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ABSTRACT. We use Nathanson’s g-adic representation of integers to relate metric properties
of Cayley graphs of the integers with respect to various infinite generating sets S to problems
in additive number theory. If S consists of all powers of a fixed integer g, we find explicit
formulas for the smallest positive integer of a given length. This is related to finding the
smallest positive integer expressible as a fixed number of sums and differences of powers of
g. We also consider S to be the set of all powers of all primes and bound the diameter of
Cayley graph by relating it to Goldbach’s conjecture.

1. INTRODUCTION

Fix an integer g > 2. Nathanson [9] introduces a g-adic representation of the integers Z
in his investigation of number theoretic analogues of nets in metric geometry. The g-adic
representation of an integer provides a method of computing its length in a metric depending
on g. Nathanson [8] considers more general sets of integers to investigate questions about
the finiteness of the diameter of Z. In this note, we continue these investigation in two
different directions. First, we find a formula for the smallest positive integer with a given
length (Theorems 3.6 and 3.7). Next, in Section 4 we consider a specific set of integers
constructed from primes. We prove that Z has diameter 3 or 4 in the corresponding metric
(Theorem 4.3), and it is 3 assuming Goldbach’s Conjecture.

2. CAYLEY GRAPHS OF THE INTEGERS

Let G be a group. Fix a generating set S for G. Then we can construct a graph I' =
['(G,5), known as the Cayley graph corresponding to G and S, by taking the vertices of I to
be the elements of G and connecting any two vertices g and h by an edge whenever gs = h
for some element s in S. We view the graph I' as a metric space by setting the length of each
edge to be 1 and taking the shortest-path metric on I'; this procedure turns the algebraic
object G into a geometric object I'. In this paper, we investigate different choices of infinite
generating sets S when G = Z.

We are primarily interested in generating sets that are closed under additive inverses and
are closed under taking powers. The simplest such generating set is the collection

Sy ={£1,+g, +¢°, +4°, .. .}.
We denote the Cayley graph I'(Z, S,) by C,. Edges in the graph C, connect each vertex to

infinitely many other vertices, see Figure 1. More generally, let P be a subset of positive
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FIGURE 1. Some edges emanating from 0 in red, from 1 in blue, and from 4
in orange in the graph Cy. Each vertex is incident with infinitely many edges.
Observe that the distance from 0 to 3 is 2.

integers, and consider generating sets of the form

Sp=J S,

geP

Let Cp =T'(Z, Sp) denote the corresponding Cayley graph.

The study of these graphs leads to an interesting interplay between the geometry of the
graph and problems in additive number theory. For example, in C5 we can ask for the value
of the smallest n > 0 (in the usual ordering of the integers) at distance d from 0. This is
related to the problem of finding the smallest integer that can be expressed as sums and
differences of exactly d powers of 2. Looking at Figure 1, one can see that 3 is the smallest
positive number that is at distance 2 from 0, since 3 = 2° + 2!; extrapolating this figure
further, one can verify that 11 is the smallest positive integer at distance 3 from 0, since
11 = 20 + 2! + 23, We investigate this problem in general for ¢ > 1 in Section 3.

In Section 4, we investigate C'p for more general subsets P of positive integers. For such
graphs, questions about the diameter are already interesting and difficult [8, 1]. We use a
covering congruences result of Cohen and Selfridge [4, Theorem 2] together with Helfgott’s
proof [7, Main Theorem] of the ternary Goldbach’s conjecture to show that when P is the set
of all primes, the diameter of C'p is either 3 or 4; moreover if Goldbach’s conjecture holds, it
is 3. We also conduct numerical investigations to narrow the search for the smallest positive
length-3 integer in this graph, refining results of Cohen and Selfridge [4] and Sun [11].

3. METRIC PROPERTIES OF (|

Let g > 0 be an integer, and let C, = I'(Z, S,) be the Cayley graph of Z with the generating
set Sg = {%g' | i € Zxo}. Let dy = dg, denote the corresponding edge-length metric. We
denote the distance d,(0,n) by ¢,(n) and refer to this as the g-length of n.

The following theorems of Nathanson [9] give a method of computing g-length in C,,.
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Theorem 3.1 ([9, Theorem 6]). Let g be an odd integer, g > 3. Fuvery integer n has a

unique representation in the form
(o]

=0
such that
(1) ¢ € {0,£1,£2,...,4+(9 — 1)/2} for all nonnegative integers 1,
(2) €; # 0 for only finitely many nonnegative integers i.

Moreover, n has g-length

) =3 Jeil.

1=0

Theorem 3.2 ([9, Theorem 3]). Let g be an even positive integer. FEvery integer n has a

unique representation in the form
(o]

i=0
such that
(1) € € {0,£1,£2,...,£2} for all nonnegative integers i,
(2) € # 0 for only finitely many nonnegative integers i,
(3) Zf |€7J| = %, then ‘€i+1| < % and €i€ir1 = 0.

Moreover, n has g-length
ly(n) = el
=0

For any integer n, Theorems 3.1 and 3.2 give a unique g-adic expression for n that realizes
a geodesic path from 0 to n in C,. Thus there is an N > 0 such that n = Zij\io €', en # 0,
and £,(n) = 3.2, |eil. We call n = S°N e;g* the minimal g-adic expansion, and denote it
by

[n]y = [€o, €1, -, €N

Remark 3.3. It is not the case that there is a unique geodesic path from 0 to n. For
example, 11 =1+ 21 423 = -1 — 22 + 24,

It is interesting to look at how ¢ (n) varies as a function of g. See Figure 2. We chose a
random number n = 20,233,509, and produced a plot of y = ¢,(n) for a range of values for
g. For g sufficiently large, we have {,(n) = n, but it appears that interesting things happen
along the way.

Example 3.4. The minimal 5-adic expansion of 46 is [46]5 = [1, —1,2], s0 46 = 1 —5+2-52
and (5(46) =1+ 1+ 2 =4.

We denote by A;(h) the smallest positive integer of g-length h in C,. We find an explicit
formula for A, in Theorems 3.6 and 3.7 below using Nathanson’s g-adic representation [9] of
positive integers. The first few values are tabulated in Table 1. We remark that the values
of Ag show up in The On-Line Encyclopedia of Integer Sequences (OEIS) as A007583, and
the values of A3 show up as A007051. The sequences of values for A, for other primes p did
not appear, so the second author has added them. As an example, we chose the prime 19;


https://oeis.org
https://oeis.org/A007583
https://oeis.org/A007051
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FIGURE 2. Plots of y = £,(20233509) as a function of g.

TABLE 1. First few values of \,(k) for primes p < 30.

10000

7x106

6x106

5x108

4x108

3x106

2x106

1x106

y=|4(20233509) o

5x108

1x107

15x107

2x107

k 2 3 5 7 11 13 17 19 23 29
1 1 1 1 1 1 1 1 1 1 1
2 3 2 2 2 2 2 2 2 2 2
3 11 ) 3 3 3 3 3 3 3 3
4 43 14 8 4 4 4 4 4 4 4
) 171 41 13 11 ) 5 5 ) ) 5
6 683 122 38 18 6 6 6 6 6 6
7 2731 365 63 25 17 7 7 7 7 7
8 10923 1094 188 74 28 20 8 8 8 8
9 43691 3281 313 123 39 33 9 9 9 9
10 174763 9842 938 172 50 46 26 10 10 10
11 699051 29525 1563 515 61 29 43 29 11 11
12 2796203 88574 4688 858 182 72 60 48 12 12
13 11184811 265721 7813 1201 303 85 767 35 13
14 44739243 797162 23438 3602 424 254 94 86 58 14
15 178956971 2391485 39063 6003 545 423 111 105 81 15
16 715827883 7174454 117188 8404 666 592 128 124 104 44
17 2863311531 21523361 195313 25211 1997 761 145 143 127 73
18 11453246123 64570082 585938 42018 3328 930 434 162 150 102
19 45812984491 193710245 976563 58825 4659 1099 723 181 173 131
20 183251937963 581130734 2929688 176474 5990 3296 1012 542 196 160

Figure 3 shows the integers less than 10,000 and their 19-length, together with the graph of

Yy = )\lg(IE).

The following two theorems give an explicit formula for A,. First, we need a preliminary

lemma that relates the digits in the minimal g-adic expansion of an integer to its size.

Lemma 3.5. Let g > 1 be an integer. Let m and n be distinct integers with minimal g-adic
um). Setn; =0 fori > N and
m; =0 fori > M. Lett > 0 be the largest integer such that ny # m;. Then n > m if and

expansions [nly, = [ng, n1, ..

only if ny > my.

., ny] and [m]y, = [mo, my, ...

,m
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FI1cUuRrE 3. The integers up to 10,000 whose 19-lengths are x are shown to-
gether with the graph of y = Ajg(z).

Proof. By subtracting s = Y -°, 41 n;g', we can assume without loss of generality that n =
S, n_igi and m = ZE:O mig'i,_so _that N = M =t. Since —n = SN (—ni)g and sin}ilarly
for m, it suffices consider positive integers m and n. Relabel if necessary to assume without
loss of generality that ny > my. Then

N—1
n—m= Z —m;)g’ >gN—|—Z(ni—mi)gi.
i=0
Thus it suffices to show
N-1
(1) Z(nz - mi)gl < gN.
i=0

Let 7' = SN " nigh, and let m’ = o8 Fmyg’. The left side of (1) is maximized when n’ is
positive and as large as possible, and m’ is negative and as small as possible, in which case
we claim that n; —m; < g — 1 Thus it suffices to show (1) in this case.

Suppose ¢ is odd. Let b = . Theorem 3.1 implies m; and n; are in {0, £1,...,£b}, so
(2) n;—m; <b+b=g—1.

Suppose g is even. Let b = £. Theorem 3.2 implies m; and n; are in {0,£1,...,%b}.
Furthermore, if a digit |e;| = b, then |¢;41] < b and €;6;,41 > 0. Note that m/y_; # —b, since
m > 0. It follows that the smallest m’ can be is when the minimal g-adic expansion of m/
alternates —b and —(b — 1); the largest n’ can be is when the minimal g-adic expansion of

n' alternates between b — 1 and b. Thus

m'ly>1..,—b,—(b—1)] and [n], <[...,b—1,b],
SO
(3) ni—m; <b+((b—-1)=g—1.

Thus, we have
N-1

N- N1Z N1 .
> (i —mi)g Z g =(g—-1 <g_1)=g -1,

i=0 = i=0
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so (1) follows. O

Theorem 3.6. Let g > 1 be an odd integer, and let k > 0 be an integer. Let q = LgQ_—kIJ, and
let r =k mod & so that k = q(%5*) +r. Let

g1 o o
A:{2 ifr =0, B:{O ifr =0,

-1 . .
—(g—) otherwise; r otherwise;

2

Then
1— g7t

2

Proof. Let b= %, and let n = 1792(1_1 +Ag? 1+ Bg?. A straightforward computation shows

that the minimal g-adic expansion of n is given by

Ay (k) + Ag” " + Bg“.

[—b,—b,...,—b,b] ifT:O’
A _ q d‘iéits
(4) [n]g [—b, —b,...,—b,r] otherwise.
q+ ;Eigits

First, we show £,(n) = k. There are two cases to consider. If r = 0, we have ¢ = | 2% | =

g—1
%. It follows that
g—1 2k
/¢ =bg = =k
o) = ba ( 2 ) <9—1> ’

ly(n) =bg+r =k,

as desired. If r # 0, then

by construction.

Finally, we show that n is the smallest positive integer with this property. Suppose m < n
is a positive integer. Let [m], = [mg,m1,...,my] be the minimal g-adic expansion of m,
and let [n], = [ng,nq,...,ny] be the minimal g-adic expansion given in (4). Set n; = 0 for
1> N, and set m; = 0 for ¢« > M. Let t > 0 be the largest integer such that m; # n;. By
Lemma 3.5, we must have m; < n,. By Theorem 3.1, we have |m;| < b, for all j. Since

n; = —bfor 0 < j < N —1, we cannot have ¢ < N — 1. Since 0 < m < n, we must have
M < N, and hence t = N. Thus my < ny. Furthermore, m; = n; = 0 for j > N. It follows
that £,(m) < £,(n). O

Theorem 3.7. Let g > 1 be an even integer, and let k > 0 be an integer. Let r = k mod
g — 1. Define integers q, A, and B by

— otherwise;

= S ifr=0o0rr>4%,
r  otherwise;
g ifr=0,
r—295 ifr>1,
0 otherwise.
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Then ( 20
gl —g™ 2 2g+1
A(k) = =——"+4+ Ag™? + Bg~1"".
a(F) 2tg T g
Proof. Let b = £, and let
g(1 —g*) 2 2¢+1
=22 4 Ag¥ 4 Bg¥t,
T 0rg Y g
A straightforward computation shows
([-b,—(b—1),—b,—(b—1),...,—=b,—(b—1),b,b—1] ifr =0,
2q+3rdigits
—b,—(b—1),-b,—(b—1),...,—b,—(b—1),b,7 = 0b] ifr >b,
T | e R R ) (b—1).b.r b
2q + 2 digits
[—b,—(b—1),—b,—(b—1),...,—=b,—(b—1),r] otherwise.
\ 2q+rdigits

First, we show ¢4(n) = k. There are three cases to consider. Suppose r = 0. Then g — 1

divides k, so
_ {LJ -k
g—1 g—1

lyn) =q(2b—1)+b+(b—1)

(i)
k

Then

If r > 4, then

If 1 <r <b, then

Finally, we show that n is the smallest positive integer with this property. Suppose m < n
is a positive integer. We need to show {4(m) < {4(n). Let [m], = [mo,ma,...,muy] be
the minimal g-adic expansion of m, and let [n], = [ng,n1,...,ny| be the minimal g-adic
expansion given in (5). Let ¢ > 0 be the largest integer such that m; # n,. By Lemma 3.5,
we must have m; < n;.

First we show that ¢ > 2¢. Note that if ¢ < 2¢q, then t cannot be even, since n, = —b
for even ¢ in this range and Theorem 3.2 implies |m;| < b. Furthermore, ¢ cannot be odd,
since in that case m; = —b. Then by Theorem 3.2, we have |m; 1| < b and my; < 0. We
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have n;y 1 = —b for odd t < 2¢ — 1 and n;y; > 0 for t = 2¢q — 1, so this cannot occur since
myr1 = nyy1 by the definition of ¢. Thus ¢ > 2q, as desired.

We have
t—1 [ele]
- (ZIWI) + || + (Z |mi!> :
; i=t+1

We have (3°:2,,1mi]) = (352,1m|) by the definition of ¢. Since m < n, we have M < N
so t < N. Thus there are two cases to consider.
First suppose t = 2¢. Then we have

(3 =0 (550

from (5) and Theorem 3.2. Thus it suffices to show |m;| < |ny|. If 0 < r << b, then t =
2q = N so m; > 0 since m > 0, and m; < n; from Lemma 3.5. If r = 0 or » > b, then n, = b.
Note that m; # —b, since otherwise my;; < 0 from Theorem 3.2 but m;,1 = ngg =ny >0
from (5). It follows that |m,| < |n¢|, as desired.

Finally, suppose t = 2¢g + 1. Then necessarily r = 0 orr > band t =2¢+1 = N. It
follows that m; > 0 since m > 0, and m; < n; from Lemma 3.5 so |m;| < |n;|. We have

(Zm ) (26— 1)g+b= (tim )

=0
from (5) and Theorem 3.2, so £,(m) < £,(n), as desired. O

4. METRIC PROPERTIES OF Cp

Let P be a set of positive integers. Let Cp = I'(Z, Sp) denote the Cayley graph of Z with
the generating set
Sp= [ J{*a' | i € Zxo}.
acP
We give Cp the edge-length metric dg,, and use ¢p(n) to denote the P-length of n in

the metric dg,, i.e., £p(n) = dg,(0,n). The P-length function is much more subtle when
#P > 1.

Question 4.1. Let P be a subset of primes. Let Ap(h) denote the smallest positive integer
of P-length h in Cp. Compute the function Ap(h).

There are partial results addressing Question 4.1 when #P < oco. Hadju and Tijdeman
(6] prove that exp(ck) < Ap(k) < exp((klogk)®), with some constant ¢ depending on P and
an absolute constant C'.

Nathanson [8] gives a class of generating sets for Z whose arithmetic diameters are infinite.

Theorem 4.2 ([8, Theorem 5]). If P is a finite set of positive integers, then Cp has infinite
diameter.

On the other hand, for infinite P the diameter of C'» may be finite. The ternary Goldbach
conjecture states that every odd integer n greater than 5 can be written as the sum of three
primes. Helfgott’s proof [7, Main Theorem] of this implies if P is the set of all primes, then
Cp is at most 4.
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Theorem 4.3. Let P be the set of all primes. The diameter of Cp is 3 or 4.

Proof. 1t is easy to see that ¢p(n) = 1 for n € {1,2,3,4,5}. Helfgott [7, Main Theorem|]
proves that every odd integer greater than 5 can be written as the sum of three primes. Since
every even integer greater than 4 can be expressed as 1 less than an odd integer greater than
5, we have that ¢p(n) < 4 for all n € Z.

Since not every integer is a prime power, the diameter of Cp is at least 2. To show that the
diameter is not 2, it suffices to produce an integer that is not a prime power and cannot be
expressed as the sum or difference of prime powers, where the prime power p° = 1 is allowed.
Such integers are surprisingly hard to find. First note that the Goldbach conjecture asserts
that every even integer greater than 2 can be expressed as the sum of two primes. This has
been computationally verified integers less than 4 - 10*® [10]. Tt follows that ¢p(n) < 2 for
even integers n < 4-10'®. Thus a search for an integer of P-length 3 should be restricted to
odd integers. An odd integer M is P-length 3 if

(1) M is not prime power;
(2) |M +£ 2" is not prime power for all n > 0.

Cohen and Selfridge [4, Theorem 2] use covering congruences to prove the existence of an
infinite family of integers M satisfying item (2) and give an explicit 94-digit example of such
an integer. Sun [11] adapts their work to produce a much smaller example. Specifically, let

M = 47867742232066880047611079, and let N = 66483084961588510124010691590.

Sun proves that if z = M mod N, then z is not of the form |p® £ ¢°| for any primes p, ¢
and nonnegative integers a, b'. We use Atkin and Morain’s ECPP (Elliptic Curve Primality
Proving) method [2] implemented by Morain in MAGMA [3] to look in this congruence class
for an element that is provably not a prime power. We find that M and M + N are prime,
but

M + 2N = 133014037665409087128068994259
= 23299723 - 19295212676140402555471

is not a prime power. Thus ¢p(M + 2N) = 3, and the result follows. O
Remark 4.4. Assuming Goldbach’s conjecture, the diameter of Cp is 3.

It is still an open problem to find the smallest integer n that is not of the form |p® & ¢*|,
for any primes p, ¢ and nonnegative integers a, b [5, A19]. Explicit computations [4, 11] show
that the smallest such integer must be larger than 2°. Such elements, if not prime powers,
would have P-length 3. We have extended slightly their computation and confirmed that
lp(n) < 3 for all n < 58,164,433 ~ 2257 For

n = 58164433 = 4889 - 11897,

we could not show ¢p(n) = 2. It is possible that this integer is the smallest positive integer
of P-length 3.

Corollary 4.5. Let P be a subset of the natural numbers containing all but finitely many
primes. Then, C'p has finite diameter.

IThe modulus N given by Sun [11] is incorrectly written as 66483034025018711639862527490.
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Proof. We need to show that ¢p(n) is bounded for all n sufficiently large. It is enough to
consider the case P =P \ S, where S is finite. Let R = max,es{{p(p)}.

First note that if p is a prime in S, then {p(p) < R. If p is a prime not in S, then {p(p) = 1.
Thus ¢p(p) < R for any prime p.

Since every even integer is one less than an odd integer, it suffices to show that ¢p(n) < 3R
for every positive odd integer n that is sufficiently large. By the ternary Goldbach conjecture,
every odd integer n > 5 can be expressed as the sum of three primes. Let n=p+qg+7r > 5
be an odd integer for some primes p, ¢, r. Then

lp(n) < Lp(p) + Lp(q) + lp(r) < 3R,

and the result follows. O

REFERENCES

[1] D. M. Adams, D. L. Gulbrandsen, and V. Vasilevska, Exploring properties of Cayley graphs of the
integers with infinite generating sets, Ball State Undergraduate Mathematics Exchange 10 (2016), no. 1,
40-50.

[2] A. O. L. Atkin and F. Morain, Elliptic curves and primality proving, Math. Comp. 61 (1993), no. 203,
29-68.

[3] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic
Comput. 24 (1997), no. 3-4, 235-265, Computational algebra and number theory (London, 1993).

[4] F. Cohen and J. L. Selfridge, Not every number is the sum or difference of two prime powers, Math.
Comp. 29 (1975), 79-81, Collection of articles dedicated to Derrick Henry Lehmer on the occasion of
his seventieth birthday.

[5] R. K. Guy, Unsolved problems in number theory, second ed., Problem Books in Mathematics, Springer-
Verlag, New York, 1994, Unsolved Problems in Intuitive Mathematics, I.

[6] L. Hajdu and R. Tijdeman, Representing integers as linear combinations of powers, Publ. Math. De-
brecen 79 (2011), no. 3-4, 461-468.

[7] H. Helfgott, The ternary Goldbach problem, ArXiv e-prints (2015), arXiv:1501.05438.

[8] M. B. Nathanson, Geometric group theory and arithmetic diameter, Publ. Math. Debrecen 79 (2011),
no. 3-4, 563-572.

[9] M. B. Nathanson, Problems in additive number theory, IV: Nets in groups and shortest length g-adic
representations, Int. J. Number Theory 7 (2011), no. 8, 1999-2017.

[10] T. Oliveira e Silva, S. Herzog, and S. Pardi, Empirical verification of the even Goldbach conjecture and
computation of prime gaps up to 4 - 1018, Math. Comp. 83 (2014), no. 288, 2033-2060.
[11] Z.-W. Sun, On integers not of the form £p® =+ ¢°, Proc. Amer. Math. Soc. 128 (2000), no. 4, 997-1002.



AN EXPLORATION OF NATHANSON’S g-ADIC REPRESENTATIONS OF INTEGERS 11

G. BELL, DEPARTMENT OF MATHEMATICS AND STATISTICS, THE UNIVERSITY OF NORTH CAROLINA
AT GREENSBORO, GREENSBORO, NC 27402, USA

E-mail address: gcbell@uncg.edu

URL: http://www.uncg.edu/~gcbell/

A. LAWSON, DEPARTMENT OF MATHEMATICS AND STATISTICS, THE UNIVERSITY OF NORTH CAROLINA
AT GREENSBORO, GREENSBORO, NC 27402, USA

E-mail address: azlawson@uncg.edu

URL: http://wuw.uncg.edu/~azlawson/

C. PRITCHARD, DEPARTMENT OF MATHEMATICS AND STATISTICS, THE UNIVERSITY OF NORTH CAR-
OLINA AT GREENSBORO, GREENSBORO, NC 27402, USA

E-mail address: cnpritch@uncg.edu

URL: http://www.uncg.edu/~cnpritch/

D. YASAKI, DEPARTMENT OF MATHEMATICS AND STATISTICS, THE UNIVERSITY OF NORTH CAROLINA
AT GREENSBORO, GREENSBORO, NC 27402, USA

E-mail address: d_yasaki@uncg.edu

URL: http://www.uncg.edu/~d_yasaki/


http://www.uncg.edu/~gcbell/
http://www.uncg.edu/~azlawson/
http://www.uncg.edu/~cnpritch/
http://www.uncg.edu/~d_yasaki/

	1. Introduction
	2. Cayley graphs of the integers
	3. Metric properties of Cg
	4. Metric properties of CP
	References

