16] for detailed proofs.

To further investigate the significance of the modularity condition, we compute a few
examples.

32
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Example 4.3. Let f be a modular form of weight k and consider the matrix

T =

[
1 1
0 1

]
∈ SL2(Z).

For any z ∈ H, the modularity condition on f gives

f

(
1z + 1

0z + 1

)
= (0z + 1)kf(z),

thus f(z + 1) = f(z). Then every modular form (of any weight) is invariant under
horizontal translation by integers.

Example 4.4. Let f be a modular form of weight k and consider the matrix

S =

[
0 −1
1 0

]
∈ SL2(Z).

For any z ∈ H, the modularity condition on f gives

f

(
0z − 1

1z + 0

)
= (1z + 0)kf(z),

thus f (− 1/z) = zkf(z). The appearance of k as an exponent on z shows that the
weight k has a significant impact on the symmetry of inversion.

Example 4.5. Let f be a modular form of odd weight k and consider the matrix

−I =

[
−1 0
0 −1

]
∈ SL2(Z).

For any z ∈ H, the modularity condition on f gives

f

(
−1z + 0

0z − 1

)
= (0z − 1)kf(z),

thus f(z) = (−1)kf(z), and since k is odd, we have f(z) = −f(z) for all z. Then f
must be identically zero. It follows that for any odd integer k, the only modular form
of weight k is the zero function.

The final condition in the definition of modular form is the notion of holomorphicity
“at infinity,” where the point at infinity is visualized as being infinitely high up from
any position in the upper half plane. To make sense of this, we utilize a change of
variables and consider the Fourier expansion (or q-expansion) of a modular form.

By the modularity condition, modular forms are translation-invariant: f(z+ 1) = f(z)
for all z ∈ H, thus the function has a Fourier expansion in terms of e2πiz. To visualize
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the transformation of the domain from the half plane picture to the disk picture,
consider z 7→ e2πiz, for z in a vertical strip of the upper half plane above the interval
[0, 1). Then x+ iy 7→ e2πi(x+iy) = e2πix/e2πy, so rotation in the image is determined by
x, and scaling is inversely determined by y. For points on the real line, y = 0, so the
interval [0, 1) maps to the unit circle; since the upper half plane is an open subset of
C which excludes the real line, this effectively results in an open circle in the image.
Each vertical line in the half plane model corresponds to a ray through the origin,
scaled to a supremum distance from zero of 1 (for y → 0) and infimum distance of
0 (for y →∞). Thus the point at infinity maps to zero, and the vertical strip over
the unit interval maps to the unit disk. Due to translation invariance, every vertical
strip maps to the unit disk in the same way. So we may understand the behavior of
f(z) on the upper half plane by observing the behavior of the transformed function
on e2πiz in the unit disk.

Setting q = e2πiz, we obtain a Laurent series in q centered at zero for the modular
form:

f(q) =
∑
n∈Z

anq
n.

If the Laurent series is a power series in q (i.e., it has no negative exponents), as is
the case for every modular form, then the transformed function is holomorphic at 0,
which implies the original function is holomorphic “at infinity.”

For certain normalized modular forms, the coefficients in this q-expansion form
sequences with various interesting applications to number theory. Computing the
expansions is generally difficult, but in the classical case over Q, modular forms can
be computed explicitly by means of modular symbols and continued fractions; see
Chapter 2 of [Cre97] for details. For Bianchi modular forms, the imaginary quadratic
analogues of classical modular forms, one might hope to use generalized continued
fractions for these computations. A deeper understanding of the relationship between
continued fractions and Voronoi tessellations for imaginary quadratic fields could help
push the work beyond the Euclidean cases.
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